
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Guiding Monte Carlo Tree Search by Scripts in Real-Time Strategy Games

Zuozhi Yang, Santiago Ontañón
Drexel University, Philadelphia, Pennsylvania 19104

{zy337, so367}@drexel.edu

Abstract

In Real-Time Strategy (RTS) games, the action space grows
combinatorially with respect to the number of units. With lim-
ited computing budget between actions, methods like Monte
Carlo Tree Search (MCTS) tend to get lost in the massive
search space. An interesting line of existing work is to incor-
porate human knowledge in the form of scripts. In this paper,
we investigate different possibilities for incorporating scripts
into the tree policy while still maintaining the convergence
guarantees of MCTS. We also report experiments on incorpo-
rating the scripts into the playout policy, which showed that
unbiased bots perform better than biased bots.

Introduction

Real-Time Strategy (RTS) games offer a rich testbed for ar-
tificial intelligence algorithms for researchers for their com-
plexity and real-time nature. Building an RTS game playing
agent is considered a challenging problem that is currently
being studied both in the machine learning and game tree
search AI communities. Despite recent advances in building
strong agents using deep learning and reinforcement learn-
ing (e.g. AlphaStar), there are still many open problems such
as robustness or long term planning, which can potentially
be addressed by search techniques.

Monte Carlo Tree Search (MCTS) (Browne et al. 2012;
Coulom 2007) is a well known game tree search algorithm
that was initially intended to address the large branching
factor and lack of good evaluation function in the game
of Go. The large branching factor problem is even more
pronounced in RTS games, especially since the amount of
time to make a decision is more limited than in games
like Go. Thus improving the scalability of MCTS is one of
the key problems in deploying search-based techniques to
RTS games. While previous work has shown that machine-
learned stochastic policies can be used to improve the per-
formance of MCTS (Silver et al. 2016; Ontañón 2016),
in this paper, we study how to integrate human knowl-
edge, in the form of hard-coded (deterministic) scripted bots,
into MCTS in order to improve the gameplay strength of
MCTS under tight computational budget constraints. In-
corporating scripts into MCTS algorithms is not a new

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

idea (Justesen et al. 2014; Barriga, Stanescu, and Buro 2017;
Moraes and Lelis 2017), but the key contribution of this pa-
per is to present methods to integrate scripts into MCTS
without pruning the search space, and thus, still ensuring
that MCTS would converge to the global optimum in the
limit. Our experiments in μRTS (Ontañón 2017) show win
rates up to 94% against the baseline MCTS implementation.

The rest of the paper is structured as follows: first we first
talk about related work on applying MCTS to RTS games,
and then we describe the research environment we use. After
that, we describe two new approaches to modify MCTS to
incorporate scripts. Then we describe and report our experi-
mental setup and results. Finally, we talk about conclusions
and possible future work.

Background

In RTS games, players control a large number of units
to mine resources, build more units, and combat with
other players. RTS games have been receiving an increased
amount of attention as they are even more challenging than
games like Go or Chess in at least three different ways: (1)
the combinatorial growth of the branching factor (Ontañón
2017), (2) limited computation budget between actions due
to the real-time nature, and (3) lack of forward model in most
of research environments like StarCraft. Many research en-
vironments and tools, such as TorchCraft (Synnaeve et al.
2016), SCIILE (Vinyals et al. 2017), μRTS (Ontañón 2017),
ELF (Tian et al. 2017), and Deep RTS (Andersen, Goodwin,
and Granmo 2018) have been developed to promote research
in the area. Specifically, in this paper, we chose μRTS as our
experimental domain, as it offers a forward model for game
tree search approaches such as minimax or MCTS.

The number of possible actions a player can execute in
a given game state in an RTS game grows combinatorially
with respect to the number of units the player controls. This
enormous action space poses a great challenge to both ma-
chine learning approaches and game tree search approaches
to build strong RTS game agents. To alleviate this problem,
recent work in reinforcement learning on RTS games (Sun
et al. 2018) limit the action space by defining a set of macro
actions using domain knowledge.

