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Abstract

It is crucial to develop reusable methods for explaining and
evaluating esports given their popularity and diversity. Quan-
tifying skill in an esport has the potential to improve win
prediction, matchmaking, and storytelling for these games.
Arpad Elo’s skill modeling system for chess has been adapted
to many games and sports. In each instance, the modeler is
challenged with tuning parameters to optimize for some met-
ric, usually accuracy. Often these approaches are one-off and
lack consistency. We propose SCOPE, a framework that uses
grid search cross-validation to select optimal parameters for
Elo based on accuracy, calibration, or log loss. We demon-
strate this method on a season of Call of Duty World League,
a first-person shooter esport, and we demonstrate comparable
performance to other more complex, state-of-the-art methods.

1 Introduction

In an early attempt to understand esports, Wagner (Wag-
ner 2006) provided a perspective on the nature of Counter-
Strike (Valve Corporation 2000):

...teams are faced with an extremely well defined vir-
tual environment in which the only way of winning a
match is to find and execute strategies that outperform
the strategies of the opposing team.

Playing these games in competitive contexts takes unique
and advanced expression of skill, or ability and capacity
to execute activities that overcome challenges around ideas,
things, or people. Precisely quantifying skill is of interest
for a variety of reasons. Spectators enjoy games that elicit
a sense of drama (Winn 2015); teams of similar skill play
games that have a higher degree of uncertainty in outcome,
eliciting a greater sense of drama (LeBlanc 2006). Players
would rather play close matches than not, thus being rele-
vant for matchmaking (Chen et al. 2017). How to best quan-
tify skill is an open problem.

In the 1950s Arpad Elo, a Hungarian chess player and
mathematician, invented the Elo (1978) model to quantify
skill — and win probability — of chess players as they pro-
gressed through tournaments. His system would go on to be
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adopted by the US Chess Federation (USCF) and a modified
version is still used today (Glickman 1995). Elo’s method
and modifications of pairwise comparison have been ex-
tended past individual board games to team sports. For ex-
ample, Nate Silver (Silver 2012) and his blog FiveThir-
tyEight have applied the Elo model to predict outcomes
in Major League Baseball, English Premier League soc-
cer, professional tennis, and more. Further, OpenDota (Cui,
Chung, and Hanson-Holtry 2018) calculates Elo ratings for
professional Dota2 (Valve Corporation 2013) matches.

Recently, pure Elo-based models have been eschewed in
favor of more elaborate models. For instance, Microsoft de-
veloped TrueSkill™ (Herbrich, Minka, and Graepel 2007)
and its successor TrueSkill2 (Minka, Cleven, and Zaykov
2018), each a probabilistic inference-based system to auto-
matically learn a player’s skill rating. When applied to the
problem of win prediction on Halo 2 (Bungie 2004) multi-
player online matches, the accuracy of these models are 52%
and 68% respectively (Minka, Cleven, and Zaykov 2018).
They claim the TrueSkill models are an improvement over
Elo (Winn and Bishop 2019) given “it is difficult to see what
assumptions are being made by making changes to the [Elo]
algorithm” (p. 152) and that it is “hard to predict how well
the resulting [Elo] algorithm will work™ (p. 152). In other
work, Delalleau (2012) developed a neural network-based
approach for modeling skill and making predictions for bal-
ance and player enjoyment in Ghost Recon Phantoms (née
Ghost Recon Online) (Ubisoft Singapore 2014).

However, these more elaborate models sacrifice inter-
pretability for accuracy. We posit that if something is not
immediately working in one of these models, they are no
easier to “‘see what assumptions are being made” nor “pre-
dict how the resulting algorithm will work.”

In this work, we demonstrate that Elo-based models can
achieve comparable levels of accuracy while retaining their
interpretability. We agree with the authors of these more
elaborate models that it is necessary to have robust and
adaptable systems to characterize player skill (especially in
nascent areas, like esports) and we recognize that although
Elo has already been use to quantify skill, the methods for
adapting Elo are typically unsystematic and developed on a
case-by-case basis. To address these limitations, we present



a framework based on Selective Cross-validation Over Pa-
rameters for Elo, or SCOPE, an automatic parameter-tuning
and cross-validating framework for Elo, which (a) clearly
identifies the model’s parameters, (b) systematically opti-
mizes the parameters by grid-searching in a space of values,
and (c) supports three different modes of optimization, over
accuracy, calibration, and log loss.

