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Abstract
Creating behavior for believable characters is one of the 
main challenges within video games and is a key component 
in providing immersive experiences. As games become 
more complex, developers turn to AI techniques to generate 
believable character behaviors to enhance a player’s game-
play experience. Traditionally, path planning allows charac-
ters to navigate game worlds in a responsive way but has 
run-time efficiency and path distance as its primary goals. 
However, this tradition can be broken to make path planning 
another channel for generating believable characters. This 
paper describes a system of augmenting path planning with 
layered influences that can capture different social problems 
and nuances of character interactions within games. Addi-
tionally, we explore the social importance of characters 
moving through game worlds via a system that allows au-
thors, game makers, and characters to use path planning as 
an expressive channel.

Introduction
One of the challenges within game development is to cre-
ate fully realized characters that can provide immersive 
experiences. Games like Assassin’s Creed II (Ubisoft En-
tertainment 2009) and Final Fantasy XV (Luminous Studio 
2016) have captivated players’ attention with their photo-
realistic characters that have complex background stories 
and believable actions to match their personas. These char-
acters not only have to appear realistic but also must act in 
a convincing way that aligns with both the player’s expec-
tations and the author’s ideas. They are the messengers 
who carry the responsibility of clearly communicating the 
game narrative by bringing their respective roles to life. In 
order to do so, many existing games have integrated AI 
techniques, such as path planning, to create believable be-
haviors that enhance the naturalness of character move-
ment.
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Path planning is one of many AI systems used to create 
believable characters. It has become a core AI movement 
system within most modern games because it allows char-
acters to navigate a complex and dynamic environment.
Much of the focus on path planning has been to improve 
the computation speed (Sturtevant and Geisberger 2010)
and memory efficiency (Botea, Muller, and Schaeffer 
2004) of the search algorithms, in addition to the basic 
improvements of path aesthetics using techniques such as
post smoothing (Botea, Muller, and Schaeffer 2004), angle 
propagation (Daniel et al. 2010), string tightening 
(Banerjee 2007), Catmull-Rom spline (Catmull and Rom 
1974), etc. A simple comparison of games such as Diablo 
III and Total War: Three Kingdoms (Sega, Feral Interac-
tive 2016) (with the exception of duels between generals
during which non-participants will clear the area) exhibits 
evidence of the evolving complexity within modern video 
games that drives the demand for faster path planning per-
formance and better character motion.

While advances in the graphics and animation communi-
ties have propelled the visual realism of games to impres-
sive levels, AI techniques like path planning often fall 
short of creating believable social and emotional behaviors 
that permit suspension of disbelief. It is self-evident within 
games such as Total War: Three Kingdoms that characters 
lack social competence in their nuanced nonverbal behav-
iors. This will not only break the believability of the char-
acter itself (Loyall 1997) but also result in unintended be-
havior interpretations that deviate from the author’s inten-
tions. For example, characters often lack a sense of social 
distances when planning their routes, which can be inter-
preted as rudeness, hatred, jealousy, urgency, etc. Conse-
quently, these interpretations may cause characters to 
breach player expectations of the world dynamics and the 
narrative of the game.

In this paper, we introduce a layering system that en-
hances the capabilities of path planning techniques to im-
prove character believability. We are exploring the idea of 
using what is traditionally thought of as a shortest path 
problem and redefining its potential as an expressive tool 
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used to improve character believability. This means our 
method is concerned not with finding the shortest path pos-
sible, but rather the most appropriate path. In doing so, 
game makers can have another tool at their disposal for 
creating believable character behaviors that can clearly 
deliver the creator’s envisioned ideas.

First, we introduce some related works. Next, we explain 
the layering system used to obtain experimental results. 
Lastly, we examine the tradeoffs of the additional heuris-
tics function on character behavior, computation time, and 
memory usage.

Related Work
Improving character behavior through navigation is an area
of research that concerns both the robotics and the games 
community. There exist similar needs for social path plan-
ning within both fields and most of the current work has
been focused on the movement around other people or 
characters based on ideas from proxemics. For example, 
Kirby (2010) and Luo and Huang (2016) incorporated so-
cial conventions, such as minimal distance, and social costs
to the A* search and the rapidly exploring random tree
path planning algorithms, respectively. Both successfully 
showed social awareness within robots when navigating 
around humans. Other approaches such as incorporating a 
weighted social convention function and human intimate 
zone cost (Chen, Zhang, and Zou 2018), a learning-based 
method (Sehestedt, Kodagoda, and Dissanayake 2010;
Henry et al. 2010), a fast marching method (Gómez, Mav-
ridis, and Garrido 2013), and human-inspired reactive and 
proactive planner (Guzzi et al. 2013) also showed promis-
ing results. 