100



Monte Carlo Tree Search in RTS Games

Monte Carlo Tree Search (Browne et al. 2012; Coulom
2007) is a method for sequential decision making for do-
mains that can be represented by search trees. It has been a
successful approach to tackle complex games like Go as it
takes random samples in the search space to estimate state
value rather than systematically exploring the whole tree.
However, most of the successful variants of MCTS, e.g.
UCT (Kocsis and Szepesvári 2006), do not scale up well
to RTS games due to the combinatorial growth of branching
factor with respect to the number of units. Sampling tech-
niques for combinatorial branching factors such as Naı̈ve
Sampling (Ontañón 2017) or LSI (Shleyfman, Komenda,
and Domshlak 2014) were proposed to improve the explo-
ration of MCTS exploiting combinatorial multi-armed ban-
dits. Inspired by AlphaGo, another approach to address this
problem is the use of learned probabilistic models to be used
as a prior to guide the search (Ontañón 2016). Other work to
deal with this problem involves limiting the search space by
introducing action abstractions build from human-authored
scripts. For example, instead of searching directly in the raw
unit action space, Portfolio Greedy Search (Churchill and
Buro 2013), Stratified Alpha-Beta Search (Moraes and Lelis
2017) search in the abstracted action spaces generated by
hard-coded scripts, and techniques like asymmetric action
abstractions prune the search space by only considering the
full action space for a subset of units in the game, and using
scripts to control the rest (Moraes et al. 2018).

Another related idea is that of using previously trained
policies to guide the search (e.g., as used in AlphaGo (Silver
et al. 2016)). An example multiarmed bandit strategy that
incorporates this is PUCB (Predictor + UCB) (Rosin 2011),
which modifies the standard UCB1 policy to incorporate
an action probability distribution provided by the predictor.
Moreover, these approaches assume the external policy can
provide a probability distribution of actions. In this work,
we are interested in incorporating simple (potentially deter-
ministic) scripts that are simpler to specify and available for
many RTS game domains in a way that search can greatly
benefit from them, and without modifying the convergence
guarantees of MCTS.

Naı̈ve Monte Carlo Tree Search Naı̈veMCTS (Ontañón
2017) is a variant of MCTS specifically designed to han-
dle RTS games. Naı̈veMCTS can handle durative and si-
multaneous actions, but most importantly, the key feature
of Naı̈veMCTS is that rather than using standard ε-greedy
or UCB1, it uses a sampling policy based on Combinato-
rial Multiarmed Bandits (CMABs) called Naı̈ve Sampling in
order to scale up to the combinatorial branching factors of
RTS games. All the experiments reported in this paper use
Naı̈veMCTS as the baseline, thus, we briefly describe below.

MCTS algorithms employ two policies called the tree pol-
icy and the default or playout policy. The former is used to
determine which node of the tree to explore next, and the
later is used to perform stochastic rollouts from the leaf of
the tree until a terminal state is reached.

Naı̈ve Sampling is a sampling strategy for CMAB prob-
lems designed to act as the tree policy of MCTS. Thus,

it tries to find the macro-action (the combination of all
the actions issued to game units in a given game state by
the player) that maximizes the expected reward. As usual,
Naı̈ve Sampling decomposes this problem into exploration
and exploitation. During exploration, the naı̈ve assumption
that the reward of the macro-action can be decomposed
as the sum of the expected rewards of the individual unit
actions is used. With this assumption, we can decompose
the CMAB problem into n child MAB problem, denoted
as MAB1, . . . ,MABn. During exploitation, the naı̈ve as-
sumption is ignored, and a global MAB, denoted as MABg

(which has a macro-arm for each macro-action generated so
far during exploration), is used to find the best macro-action
amongst all the currently explored ones, ensuring conver-
gence to the optimal macro-action regardless of whether the
domain at hand satisfies or not the naı̈ve assumption.