While we agree with Winn and Bishop that it is diffi-
cult to predict Elo’s success given its baseline configura-
tion, SCOPE explicitly identifies the variables involved and
systematically explores how those variables affect the Elo
model’s prediction. By changing multiple parameters and
back testing them, it is easier to predict how Elo will work.

2 Background & Related Work

Elo developed his model on the basis of pairwise compari-
son techniques within statistics. These techniques, pioneered
by Thurstone (1927), characterize the degree of preference
between two objects. Although intended for the social sci-
ences, Elo saw that this method could also be applied to
games insofar as a win is preferred to a loss. Analogously, a
larger difference in score leads to a larger magnitude of pref-
erence. Thurstone assumes that each score is fit to a Gaus-
sian distribution. Using this assumption, the probability that
one score is greater than the other can be directly calculated.

2.1 Setting Up Elo

Let G(7%,5%) represent Team A’s (7,) initial normally-
distributed ability (i.e. Elo) score with mean Z, and vari-
ance 52 prior to game i; let G(Z}, 5%) represent the same for
Team B. The difference between these two ability scores is
a Gaussian with mean z, — Z;. By definition from pairwise
comparison, if %, > 7} then T, wins game i. The probabil-
ity that i — ! > 0 can be approximated by the area under
the normal probability density function, or the point on the
cumulative density function at the value z, — z}. Let W}
represent the event that Team ¢ (73) wins game ¢. Then:

1
- 1+ 10(;@3—;62)/11190
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Pr (W}) =1-Pr (W)
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The win probability is calculated using Eq. 1 and 2 above for
each team respectively. They are designed to be reflexive so
Pr (W{) = 1—Pr (W). Elo decided to use base 10 instead
of Euler’s constant (¢) because it is easier to calculate win
probabilities for specific score differences. This allows the
variable w90 to represent the point at which a mean score
difference has a 90% chance of winning. In Elo’s (1978)
original model w90 = 400 . In that case, if Z/, is 400 points
above a?"i, T, will have a 90% chance to beat T} in game 1.

Not only does Elo give us a conception of the probabil-
ity for one team to beat the other, but he proposes a way to
update a team’s (mean) score after a result. After the com-
pletion of a game, each team’s Elo score is incremented by
the difference in the expected score (E[S]) and actual score
(S). This quantity is then scaled by some parameter K.
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In other words, a team receives a score S = 1 if that team
actually won the game, otherwise S = 0. The expected score
is the probability for that team to have won the game based
on the previous score, calculated from Eq. 1 or 2. The idea is
that if an outcome is more surprising, a team’s score should
be increased in the direction of that surprise. In the original
Elo model, K is a constant that represents the importance or
significance of a game on the actual score of a player; the
factor is thus the weight of the game being played. In our
model, K takes on a learned baseline value and is modified
on a per-game basis. This is elaborated in Section 3.2.

2.2 Adaptations of the Elo Model

The original Elo rating system is fairly simple and several
parties have introduced adaptations to model more com-
plicated phenomena; we review some adaptations that we
found relevant for modeling esports.

Mark Glickman (Glickman 1995; Glickman and Jones
1999) is responsible for many of the modifications to the
original Elo model applied to chess. His adaptations include
(a) adjusting parameters based on historical data, (b) repre-
senting changes in skill over time, (c) modeling variance in
skill, and (d) accounting for game-specific influences; e.g.
in chess, the player controlling the white pieces has an ad-
vantage simply because they go first. He named this updated
version the Glicko model.

FiveThirtyEight introduced modifications like (a) game-
specific differences that favor a particular team; e.g.
in baseball, home field advantage, park effects, starting
pitcher (Boice 2018) and in tennis, number of games
played (Morris and Bialik 2015) and (b) the expansion of Elo
to account for multiple players — who could switch teams
during a seasons of play. SCOPE outlines the possible mod-
ifications to an Elo model and optimizes the parameters cor-
rectly. This is elaborated further in Section 3.

