
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Macro Action Selection with Deep Reinforcement Learning in StarCraft

Sijia Xu,1 Hongyu Kuang,2 Zhuang Zhi,1 Renjie Hu,1 Yang Liu,1 Huyang Sun1

1Bilibili
2State Key Lab for Novel Software Technology, Nanjing University

{xusijia, zhuangzhi, hurenjie, liuyang01, sunhuyang}@bilibili.com, khy@nju.edu.cn

Abstract

StarCraft (SC) is one of the most popular and successful
Real Time Strategy (RTS) games. In recent years, SC is also
widely accepted as a challenging testbed for AI research be-
cause of its enormous state space, partially observed informa-
tion, multi-agent collaboration, and so on. With the help of
annual AIIDE and CIG competitions, a growing number of
SC bots are proposed and continuously improved. However,
a large gap remains between the top-level bot and the pro-
fessional human player. One vital reason is that current SC
bots mainly rely on predefined rules to select macro actions
during their games. These rules are not scalable and efficient
enough to cope with the enormous yet partially observed state
space in the game. In this paper, we propose a deep reinforce-
ment learning (DRL) framework to improve the selection of
macro actions. Our framework is based on the combination of
the Ape-X DQN and the Long-Short-Term-Memory (LSTM).
We use this framework to build our bot, named as LastOrder.
Our evaluation, based on training against all bots from the AI-
IDE 2017 StarCraft AI competition set, shows that LastOrder
achieves an 83% winning rate, outperforming 26 bots in total
28 entrants.

1 Introduction

StarCraft: Brood War (SC) is one of the most popular and
successful Real Time Strategy (RTS) games created by Bliz-
zard Entertainment in 1998. Under the setting of a science-
fiction based universe, the player of SC picks up one of the
three races: Terran, Protoss, or Zerg, to defeat other players
in a chosen map. Figure 1 presents a screenshot of SC show-
ing a play using the Zerg race. In general, to achieve victory
in a standard SC game, the player needs to perform a variety
of actions, including gathering resources, producing units,
updating technologies and attacking enemy units. These ac-
tions can be categorized into two basic types: micro actions
(Micro) and macro actions (Macro) (Ontanón et al. 2013):

Micro. The micro actions manipulate units to perform
operation-level tasks such as exploring regions in a map, col-
lecting resources and attacking the enemy units. The general
goals of micro actions during the entire game are: (1) to keep
units performing more tasks; (2) to avoid being eliminated
by the enemy.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A screenshot of StarCraft: Brood War

Macro. The macro actions represent the strategy-level
planning to compete with the opponent in the game, such
as the production of combat units, the placement of different
buildings and the decision of an attack. The general goal of
macro actions is to efficiently counter the opponent’s macro
actions throughout the game. It is worth noting that, in a
standard SC game, regions in the map that are not occupied
by the player’s units or buildings are kept unknown. The so-
called “fog of war” mechanism leads to partial observations
on the map and thus significantly increases the difficulty to
select proper macro actions.

In recent years, SC has been widely accepted as a chal-
lenging testbed for AI researchers, because of the multi-unit
collaboration in the Micro and the decision-making on enor-
mous state spaces in the Macro. A growing number of bots
based on different AI techniques are proposed and contin-
uously improved, especially in annual StarCraft AI compe-
titions held by both AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE), and
IEEE Conference on Computational Intelligence and Games
(CIG). Unfortunately, although the ability of SC bots has
been greatly improved, a large gap remains between the top-
level bot and the professional human player. For example, in
the game ladder iCCup where players and bots are ranked

94



by their SC match results (Ontanón et al. 2013), the best SC
bot ranks from D to D+. On the contrary, the average ama-
teur player ranks from C+ to B, while the professional player
usually ranks from A- to A+. One vital reason why bots fall
behind human players is that current bots mainly rely on pre-
defined rules to perform macro actions. These rules are not
scalable and efficient enough to cope with the enormous yet
partially observed state space in the game.

Recently, DRL-based bots have achieved substantial
progress in a wide range of games, such as Atari
games (Mnih et al. 2015), Go (Silver et al. 2017), Doom (Wu
and Tian 2016) and Dota2 (OpenAI 2018). However, two
main challenges remain when using the DRL framework to
perform better macro actions in SC. The first one is the par-
tial observation problem caused by the fog of war in the map.
This problem makes the current observations insufficient to
infer the future states and rewards. The other challenge is
the sparse reward problem, for example, in SC the length
of a usual game is around 20 minutes with 250-400 macro
actions performed, thus it is hard to get positive rewards us-
ing only the terminal reward at the end of the game when
training from scratch.