Specifically Naı̈ve Sampling works as follows. At each
iteration, a stochastic decision is made to exploit (with prob-
ability 1− ε0) or explore (with probability ε0):
• if exploit is selected: an ε-greedy policy πg is used to se-

lect a macro-action using the global MAB.
• if explore is selected: for each local MAB, an ε-greedy

policy πl is used independently for each game unit to se-
lect actions, and the resulting macro-action is added to the
global MAB.

μRTS

μRTS1 is a simple RTS game maintaining the essential fea-
tures that make RTS games challenging from an AI point
of view: simultaneous and durative actions, combinatorial
branching factors and real-time decision making. Although
the game can be configured to be partially observably and
non-deterministic, but those settings are turned off for all the
experiments presented in this paper. Additionally, μRTS al-
lows maps of arbitrary sizes and initial configurations, which
we exploit in our experimental evaluation.

There is one type of environment unit (minerals) and six
types of units controlled by players, which are:
• Base: can train Workers and accumulate resources
• Barracks: can train attack units
• Worker: collects resources and construct buildings
• Light: low power but fast melee unit
• Heavy: high power but slow melee unit
• Ranged: long range attack unit
Additionally, the environment can have walls to block the
movement of units. A screenshot of game is shown in Fig-
ure 1. The squared units in green are Minerals with numbers
on them indicating the remaining resources. The units with
blue outline belong to player 1 (which we will call max)
and those with red outline belong to player 2 (which we will
call min). The light grey squared units are Bases with num-
bers indicating the amount of resources owned by the player,
while the darker grey squared units are the Barracks. Mov-
able units have round shapes with grey units being Workers,

1https://github.com/santiontanon/microrts

101



"max"
player 
units 

"min"
player 
units 

Figure 1: A screenshot of μRTS, highlighting the units con-
trolled by each of the two players.

orange units being Lights, yellow being Heavy units (not
shown in the figure) and blue units being Ranged.

Guided Naı̈ve Monte Carlo Tree Search

Due to the limited search budget in RTS games and massive
branching factor, it is usually unfeasible to produce a reliable
estimation of the expected reward of the possible actions
from sampling. Meanwhile, scripted bots are hard-coded
agents using human knowledge, which follow simple and
fast strategies, sometimes achieving a good level of game-
play strength. For example, scripted bots performed among
the best bots in the first μRTS AI competition (Ontañón et
al. 2018). In this paper, we propose two tree policies to in-
corporate scripted bots (which we will just call “scripts”) as
guidance for game tree search. A key characteristic of our
approach, however, is that we use those scripts only to guide
the exploration of the tree in MCTS, instead of for pruning
the search space, as had been done in the past. In this way,
we preserve the original search space of MCTS unchanged,
and under certain conditions (satisfied in our experiments),
the resulting MCTS algorithms will still converge to the op-
timal action in the limit (while previous approaches based
on scripts might accidentally prune the optimal action of the
search space, and must settle for just finding the best action
among those included in the reduced search space defined
by the scripts).

First-Choice Guided Naı̈ve Sampling (FC-GNS)

This tree policy utilizes a single script to inform the search.
The first time the tree policy is used on a search node of the
MCTS treee to determine which is the first child that will
be added to such node, instead of using stochastic sampling
(like Naı̈ve Sampling or ε-greedy do), or choosing the first
non-expanded child (as UCB1 does), we propose to choose
the macro-action suggested by the script. In all other circum-
stances, the tree policy selects a player action that consists of
unit actions selected by Naı̈ve Sampling. The resulting tree
policy is shown in Algorithm 1.