2.3

Kovalchik (2016) developed a framework to evaluate four
different tennis prediction models (including FiveThir-
tyEight’s Elo model) by training them all on a year’s worth
of data and using them to predict the subsequent year’s re-
sults. We adapted this method to assess our own model. The
framework compares models using the metrics accuracy,
calibration, log loss, and discrimination. We focus on the
first 3 and leave discrimination for future work. In the fol-
lowing equations, n is the total number of series’ played, and
S, and E[S],, refer to the actual score and expected score for
a series (as opposed to a single game, as before).

Model Assessment Metrics



Accuracy For this metric, we count a correct prediction
when the team that is expected to win over 50% of the time
actually wins. The accuracy of the model is the total number
of correct predictions divided by the total number of predic-
tions we made over every series.

1 ifE[S], >05AS, =1
correct = .
0 otherwise
o t
aceuracy — 220t )
n

Calibration This is the sum of the win probabilities for
each team predicted to have over a 50% chance of winning
divided by the number of times those teams actually won.
If the ratio is over 1, better teams are predicted to win more
often than they actually do, measuring over-prediction.

1 ifE[S], > E[S[p A S, =1
correct = )
0 otherwise
“E[9].
calibration = g:# 6)
> correct
Log Loss This is a ratio of two quantities. The numerator

is the sum of (a) the product of when the player actually won
times the log of the prediction accuracy and (b) the product
of when the player lost times the log of the prediction. Log
loss closer to 0 is better.

=55, 1og E[S]a + Splog E[S]
n

(N

logloss =

3 Framework

In this section we outline the aforementioned Elo model
adaptations and the method to use the model assessment
metrics. Together these steps comprise SCOPE.

3.1 Elo Initialization

Part of the power in the Elo model lies with its ability to “re-
member” history, applying updates over time. What happens
where there is no history? Elo acknowledges the challenges
of starting a rating system from scratch:

The working formula of the Elo system presume an ex-
isting pool of rated players. A special problem arises
when an isolated group of players is to be rated for the
first time... (Elo 1978, p. 53)

Glickman and Jones (1999) describe a provisional rating
system where scores stay fixed for the first 20 games.

Our dataset (described in Section 4.1) contained a small
number of games, such that we did not want to waste any
data on the provisional phase. To manage this, we devel-
oped a technique based on mapping past team performance
onto a rank and then mapping the rank onto an Elo score
for the subsequent season of play. There are no global rank-
ings released for the CWL, so we calculated a team’s rank
as the difference between number of games won and number
of games lost in the last tournament of the previous season,
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i.e. teams who won the most games were assumed to be the
most skilled. For g games played, team #’s rank 77 is:

g
won = g Sy T = won — (g — won)
i=0

As Elo notes, “The rating scale itself - its range of numbers -
is, like any scale without reproducible fixed points, necessar-
ily an open-ended floating scale” (Elo 1978, p.18). Thus, we
fit the ranking to a normal distribution with a y = 1500 and
standard deviation of 0 = 100, per Elo. Any team who did
not play in that tournament was rated in the bottom 12.5%
since most major teams compete in the final tournament.

3.2 K Baseline and Updates

There is not a specific formula to calculate K, but we can
use some heuristics and techniques for finding the baseline
K value (initialization), and then determining the amount
to modify K for a particular match-up (updates). These
per-game updates can make model predictions more accu-
rate (Elo 1978; Glickman and Jones 1999).

We posit that K should be some small percentage of the
population mean Elo scores p and also below the popula-
tion standard deviation o. Otherwise, the scores would bal-
loon out of proportion after a single game (and would re-
quire a manual reset of Elo scores as is done in prior work).
Elo (1978) sets K in the range 16 — 30 for chess. FiveThir-
tyEight (Boice 2018) and Lacy (2018) set K in the range
30—50 for football and basketball (1 ~ 1500, o =~ 100). We
experimentally tested possible values of K in these ranges.
We underestimate K starting at 1 and increase up to 50, near
the upper limit of where most have tested. The upper value
is half of o, so scores will not increase excessively.

We can use more data than just wins and losses to deter-
mine a score update. In general, this is captured by changing
K on a per-game basis. Factors that could alter our belief
about how much each team’s score should change include
margin of victory, magnitude of perceived skill, and change
in skill over time. All updates to K are of the form:

KiJrl - Kz + (Kupdate)

Where K is the K value as initialized and K pqae is deter-
mined by the methods described below.