While social path planning is a very active topic within 
the robotics community, the games community lags in ex-
ploring solutions to this problem. This difference may be 
attributed to the fact that game worlds are authored; there-
fore, many problematic cases for path planning can be pre-
vented by design. However, there are situations where so-
cial path planning cannot be avoided, such as within crowd 
simulations. The most well-known work is by Helbing who 
used social rules to simulate pedestrians and traffic behav-
ior (Helbing and Molnar 1995). It is based on the idea of 
social forces where characters can be attracted or repulsed 
by its goal or obstacle, respectively. Work done in this area 
is mainly concerned with relationships and interactions 
among group members (Zanlungo, Ikeda, and Kanda 2014; 
Moussaïd et al. 2010). For example, Huang et al. (2018)
added a social group force, which simulates group behav-
ior, to the social force model.

Although pathfinding itself is an active area of research 
within the gaming community, the focus has been mostly 
on improving the search speed for real-time applications. 

As a result, little research falls within the realm of incorpo-
rating social effects within path planning to improve char-
acter believability. That is not to say the gaming communi-
ty is ignoring the importance of the social component with-
in a character’s believability. AI systems such as Comme il 
Faut (McCoy et al. 2011), created for authoring playable 
social models, is one of many systems that address the so-
cial dynamics between characters. However, these models 
are only concerned with the relationship between charac-
ters rather than a character’s movement within the game. 

Unlike work done in robotics and crowd simulation, 
which solves situational issues that relies mainly on prox-
emic distance as the governing metric within social path 
planning, our layering system can encompass existing solu-
tions while capturing nuances encoded in non-physical 
dimensions such as social influence, game design, authori-
al intentions, etc. Our method allows for more meaningful 
expressivity that relies on deeper knowledge representation
with room for different algorithm integration. In turn, it 
gives designers control over the pathing of entities as op-
posed to relying on methods such as flocking to handle 
group dynamics. This expansion of expressivity is also 
what differentiates our work from previous adjacent re-
search. Our method turns path planning into a multi-
dimensional system that blurs the line between traditional 
path planning and symbolic planning.

Technical Description
Current implementations of path planning in games con-
sists of many variants of A* search such as Jump Point 
Search+ (Rabin 2015; Harabor and Grastien 2011), hierar-
chal search (Kring, Champandard, and Samarin 2010),
learning real-time A* (Korf 1990), etc. Therefore, we 
chose to augment A* over other available methods. In this 
section, we will give an overview of the social layering 
system with examples of different types of intentions that 
can be encoded and then explain how the system is incor-
porated into A* search. 

Social Layering System
Social expressiveness is a critical component to character 
believability (Hamdy and King 2017). It gives the illusion 
of social competency when characters interact in situations 
ranging from one-on-one conversations to passing each 
other within games. It is also a form of expression that 
communicates to the players in similar ways that stage 
actors communicate with the audience. This space of inter-
actions is large and can serve many purposes including 
author’s expressions, character believability, story world, 
etc. Modeling such is complicated because the nuances of 
interactions can branch into an exponential number of 
game states (McCoy 2012). In order to address all these
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needs, we present a system capable of expressing all the 
channels mentioned and beyond.

As shown in Figure 1, each layer of the system captures
different types of influences that can exist relative to a 
character. A smart object, any entity that can influence the 
path of the character, can exists in one or more layers. 
They define an area of influence that contains the summa-
tion of layers in which they belong to. For example, the 
dog smart object, a, belongs to both the first (red) and sec-
ond (blue) layers which means the area surrounding a has a 
combined influence weight of plus . This influence 
weight can be modified using a weight adjuster, , that 
tunes the relative influence amount between the smart ob-
jects within the same layer. 