The key idea behind this is that while the top nodes of the
tree might be explored heavily by MCTS, as we go deeper
into the tree, most nodes would only be visited once or a

Algorithm 1: FC-GNS Node Expansion(n0, s)
if n0.children = Ø then

n1 = n0.newNode(s.getAction());
else

n1 = n0.newNode(NaiveSampling(n0));
end

handful of times. Thus, by first selecting an action based on
a script, we ensure that if a node is only visited once, at least
the action selected is an action that makes sense, and not
a random action. Moreover, since the script is only used the
first time a node is visited, in the long-run, MCTS can ignore
it if other actions turn out to have higher reward. Thus, this
does not change the theoretical convergence guarantees of
MCTS, and would still find the optimal action in the limit.

Mixed Scripts Guided Naı̈ve Sampling (k-GNS)

This tree policy utilizes a collection of k scripts (k ≥ 1) to
guide the search. Scripts are used in two different ways:
• In the very first iteration in each node of the search tree:

similarly to FC-GNS, the first time the tree policy is used,
the scripts are used to chose the selected action. Rather
than using a single script, k-GNS chooses a script uni-
formly from a pool of scripts, and uses the action pro-
duced by that script.

• In each subsequent iteration: when using a local MABs
in Naı̈ve Sampling, with probability ε, the scripts will be
used to select the unit action, and with probability 1 − ε,
the local MABs will be used. Thus, notice that this means
that, in average an ε proportion of the units would have
their actions assigned by scripts when using the local
MABs in Naı̈ve Sampling.
In our experiments, unless otherwise noted, we use ε =

0.33. Larger ε values force the search towards the scripts,
which can be useful in larger maps as we will show later
in the experiments. Moreover, as long as ε < 1 (so that all
possible macro actions have a non zero probability of being
chosen at some point), and ε0 > 0.5 in Naı̈ve Sampling (so
that exploitation can overpower the action selection imposed
by the scripts) we can ensure that MCTS can still converge
to the optimal action in the limit.

The resulting tree policy is shown in Algorithm 2. The
idea behind having more than one script, and inserting this
probability ε of using the scripts at any iteration is to bring
the actions proposed by the scripts to the attention of MCTS
more often, and thus more strongly guide the search pro-
cess. As we will show in our experimental results, this has
positive effects, specially for larger maps where the base-
line Naı̈veMCTS gets lost in the search space. Moreover, as
we will also see, k-GNS is stronger than both Naı̈veMCTS
and than the individual scripts used to guide the search, as
Naı̈veMCTS can some times find actions that are better than
those proposed by the scripts (but when it can’t, it can at
least rely on the scripts).

Finally, in our experiments, we will use the name 1-GNS
to refer to the degenerate form of k-GNS when k = 1.

102



Algorithm 2: k-GNS Node Expansion(n0, S, ε)
if n0.children = Ø or with probability ε then

s = randomly select from S
n1 = n0.newNode(s.getAction());

else
n1 = n0.newNode(NaiveSampling(n0, S));

end

Experiments

In order to evaluate our approaches, we performed experi-
ments in μRTS, and used maps of five different sizes: 8× 8,
12 × 12, 16 × 16, 32 × 32, and 128 × 128. For each map,
both players always start with one base and one worker.
Since FC-GNS and k-GNS are basically the result of inte-
grating Naı̈veMCTS with scripts, we compare the perfor-
mance of our algorithms against both Naı̈veMCTS and the
scripts used for guidance (ideally, the combined approach
should be better than both Naı̈veMCTS and the scripts).

For experiments comparing FC-GNS/k-GNS against
Naı̈veMCTS, we used 8× 8, 12× 12, and 16× 16 maps, as
Naı̈veMCTS does not stand a chance to win a single game
on maps larger than that. For experiments comparing our al-
gorithms against the individual scripts used for guidance, we
used all five map sizes. For each map, 100 games are played
between guided Naı̈veMCTS and the baselines. Thus, each
variation of guided Naı̈veMCTS is tested in 100 games per
map size. Games that go beyond 5000 cycles are considered
a draw and in each cycle we give players a computation bud-
get of 500 iterations of MCTS, except in the 128×128 map,
where a smaller budget of 100 iterations is given due to com-
putational cost (running experiments in such a large map is
much slower than on the smaller maps). Moreover, notice
that this would, if anything, handicap our algorithms, rather
than benefit them, as the opponents are scripts. We report the
95% confidence interval for all win percentage results.