To address these two challenges, we combine the
reinforcement learning approach Ape-X DQN (Horgan
et al. 2018) with the Long-Short-Term-Memory model
(LSTM) (Hochreiter and Schmidhuber 1997) to propose our
DRL-based framework. Specifically, the LSTM is used to
address the partial observation problem, and the Ape-X is
used to address the sparse reward problem. Then, we use
this framework to build our bot, named as LastOrder1. By
training against all bots from the AIIDE 2017 StarCraft AI
Competition, LastOrder achieves an overall 83% win-rate,
outperforming 26 bots in total 28 entrants. Furthermore, the
same version of LastOrder attends the AIIDE 2018 Star-
Craft Competition and ranks 11 in total 25 entrants. We have
also open-sourced LastOrder with the training framework at
https://github.com/Bilibili/LastOrder.

2 Related Work

Researchers have focused on macro action selection in Star-
Craft for a long time (Ontanón et al. 2013). One way used
by many bots, e.g., UAlbertaBot (Churchill 2018b) and
AIUR (AIUR 2018), is the bandit learning method based
on several predefined macro action sequences. Bandit learn-
ing can choose the most appropriate macro action sequence
using the historical match. However, In SC, typical bandit
learning method is only used at the start of the game. Thus,
it’s insufficient to cope with the large state space throughout
the game.

Meanwhile, a different way to solve this problem is the
data mining from human players’ replays. Hsieh et al. pro-
pose to learn actions from a large number of replays (Hsieh
and Sun 2008). They learn every detailed click from human
players. Weber et al. encode the whole game into a vector
for each player and then model the problem into a super-
vised learning problem (Weber and Mateas 2009). Kim et al.

1LastOrder is the name of an immature AI character in a popu-
lar animated drama called Toaru Majutsu no Index

propose to categorize different building orders and summary
them into separate states and actions (Kim et al. 2010). Dif-
ferent from the above work, Hostetler et al. start to consider
partially observe problem in RTS game by using dynamic
Bayes model inference (Hostetler et al. 2012). Many re-
searchers (Synnaeve, Bessiere, and others 2012) (Robertson
and Watson 2014) also propose datasets of replays which
contain much richer information. However, for full bot de-
velopment, replay mining method remains unsatisfying for
two reasons. First, the macro action sequence from pro-
fessional players may not be the best choice for the bots,
due to the large difference in micro management ability be-
tween bots and professional players. Second, some tactic-
level macro actions, e.g., when to trigger a specific kind of
attack to a destination, are important to the overall perfor-
mance of bots. But it is unlikely for replay mining method
to extract these highly abstracted tactic-level actions.

In recent years, DRL-based methods have achieved no-
ticeable success in building autonomous agents. Currently,
there are mainly two ways to apply DRL to RTS games. The
first one is applying DRL to the micro management. Kong et
al. (Kong et al. 2017) (Kong et al. ) propose several master-
slave and multi-agent models to help controlling each unit
separately in specific scenario. Shao et al. (Shao, Zhu, and
Zhao 2018) introduce transfer learning and sharing multi-
agent gradient to train cooperative behaviors between units.
These proposed methods are capable of performing excel-
lent work in a small combat scenario, but it remains hard to
scale to a large combat scenario and to react instantly at the
same time. This limitation also restricts the practical appli-
cation of DRL based micro management in full bot devel-
opment. The other way is applying DRL to the macro man-
agement. Compared with replay-mining methods, macro ac-
tions learned through DRL can directly match the bot’s mi-
cro management ability. Furthermore, macro actions learned
from DRL can include both native macro actions (e.g., build-
ing, producing, and upgrading) and customized tactic-level
macro actions. Sun et al. (Sun et al. 2018) created a StarCraft
II bot based on a DRL framework to do macro actions selec-
tion, and achieved desirable results when competing with the
build-in Zerg AI. By contrast, we focus more on handling
partial observation and sparse reward problems to compete
against a wider range of bots.

3 Proposed Method

3.1 Actions, state and reward

Macro actions We define 54 macro actions for Zerg cov-
ering the production, building, upgrading and different kinds
of attack as summarized in Table 1(for the full list please
refer to our project on GitHub). All Macro actions exclud-
ing the attack actions have direct meaning in StarCraft. For
attack actions, each one represents a attack with a specific
mode (e.g., harassing enemy natural base using mutalisks).

Micro actions We define a large set of detailed micro ac-
tions to manipulate different units and buildings of the Zerg
race. In general, these actions manipulate units and buildings
to perform operation-level tasks, such as moving to some-
where and attacking other units.