Margin of Victory The intuition behind this K update
is that one team is more skilled than another if the for-
mer beats the latter with a large margin of victory (MOV).
Lacy (2018) implemented this in his Elo model for English
Premier League soccer. His hypothesis is that MOV plays
a larger role for close matches, but after a certain point the
advantage trails off. To validate this assumption, we tested
multiple MOV functions; each of these functions serves as a
potential form of the K pgae value:

Kipgae = Aw — 1 (linear)
Kupdare = log(150(Aw — 1) + 1) (log)
Kupdate = IOO(AU}) (Sqft)
Kupdale =38 (exp)
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Figure 2: Reducing K at higher Elo scores has potential to
increase model performance (Glickman and Jones 1999).

These equations were chosen because they kept K below o,
the population Elo standard deviation. We did not explicitly
tune the coefficients for each of these equations in SCOPE.
In future work, we hope to add these parameters to the cross-
validation process within our model.

Score Cutoff Glickman and Jones (1999) has noted that
attenuating ratings for higher Elo opponents is a good strat-
egy for improving model performance. As demonstrated in
Figure 2, one way to do this is with a piece-wise function
and set a specific cutoff Elo score to decrease the K value.

. e if > cutoff
update — 7K2 + (Kscale * K,L) if 7 < cutoff

Once we are more sure that a team is skilled, we give them
the benefit of the doubt going forward. High skill teams are
less susceptible to the results of a single game. The cutoff
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Setting w90 in Elo Win Probability
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Figure 3: Win probability for a team with varying w90.

values are chosen every half standard deviation (50 points)
above a team’s Elo score (¥), starting at one standard de-
viation above p (1600). In most training cases teams never
reached scores over 1750, so this value represents no cutoff.
This only happens on the high end and not the low end of
scores. In Table 1, we refer to the point at which we make
this decrease in K as Cutoff. The amount which K is re-
duced is called the K Scale.

3.3 Adjusting Win Probability Gap

Glickman and Jones (1999) found that when looking at his-
torical data for the UCSF the existing model continuously
over-predicted the strength of high ranked players. When he
changed w90 from 400 to 591 his model would more accu-
rately predict the winner. In this case, we tested values from
100 to 500 in increments of 100, starting at one standard
deviation above from the mean Elo scores.

Tuning w90 enables us to control win probability based
on skill disparity. Figure 3 illustrates different curves for the
win probability function, and represents how tuning affects
probability; in essence, tuning alters the curve’s kurtosis.
This makes sense, since kurtosis characterizes the possibil-
ity of extreme events occurring. A lower w90 means that we
can be more confident in our predictions, since they’re less
susceptible to random events.

3.4 SKkill Changes Over Time

Because some teams do not play in consecutive tourna-
ments, their Elo may not be reflective of actual skill; some
forecasters regress teams to the mean after a season or gap
in play (Boice 2018). Regressing to the mean is a common
technique to smooth out noisy data.

In Table 1, this is referred to as Regression. This is
demonstrated in the equation below, where r represents the
amount of regression:

T =01 -rz +ru
If a team’s score is below pu, their score will increase; if
it is above p, it will decrease. For our tests we chose r €



Algorithm 1 SCOPE

1: procedure UPDATEELO(elo;, series, params)
2: eloy < {0}

3 for s in series do:

4 eloy < update(elo;, s, params) > Eq. 3/4
5: return eloy

6: procedure EVALELO(eloy, series)

7: metrics + {@}

8: metrics < accuracy(eloy, series) >Eq. 5
9: metrics < calibration(eloy, series) >Eq. 6
10: metrics < logLoss(eloy, series) >Eq.7
11: return metrics

12: procedure CROSSVALIDATE(Data, n)
13: trainingSet < {O@}

14: for ¢ in n do:

15: trainingSet < {trainingSet U Datali]}
16: validation < Datali + 1]

17: for tr in trainingSet do:

18: eloy < UpdateElo(elo;, tr)

19: metrics < EvalElo(eloy,validation)

{0,0.1,0.2,0.3} because any values higher than that would
bring the scores so close to the mean that valuable informa-
tion about the team skill would be lost.

4 Validation

We chose to apply SCOPE to the problem of win prediction
for esports, specifically studying the Call of Duty (COD)
game franchise, played as an esport in the Call of Duty
World League (CWL).