Scripted Bots used for Guidance

We used four simple scripted bots provided by μRTS as
guidance bots:
• WorkerRush: hardcoded deterministic bot that constantly

produces Worker units and sends them to attack the oppo-
nent’s units and base

• LightRush: hardcoded deterministic bot that constantly
produces Light units and sends them to attack the oppo-
nent’s units and base

• HeavyRush: hardcoded deterministic bot that constantly
produces Heavy units and sends them to attack the oppo-
nent’s units and base

• RangedRush: hardcoded deterministic bot that constantly
produces Ranged units and sends them to attack the op-
ponent’s units and base

Experiments with FC-GNS

We run experiments of FC-GNS with four different scripts
playing against vanilla Naı̈veMCTS in three set of maps

Table 1: Win Rates of FC-GNS guided by different scripts
against Naı̈veMCTS.

8× 8 12× 12 16× 16
WorkerR 0.531±0.062 0.652±0.060 0.619±0.061
LightR 0.571±0.062 0.644±0.060 0.769±0.053
HeavyR 0.540±0.062 0.613±0.061 0.706±0.057
RangedR 0.504±0.063 0.571±0.063 0.719±0.056

with increasing sizes. The aggregated win ratio results are
shown in Table 1 where 1.0 means FC-GNS wins 100%
of the time, and 0.0 would mean Naı̈veMCTS wins 100%
of the times. Results show that the performance of this ap-
proach gets better as the map size grows. The reason is that
the action space grows with the map size and makes it even
harder for the search to get accurate estimations, thus the
script helps in the search process. In smaller maps MCTS
search alone can find good actions by itself and the improve-
ment is not significant. We also see that some scripts are
better than others at providing guidance, and that LightRush
seems to obtain the best results, achieving a 76.88% win ra-
tio in 16× 16 maps.

Figure 2 contains the results of FC-GNS (grey) and
Naı̈veMCTS (yellow) versus the scripts. We can see that in
all sizes of maps, FC-GNS achieved better performance than
the baseline Naı̈veMCTS. We also see that FC-GNS has a
higher than 50% win rate against the scripts in 8×8, 12×12
and 32× 32, but cannot defeat the scripts in the 16× 16 and
the 128 × 128 maps Especially in the 128 × 128, FC-GNS
hardly win against the script, suggesting the guidance is in-
sufficient for such huge search space. In the next section, we
show that k-GNS can mitigate the problem by incorporating
more and varied guidance.

Experiments with k-GNS

The combination of multiple scripts provided diversified yet
good directions to explore. The results shown in Table 2 con-
tinue the positive trend shown in the results of FC-GNS, but
we see even larger gains. Specifically, we see that our agents
do no better than vanilla Naı̈veMCTS in 8× 8 maps but has
better performance in 12 × 12 and 16 × 16 maps (win rate
of 95.83%, which is remarkable).

Additionally, we also compared the performance of FC-
GNS, 1-GNS and k-GNS against the scripts in all five maps
for reference. The ε we used in the first four map sizes is
0.33. For the experiments in 128× 128 maps we used 0.75,
as we saw it worked better in initial experiments (with 0.33,
we still observed our approach significantly outperforming
the scripts, but there were many draws, as guidance wasn’t
strong enough). Exploring the tradeoff between the amount
of guidance and the performance in different map sizes/types
is still part of our future work. For the Naı̈veMCTS and k-
GNS, we run experiments against each of the rush scripts
(and present the average), and for FC-GNS and 1-GNS, we
run experiments against the corresponding guiding script.
The aggregated results are shown in Figure 2. We found that
FC-GNS improved upon Naı̈veMCTS on their performance
against the scripts in all maps. And 1-GNS and k-GNS had