95



Table 1: Summary of 54 macro actions
Category Actions Examples
Production 7 ProduceZergling
Building 14 BuildLair
Upgrading 15 UpgradeZerglingsSpeed
Attack 17 AttackMutaliskHarassNatural
Expansion 1 ExpandBase
Waiting 1 WaitDoNothing

State The state come as a set of current observation fea-
tures and history features. Current observation features de-
scribe the current status of ours and enemies, e.g., units and
buildings. History features are mainly designed to keep and
accumulate enemy information from the start of the game.
For example, once we observe a new enemy building, un-
less it is destroyed by us, we add a feature describing its
existence whether the enemy building is under the fog of
war.

Reward Reward shaping is an effective technique to rein-
forcement learning in a complicated environment with de-
layed reward (Ng, Harada, and Russell 1999). In our case,
instead of using a terminal result (1(win)/-1(loss)), we use
a modified terminal reward with in-game score as below
(where timedecay refers to the game time):

rnew = γtimedecay scoreour − scoreenemy

max (scoreour, scoreenemy)
(1)

The in-game score is defined by the SC game engine in-
cluding the a building score, a unit score and a resource score
to reflect the player’s overall performance. The modified ter-
minal score describes the quality of the terminal result. We
find that it can guide the exploration more efficiently. For
example, policy in a game with a higher modified terminal
score is better than others even though games are all lose.

3.2 Learning Algorithms and Network
Architectures

Ape-X DQN In SC, it is hard to get positive reward using
only the terminal reward at the end of a game when train-
ing from scratch. This sparse reward problem become severe
when training against strong opponent. Recently, a scaled
up variant DQN called Ape-X DQN (Horgan et al. 2018)
achieves a new state of arts performance on Atari games, es-
pecially on some well-known sparse reward game like Mon-
tezuma’s Revenge. They suggest that using a large number
of actors may help to discover new courses of policy and
avoid the local optimum problem caused by insufficient ex-
ploration. This scaled up approach is a relatively easy way
to solve the sparse reward problem.

Specifically, Ape-X DQN uses double Q-learning, multi-
step bootstrap targets, prioritized replay buffer and duel net-
work. In our case, there is no instant reward, the loss func-
tion is lt(θ) = 1

2 (Gt − q(St, At, θ))
2 with the following

definition (where t is a time index for the sample from the
replay starting with state St and action At, and θ− denotes
parameters of the target network):

Gt = λnq(St+n, argmax
a

q(St+n, a, θ), θ
−) (2)

Although it is uncommon to use multi-step bootstrap tar-
gets in off-policy learning without off-policy correction, we
find that this setting performs better than single step target
setting. We suggest that using low exploration rate on ma-
jority of actors may improve the on-policy degree of train-
ing data, and the performance of multi-step bootstrap tar-
gets is also improved in off-policy setting with the on-policy
training data. Besides, in our case, instead of using a cen-
ter replay memory to store all transitions in FIFO order, we
split the replay memory into multiple segments which equal
to the number of opponents, due to the unbalanced train-
ing transition generating speed of different opponents. Each
opponent only update transition on its own replay memory
segment in FIFO order. During the training stage, transition
is sampled over all replay memory segments according to its
prioritization.

Deep Recurrent Q-Networks In SC, the macro action se-
lection decision process is non-Markovian, because the ex-
istence of fog of war causes the future states and rewards de-
pending on more than current observation. The macro action
selection process becomes a Partially Observable Markov
decision process (POMDP) and the DQN’s performance de-
clines when given incomplete state observations. To deal
with this problem, Hausknecht and Stone (Hausknecht and
Stone 2015) introduce the Deep Recurrent Q-Networks
(DRQN). According to their experiment, adding a LSTM
layer to the normal DQN model can approximate more accu-
rate Q-values, leading to better policies in partially observed
environments.

In our case, we use the Ape-X DQN instead of the nor-
mal DQN to achieve better performance. Besides, in or-
der to cover longer time horizon, the interval between each
LSTM step is extended to 10 seconds. We observed that
a 10-seconds interval is short enough to reflect changes in
macro state without missing too much detail changes.

3.3 Training

We use 1000 machines(actor) to run 500 parallel
games against different opponents scheduled by Star-
CraftAITounrnamentManger (Churchill 2018a). Similar to
TorchCraft (Synnaeve et al. 2016), there are two parts in
each actor. The model part uses a separate python process to
handle macro action selection based on TensorFlow (Abadi
et al. 2016), and the other part is a BWAPI (Heinermann
2018) DLL performing all actions in SC. These two parts use
a message queue to exchange message between each other.

During each game, we cache observations in the actor’s
memory and group them into observation sequences. To
alleviate the load of leaner which receives transitions, we
only send transitions at the end of the game. The generation
speed of transition is approximately 20000 per minute. The
learner’s update speed is about 10 batches (196 batch size)
per second. Actors copy the network parameters from the
learner every 10 seconds. Each actor i ∈ {0, 1, . . . , N − 1}
executes an εi greedy policy where εi = ε1+

i
N−1α with

96



Figure 2: Performance consistently improves as the number
of actors increased from 250 to 1000.