4.1 Selecting a Dataset

In 2018, the CWL was played on Call of Duty:
WWII (Sledgehammer Games 2017). Teams competed in
separate game modes: Hardpoint, Search and Destroy, and
a third mode that changes based on the season; in the WWII
season, it was Capture the Flag. These modes encompass a
variety of play spaces and elicit distinct strategies. In addi-
tion to its popularity, Activision made CWL data publicly
available (Shacklette 2018); the dataset includes data for
CWL tournaments from late in the year 2017 to present day.
In future work, we will to apply SCOPE to other datasets
from different esports as they become available.

4.2 Applying SCOPE

After choosing a dataset and initializing scores, we applied
SCOPE. The pseudo-code for the procedure is outlined in
Algorithm 1. We define UpdateFElo, a procedure to calcu-
late the next Elo score using Elo’s formula with the modifi-
cations mentioned above. Next FvalFElo will make a pre-
diction given the win probability between the two teams
and calculate the metrics we described above. Then the
CrossValidate procedure splits the dataset (comprised of
series’ of games) with the day forward chaining technique
(elaborated upon in Section 4.4), then trains the model on
the training set and tests it on the block of data for the vali-
dation set.
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Table 1: Elo Model Parameter Grid Tested in Evaluation

Base K 1 5 10 20 30 40 50
MOV lin log exp  sqrt

Cutoff 1600 1650 1700 1750

K Scale 01 025 05 075 09

w90 100 200 300 400 500
Regression 0 0.1 0.2 0.3

4.3 Selecting Parameter Ranges

Table 1 shows the values that we searched through for opti-
mizing our model. As mentioned, we chose base K values
lower than o such that Elo scores do not grow in a manner
that outpaces actual team skill. We chose these functions for
MOV to test whether the effect increases or decreases with
magnitude of the victory. The cutoff values start at one stan-
dard deviation above the population mean (u) and continue
until they are 2.5x, a level that is unlikely to be reached by
any one score, effectively nullifying the cutoff at that point.
K scale, the amount which K is decreased at the cutoff,
varies from 10% to 90% to explore a very drastic, or min-
imal change. The range for w90 translates to different the
win probability for different skill discrepancies; low values
will lead to larger differences in probability for teams closer
in skill. Finally, regression values were bounded at 40% to
prevent excessive information loss.

4.4 Cross-Validation

Performing cross-validation on our model will help ensure
that we are not over-fitting. Elo uses time series data, so we
must use different cross-validation methods than those for
batch processing algorithms. For this reason we chose to use
nested cross-validation, also known as day forward chaining
or rolling-origin evaluation. This has been demonstrated to
work well for time series data. (Bergmeir and Benitez 2012).

The idea behind this method is to split the training set ¢
into n ordered folds (¢;) then for each epoch of training we
add one of the folds to the data. We evaluate this training
set on the subsequent fold v, the validation set. In this case
we chose N (the total number of folds) as the number of
tournaments in the season. Even though the number of series
played in each tournament is not the same, the division of
the training set by tournament is a natural splitting point for
cross-validation blocks.

We decided to approach this problem using grid search,
iterating over many possible parameter combinations to dis-
cover the best ones. Although using randomized parameter
selection techniques have been shown to be robust and con-
verge, grid search is one of the most widely used techniques
and allows us to have a more curated and transparent param-
eter selection in our model (Huang, Mao, and Liu 2012).
After preliminary testing we saw some of the parameters af-
fected the model evaluations more than others. On a practi-
cal note, splitting up the parameters into 2 groups of 3 re-
duced the computation time per run, improving iteration for
development of the algorithm.



Table 2: Best Parameters for K Value, Regression, and MOV

Parameters Metrics
Regression Base K MOV Accuracy  Calibration Log Loss
0.20 5 exp 680 +.11  1.02+.16 .376+.049
0.30 5 exp 663 +.12 999+ .15 .410+.051
None 50 exp .6294.055 1.445+.24 .094 £ .066

Table 3: Best Parameters for Cutoff, K Scale, and w90

Parameters Metrics
Cutoff KScale w90  Accuracy Calibration Log Loss
1650 0.10 200 .684+.11 1.01+.15 .374+.046
1650 0.10 200 .684+.11 1.01+£.15 .374+.046
1650 0.75 100 .662+.12 1.17+.17 .253+.048

4.5 Model Evaluation Results and Discussion

We choose accuracy, calibration, and log loss as evaluation
metrics because they give insight into the model behavior in
general and fringe cases. Depending on the modeling goals,
it may be useful to optimize for one of these metrics in par-
ticular. We ran grid search three times, once to optimize each
of the metrics. In Tables 2 and 3, we highlight the maximum
values achieved; each table represents a different set of pa-
rameters we tuned, split up to reduce computation time.