103



 -
 0.1000
 0.2000
 0.3000
 0.4000
 0.5000
 0.6000
 0.7000
 0.8000
 0.9000
 1.0000

8×8 12×12 16×16 32×32 128×128

NS FC-GNS 1-GNS k-GNS

Figure 2: Win rates of Naı̈veMCTS, FC-GNS and k-GNS against the four rush scripts

0
0.5
1
1.5
2
2.5
3

8×8 12×12 16×16 32×32

NS FC-GNS 1-GNS k-GNS

(a) Average Number of Children per Node

0

5

10

15

20

8×8 12×12 16×16 32×32

NS FC-GNS 1-GNS k-GNS

(b) Max Tree Depth

0

0.1

0.2

0.3

0.4

0.5

8×8 12×12 16×16 32×32

NS FC-GNS 1-GNS k-GNS

(c) Proportion the best action was visited at the top level

Figure 3: Comparison of Search Tree Statistics between Tree
Policies with and without Guidance

even larger improvements except for the 8 × 8 map. This is
because in very small maps, the search algorithm is able to
find better solution than the scripts and adding the bias of

Table 2: Win Rates of k-GNS against Naı̈veMCTS.

8× 8 12× 12 16× 16
Win % 0.481±0.063 0.790±0.051 0.958±0.024

the scripts to the search just hurts performance. It is worth
noting that the superiority of 1-GNS and k-GNS really starts
to show in larger maps like 32 × 32 and 128 × 128. While
in maps as large as 128× 128, a larger ε will help the search
get focused in huge search space. In particular, on these large
map sizes, we obtained win ratios close to 90% against the
scripts with k-GNS (which is remarkable, since in this map
size Naı̈veMCTS does not stand a chance against either the
scripts or k-GNS).

Looking at some of the games, we saw that in the larger
maps, when units take a long time to reach the enemy base,
1-GNS and k-GNS had time to build a strong defense before
the scripts came in for the attack, and since 1-GNS and k-
GNS harvest resources much faster than the scripts thanks to
tree search, they were able to outperform the scripts easily.

In order to understand where do the benefits in perfor-
mance of FC-GNS and k-GNS come from, we analyze the
shape of the resulting search trees below.

Comparison of the Shape of the Search Tree

To further understand the behavior of the proposed algo-
rithms, we collected statistics of the shape of the search
trees. The statistics are collected from 48 games between
FC-GNS and k-GNS and vanilla Naı̈veMCTS (24 games for
FC-GNS and 24 for k-GNS). We use data from the first 1000
game cycles of each game.

In Figure 3, we compare the shape of the trees generated
by FC-GNS and k-GNS to the shape of vanilla Naı̈veMCTS
from three perspectives: (a) average number of children per
node, (b) maximum tree depth, and (c) the proportion of
times that MCTS visited the selected action at the root of
the tree. We can observe that the difference of average num-
ber of children per node is insignificant between FC-GNS
and the baseline. And the search tree of FC-GNS is slightly
deeper than the baseline. While for k-GNS, due to more en-
forcement on the scripts, the average number of children per
node is smaller and the tree is deeper. This could be because

104



Table 3: Winrate of k-GNS against FC-GNS

8× 8 12× 12 16× 16
k-GNS 0.283±0.057 0.658±0.060 0.842±0.046

Table 4: Win Rates of FC-GNS with Scripted Playout
against Naı̈veMCTS

8× 8 12× 12 16× 16
WorkerR 0.388±0.061 0.227±0.052 0.071±0.031
LightR 0.494±0.060 0.279±0.052 0.510±0.062
HeavyR 0.521±0.059 0.119±0.040 0.323±0.058
RangedR 0.529±0.059 0.135±0.041 0.417±0.062