Suppose the first layer is a character’s sense of responsi-
bility, second is friendship level, and third is fear. The spi-
der is part of the fear layer, the person is part of the friend-
ship layer, and the dog belongs to both the responsibility 
and the friendship layer. The character maybe better 
friends with the dog than the person. Therefore, the influ-
ence weight of the dog is different than the person within 
the friendship layer. Once the area occupied by the smart 
object has accounted for all the layers it belongs to, another 

tuning weight, , can be used to further adjust the charac-
ter’s pathing behavior. The resulting aggregation of the 
influence layers form a static influence map that can ac-
count for nuanced intentions. In other words, if the rela-
tionship between the smart object and the target character 
changes, the graph would need to be updated in order to 
display the potential new path of the character. The current 
design can accommodate multiple characters by defining 
layers that reflect the relationship between a smart object 
and the character appropriately. While each layer is tied to 
one character, the smart objects can be associated with 
various characters. For example, someone with arachno-
phobia would require the spider to be instantiated within 
the fear layer while someone who is an arachnophile can 
put the same spider in the love layer. By having the flexi-
bility to define as many layers as needed, the system can 
generate different paths for multiple characters. 

A* Implementation
In its primitive form, the A* search algorithm consists of 
an open and a closed set of nodes. The open set contains 
candidate nodes for examination and the closed set has
nodes already searched. As A* explores the grid, it calcu-
lates a cost function between two points and a heuris-
tic function to guide its search in finding the optimal 
solution. In a traditional implementation of A*, the cost 
function is the cost from the starting position to the 
current state and the heuristic function is the distance 
from the current position to the target location given by

Figure 2. Data flow architecture.

Figure 1. Example layer schema with n layers and three smart 
objects (a, b, c) where smart object a belongs to the first and sec-
ond layers with weights and , respectively, b belongs to the 
second layer with a weight of , and c belongs to the third layer 

with a weight of .
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where is the total cost of a node. 
In the layering system, the influence costs are added to 

A* as a penalty cost given by

where represents the total influence cost calculated as

where is the number of layers, is the weight of the 
layer, and and are the tuning weights (Figure 1).
These tuning weights represent relative importance, which 

can be adjusted to reflect the desired intentions because 
is meaningless when taken out of context. Together, they 
are used as a graph cost modifier of the transition between 
nodes. As such, modifies the underlying cost function 
rather than adding a new path planning heuristic. There-
fore, the modified A* algorithm will always find the short-
est path in the modified graph where the term is not 
restricted to the fallacies associated with a heuristic func-
tion. 

Figure 3. Map layout is divided into 50x50 nodes. The horizontal and vertical grey rectangles represent walls that the seeker can-
not traverse. The blue and pink opaque areas correspond to the Like and Fear layers, respectively. The green (friends), red (ene-
mies), and blue (strangers) cubes represent the type of relationship between the area of influence and the seeker. Seeker’s path 
according to a) no, b) mild (underestimation within 10% of mild-dominant threshold), c) mild (underestimation within 50% of 

mild-dominant threshold), and d) dominant (overestimation) social influence. The black route is the seeker’s path to the target and 
the gray boxes are the searched nodes.

a. b.

c. d.

target

seeker
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System Architecture
The system has an interface that allows users to define var-
ious layers, smart objects and their association with the 
layers, the different tuning weights, and the map size (Fig-
ure 2). The grid size input parameter is used to create the 
grid that overlays the world map and the other parameters 
are used to calculate . When a character requests a 
path, the system calculates at each node along with
the and costs and returns a path. 

Evaluation and Analysis
Due to the fact this research is a preliminary work, we 
choose to analyze the the runtime and memory impacts of 
the system in order to establish basic computational 
viability within a game context. In addition, we use a 
situational example to explain the effects of social 
influence on character behavior and its tradeoffs. Within 
the example, there is a seeker, a target, and 16 smart 
objects that fall into three distinct groups and two influence 
layers (Figure 3). The seeker is trying to find its target as 

soon as possible through an area scattered with its friends 
(green), enemies (red), and strangers (blue). Each type of 
relationship has a weight and belongs in either the Like
(green area) or Fear (red area) influence layer. The social 
influence weights for each area reflect how likely the 
person will stop the seeker on their track if the seeker is 
within the person’s influence area. The resulting total 
social cost can be adjusted by the total social weight such 
that is under (mild) or over (dominant) estimating the 
influence heuristic. The path displayed is also smoothed to 
showcase the general route with improved visualization.

Behavior Impacts
Social influences refer to the change in the behavior of a 
person due to their relationship with another object, entity,
location, or anything that could affect the character. For 
example, a student may cross the street when they see their
professor walking towards them, even if it means not tak-
ing the shortest route to their destination. The desire to 
avoid a potentially uncomfortable confrontation outweighs 
the need to reach the goal in the fastest manner. This may 
be caused by a multitude of factors such as the student
knows the professor is not very social and does not like to 
greet others while on the streets. Maybe there is a deadline 
approaching for the professor’s class and the student does 
not want to be asked about it. Maybe the student feels un-
comfortable speaking with professors in general. Maybe 
there are negative cultural consequences for students to 
talk with professors on the street. Maybe the professor and 
the student had a heated argument previously. Or, maybe 
the professor is talkative and engaging in a conversation 
with them will delay the student further. Regardless of 
what the underlying reason may be, a person’s behavior 
can be characterized as a cumulation of social influence 
factors that affect one’s decision where varying degrees of 
different influences can produce unique behaviors.