The best Base K value for accuracy is 5. This is low com-
pared to FiveThirtyEight’s MLB, NFL and Lacy’s EPL rank-
ings which were between 40 — 60 (Boice 2018; Lacy 2018);
it was the second lowest value we tested. Conversely, the
best Base K value for log loss was actually 50, the highest
possible Base K value in our model. This finding suggests
in reality there are a few teams that are very high skill and
a few teams that are very low skill. Since log loss generally
tries to avoid choosing wrong, it makes sense that it predicts
that good teams will get better when they win. In terms of
accuracy, if teams are generally predicted to be closer in skill
there is a smaller chance for larger errors and upsets are eas-
ier to explain. Regression back to the mean after each tour-
nament removes a fair amount of disparity from the field.
This is further confirmed by the large amount of regression
present in the highest accuracy and calibration parameters,
20 and 30 percent respectively. In general we are plagued
by small sample sizes, especially because many teams only
play in a few tournaments. This is something that established
leagues like MLB or EPL do not have to deal with.

The exponential scaling for MOV performed the best.
This suggests that teams who are able to handily beat their
opponents should be rewarded with a larger skill update.
From the exp equation, a base value of 5 leads to a K value
of 32 if a team wins 3-0.

Compared to the case of K = 1 without any regression
or margin of victory scaling (56% accuracy), we achieved a
12% gain, up to 68% by tuning these parameters. The next
set of parameters we validated for seemed less impactful,
but important to test for. There was only a 0.4% increase in
accuracy and a decrease in log loss and calibration by atten-
uating K at higher levels and adjusting the w90 criterion.

Reducing K above 1650 drove a small increase in ac-
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curacy. A commanding victory still had a comparably high
amount of influence on a team’s skill. w90 was held constant
at 200 for the first run through of cross-validation, so there
was not much change here. This hints that there is enough
range in our model to account for differences between teams.
If this coefficient was much higher, it would mean that it
would take a much larger Elo difference to see a difference
in win probability.

5 Conclusion

In this paper we were able to construct an accurate win pre-
diction model for the CWL. SCOPE not only has the po-
tential to be applied to esports, but other sports and games
as well. Given the simplicity of this technique, we foresee
it being used by analysts to communicate with fans about
team skill in esports. We acknowledge that this work is pre-
sented as a generalizeable framework and should therefore
be demonstrated on multiple esports datasets. Due to space
limitations for this paper, we defer that for future work. We
have primarily focused on identifying the necessary model-
ing assumptions needed to extend this framework to other
sports and games.

Future directions to improve this model include making
more sophisticated updates to Elo. This could be reflected
by changing the granularity with which we update Elo, in-
cluding separate Elo for each game mode or even per player.
Another way to update the system would be to change the
Elo when a player changes teams. FiveThirtyEight has inte-
grated a component into their MLB Elo prediction system
that changes pre-game Elo based on who is pitching (Boice
2018). We could implement a similar system that looks back
at how a newly added player performed on their previous
team and update their new team’s Elo accordingly. FiveThir-
tyEight’s MLB model also takes in to account park effects
for different stadiums (Boice 2018). We could integrate the
player side selection and map veto process to get a better
picture of how map selection would affect Elo in COD, or
make similar changes for other games.

When conducting our research into existing skill rating
methods, we prioritized model transparency. If players do
not understand how their skill ratings are composed, we
posit this can cause unnecessary strife in the community.
SCOPE should be applied to new esports, or existing ones,
to understand the parameters that change in an Elo model,
determine the best set of values for those parameters using
cross-validation, and evaluate the effectiveness of the model
in different ways. All told, SCOPE is a parsimonious model
building framework that will enable engineers and data sci-
entists to create better skill-based ranking systems.
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