in FC-GNS, the node is only guided by the script at creation,
and it does the same thing as the baseline the rest of the time.
For k-GNS, the scripted action can be reinforced multiple
times, thus the search is more concentrated. Finally, looking
at the proportion of time that the selected action was visited
at the root of the tree (the larger, the more concentrated the
search is in one action), we see that in 8×8 maps, it seems
that the scripts tended to distract MCTS rather than guide it,
as adding more guidance made the search being less concen-
trated (which means that the action proposed by the scripts
was often not the one selected at the end). However, in the
larger maps, the more guidance, the higher the ratio of play-
outs that went through the selected action, which indicates
that the scripts were helping MCTS in focusing the search.

Table 3 shows the proportion of times MCTS selected the
action proposed by one of the scripts as the selected action.
As can be seen, k-GNS selects actions from the scripts a
larger percentage of times (up to 51.28% in 12×12 maps,
where as FC-GNS only selects the action proposed by the
script up to 18.29% of the times). We also see that in the
smaller 8×8 map, MCTS overpowered the scripts more of-
ten in k-GNS than for the larger maps.

In summary, FC-GNS generates trees that are very sim-
ilar to vanilla Naı̈veMCTS, but k-GNS generates narrower
and deeper trees. Moreover, the guidance has a stronger in-
fluence in larger maps, where we can see that the percent-
age of times the final action is one of the actions proposed
by the script is higher than the percentage of times vanilla
Naı̈veMCTS would have selected one of those actions.

Naı̈veMCTS with Guided Playout Policy

Finally, we explored the idea of using the scripts as the play-
out policy. In most MCTS variants, the playout policy usu-
ally just selects random actions until reaching the end of the
game, or a pre-defined depth. Due to the limited computing
budget in RTS games, it would be beneficial to have a strong
playout policy that can provide a good evaluation of the cur-
rent state. However, as (Silver and Tesauro 2009) pointed
out, a stronger policy, whether its learned or hard-coded,
does not necessarily lead to stronger gameplay because of
the bias in the playout policy.

In all the experiments presented above, the playout pol-
icy we used is the RandomBiased policy provided by μRTS
(which selects actions randomly, but if an attack, harvest or

Table 5: Proportion of a script action being selected.

FC-GNS 1-GNS k-GNS
8× 8 0.149±0.044 0.391±0.061 0.442±0.062

12× 12 0.114±0.040 0.488±0.062 0.493±0.063
16× 16 0.143±0.042 0.547±0.061 0.529±0.062
32× 32 0.144±0.043 0.582±0.061 0.517±0.062

return action is available, it chooses it with 4 times more
probability), which, despite its name, is less biased than the
rush policies as a playout policy. In Table 4 we report the
performance of FC-GNS with each of the corresponding
guiding scripts as the playout policies. We can see the re-
sult is quite catastrophic when the guiding scripts are used as
playout policies. Our hypothesis of the results is that despite
the scripts achieving good strength in gameplay, they are still
not optimal, and the proposed algorithms work under the
premise that the MCTS will refine the player action provided
by the scripts. However, applying the scripts as playout pol-
icy can prevent the MCTS from recovering from these sub-
optimalities, since it will assume players will behave as the
script indicates. Also, the following situation could happen:
1) when the playout indicates the agent has the edge, the
agent plays boldly as the script suggests, however 2) when
the playout indicates otherwise, the player action from the
scripts gets overridden. This could create a “zigzag” effect,
where the agent plays actions that cancels each other out,
since in RTS games, macro goals, like “harvest” or “attack”,
take a series of actions to accomplish.

Conclusions and Future Work

The objective of this paper is to study how to incorporate
scripts that contain human knowledge into the tree policy of
MCTS in order to improve its performance in the context
of RTS games, while still maintaining the original search
space of MCTS, and ensuring MCTS would converge to the
optimal action in the limit. We presented two tree policies
(FC-GNS and k-GNS) that do such integration, one using
a single script and the other using a collection of scripts.
We also reported our experiments on using the scripts in the
playout policy.