As shown in Figure 3, the seeker’s path is dependent on 
the cost of . With nso social influence (Figure 3a), the 
seeker proceeds to find the fastest route to their target 
while avoiding the walls. This is the benchmark for which 
all other tests are run against. As expected, the seeker be-
gins to avoid certain areas and expands their search as the 
weight of social influence increases. Figure 3b and 3c
show a subtle but significant change in the seeker’s behav-
ior. As the seeker turns around the corner at the red in 
Figure 3b, they are forced to choose between the fastest 
route which has a chance of being stopped by their friend 
or the longer route which avoids the cluster of potential 
social interaction area. With higher , meaning less desire 
for interaction, the search space increases to improve the 
chance of A* finding a path that is more likely to avoid 
others. This means that the proportion of influence weight 
( ) to distance costs ( ) determines how 
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likely the seeker is to traverse an area that is populated 
with their friends, enemies, or strangers. At an extreme 
where the seeker needs to avoid all social interactions, an
overestimating can change the seeker’s path drastically 
by allowing A* to search more nodes in order to find a
more appropriate path that aligns with their desire (Figure 
3d).

Runtime and Memory Impacts
In the worst case, the time and space complexity of A* are 
exponential as a function of the shortest path length. Oth-
erwise, the time and space complexity are linear as a func-
tion of the size of the grid. As seen in Figure 4, the runtime 
almost doubles, plateaus, increases steadily, and then plat-
eaus again around three times the benchmark runtime when 
social weight is the dominant factor in calculating the total 
cost. This pattern is also observed for the total number of 
nodes traversed. This behavior is expected because 
modifies the underlying cost function, which changes the 
length of the path of the lowest cost. In turn, the runtime 
follows the growth of path length as more influences are 
incorporated. 

In Figure 5, we examine the tradeoff for runtime from 
a different perspective by plotting the percent of nodes 
traversed compared to the slowdown of runtime for 3 dif-
ferent grid sizes on the same map. The same type of slow-
down is observed for each grid size where the slowdown is 
capped around 3 and reaches this limit faster with bigger 
potential search space. This makes sense because the in-
crease in the number of nodes traversed is smaller with the 
increase in grid size. The reason for such is that as the grid 
increased in granularity, the area of influence remained the 
same, which means there can be a path in between influ-
ence areas for the seeker to slip through. Therefore, the 

size and location of the influence area, in addition to social 
weight, are other factors that need to be considered when 
designing the pathfinding search space.

Conclusion and Future Work
With immense advancement in modern computing perfor-
mance, AAA games can achieve high visual realism char-
acters to improve character believability. However, charac-
ter believability relies on more than appearance. Characters 
must not only look realistic but also act accordingly in or-
der to allow suspension of disbelief. While current tech-
nology and exploration in the field of character behavior 
focus on using models such as behavior trees to solve this 
issue, we take a different approach by using path planning 
as a tool for improving character behavior. 

The system introduced in this work expands path plan-
ning capabilities by augmenting traditional path planning 
methods through the lens of authorial affordances by cap-
turing nuanced contexts otherwise lost in many other be-
havior models and path planning methods. Although the 
example given in this paper focused on social influences, 
the layering system can also serve as an expressive space 
that goes beyond social concerns where authors can encode 
other game system meanings such as weapon range.

This is only a first step towards creating a more complex 
system that can be used for author expression, character 
believability, story world and plot coherence, etc. For fu-
ture work, we would like to address several current limita-
tions with the system. One is the inability for path smooth-
ing to consider influence costs. Another is the inflexibility 
of accommodating moving smart objects. The last is the 
applicability of the system on navigation meshes. In addi-
tion, we would like to continue this work with a more 
complete evaluation that includes a quantitative user study,
and qualitative domain expert knowledge-based evaluation
where the evaluation focuses on proving that pathfinding 
can be a successful mechanism for conveying character.
Moreover, an in-depth analysis of all the types of evalua-
tion together will be necessary to have a holistic view of 
the algorithm described in the paper. 
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