The experimental results showed that both tree policies
can improve the gameplay strength upon the baseline algo-
rithm. They also scale well to larger maps (the larger the
map, the larger the increase in performance with respect to
Naı̈veMCTS), where the baseline algorithm struggles to per-
form. Additionally, experimental results on using scripts for
the playout policy suggested that the bias should be carefully
considered when designing scripts for playout policies.

This paper opens a wide range of possible future work. In
particular we would like to study the effects of the ε param-
eter in k-GNS, which controls how much guidance is pro-
vided by the scripts. Additionally, another interesting prob-
lem is how to design a strong and less biased script for the
playout policy. Finally, we want to compare with other ways
to exploit scripts in the literature both from a practical and
theoretical point of view.

105



References

Andersen, P.-A.; Goodwin, M.; and Granmo, O.-C. 2018.
Deep rts: A game environment for deep reinforcement learn-
ing in real-time strategy games. In 2018 IEEE Conference on
Computational Intelligence and Games (CIG), 1–8. IEEE.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017. Combin-
ing strategic learning with tactical search in real-time strat-
egy games. In Proceedings of the Thirteenth AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE-17), October 5-9, 2017, Snowbird, Little
Cottonwood Canyon, Utah, USA., 9–15.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. In Com-
putational Intelligence in Games (CIG), 2013 IEEE Confer-
ence on, 1–8. IEEE.
Coulom, R. 2007. Efficient selectivity and backup operators
in monte-carlo tree search. In International conference on
computers and games, 72–83. Springer.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script-and cluster-based uct for starcraft. In 2014 IEEE
Conference on Computational Intelligence and Games, 1–
8. IEEE.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Moraes, R. O., and Lelis, L. H. 2017. Asymmetric action
abstractions for multi-unit control in adversarial real-time
games. arXiv preprint arXiv:1711.08101.
Moraes, R. O.; Marino, J. R.; Lelis, L. H.; and Nascimento,
M. A. 2018. Action abstractions for combinatorial multi-
armed bandit tree search. In Fourteenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Ontañón, S. 2016. Informed monte carlo tree search for
real-time strategy games. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, 1–8. IEEE.
Ontañón, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Ontañón, S.; Barriga, N. A.; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. 2018. The first microrts artificial intelligence
competition. AI Magazine 39(1).
Rosin, C. D. 2011. Multi-armed bandits with episode
context. Annals of Mathematics and Artificial Intelligence
61(3):203–230.
Shleyfman, A.; Komenda, A.; and Domshlak, C. 2014. On
combinatorial actions and cmabs with linear side informa-
tion. In ECAI, 825–830.
Silver, D., and Tesauro, G. 2009. Monte-carlo simulation
balancing. In Proceedings of the 26th Annual International
Conference on Machine Learning, 945–952. ACM.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484–489.
Sun, P.; Sun, X.; Han, L.; Xiong, J.; Wang, Q.; Li, B.; Zheng,
Y.; Liu, J.; Liu, Y.; Liu, H.; and Zhang, T. 2018. Tstarbots:
Defeating the cheating level builtin AI in starcraft II in the
full game. CoRR abs/1809.07193.
Synnaeve, G.; Nardelli, N.; Auvolat, A.; Chintala, S.;
Lacroix, T.; Lin, Z.; Richoux, F.; and Usunier, N. 2016.
Torchcraft: a library for machine learning research on real-
time strategy games. arXiv preprint arXiv:1611.00625.
Tian, Y.; Gong, Q.; Shang, W.; Wu, Y.; and Zitnick, C. L.
2017. Elf: An extensive, lightweight and flexible research
platform for real-time strategy games. Advances in Neural
Information Processing Systems (NIPS).
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.;
Schrittwieser, J.; et al. 2017. Starcraft ii: a new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782.

106