Table 2: Six selected opponents (the ranking is based on AI-
IDE 2017)
Bot name Rank Race Strategy
ZZZKBot 1 Zerg Early rush
cpac 4 Zerg Mid-game
Ximp 13 Protoss All-in Carrier rush
UAlbertaBot 14 Random 9 strategies on 3 races
Aiur 15 Protoss 4 different strategies
Skynet 17 Protoss 3 different strategies

ε = 0.4, α = 7, N = 1000. The capacity of each replay
memory segment is limited to one million transitions. Tran-
sition is sampled over all replay memory segments accord-
ing to its proportional prioritization with a priority exponent
of 0.6 and an importance sampling exponent set to 0.4.

4 Experiment

4.1 A controlled case for analysis

For qualitative analysis we train our bot against six selected
bots as described in Table 2 on a single map. We select Ximp
bot and cpac bot to show the sparse reward problem. Both
of them use the mid-game rush strategy with stable early
game defense and are relatively difficult to defeat. The rest
of bots are added to intensify the partial observation prob-
lem, because the opponents in the same race usually have
some similar macro states during the game.

In Figure 2, we show the learning curve of win-rate
against each bot with a different number of actors. The win-
rate are evaluated by actors with zero exploration rate. It is
worth noting that with 1000 actors almost all the win-rate
become close to 1 after 24 hours’ training.

A detailed case: LastOrder vs. Ximp We then use Ximp
bot for case analysis because the sparse reward problem in
Ximp is severest among the six bots. Ximp’s early game
strategy is to do stable defense with many defense buildings
and little combat units. The increasing number of defense
buildings and limited combat units are gradually different
from other Protoss bots. The mid game strategy of Ximp is to
produce top-level combat unit (Carrier) as soon as possible

to attack opponent in order to gain big advantage or directly
win the game in one shot. Compared with other opponents’
counterstrategy, the length of counterstrategy against Ximp
is much longer, because LastOrder must first defend Carrier
rush in the mid game and then defeat Ximp in the later game.
Thus LastOrder needs much more exploration effort in order
to get the positive reward when training from scratch.

In Figure 2, after 24 hours’ training with 1000 actors, due
to the lack of harassing strategy in Ximp, in the early game,
LastOrder’s counterstrategy is to quickly expand multiple
bases and produce workers in order to gain big economy
advantage. This is totally different from the learned counter-
strategies against other Protoss bots, for example, the strat-
egy against Skynet in the early game is to build defense
buildings and to produce combat units in order to counter
its early rush.

In the mid game, LastOrder finds the efficient counter-
ing battle unit (Scourage) and produce a sufficient number
of Scourages to defeat Ximp’s Carrier attack, the choice of
producing Scourages is also different from counterstrategies
of other bots. Due to the big economy advantage in the early
game, in the later game LastOrder has sufficient resource to
produce other combat units along with the Scourages. Thus
it is relatively easy to win the game in the end.

Component analysis We also run additional experiments
to improve our understanding of the framework and to inves-
tigate the contribution of different components. First, we in-
vestigate how the performance scale with the number of ac-
tors. We trained our bot with different number of actors (250,
500, 1000) for 24 hours against the 6 opponents set as de-
scribed in Table 2. Figure 2 shows that the performance con-
sistently improved as the number of actors increased without
changing any hyper-parameter or the structure of the net-
work. This is also similar to the conclusion in Ape-X DQN.

Next, In Figure 3, we run three experiments to investigate
the influence of other components:

• Without LSTM. We only use the latest observation in-
stead of a period of observations to investigate the in-
fluence of partial observation. The experiment shows a
small performance drop against Protoss bots (Skynet and
Ximp). We suggest that model is less likely to differen-
tiate states among the same race without the sequence of
observation.

• Without reward shaping. We use the origin 1(win)/-
1(loss) as the terminal reward instead of the modified ter-
minal reward. According to this experiment, the win-rate
of Ximp is kept at about 0% over the whole training time.
We suggest that the exploration is much harder to get im-
proved reward without the help of reward shaping to alle-
viate the sparse reward problem, especially when training
against strong opponent.

• High exploration rate. In this experiment, each actor ex-
ecutes an εi greedy policy where εi = ε1+

i
N−1α with

ε = 0.7, α = 11, N = 1000. This setting corresponds to a
higher exploration rate in actors. The overall performance
declines in many bots (cpac, Aiur, Skynet) compared with
the low exploration rate setting. We suggest that using low

97



Figure 3: Four different experiments. Each experiment using
1000 actors trained for 24 hours.

exploration rate on majority of actors is equal to getting
on-policy transitions with relatively little noisy. As the
learning proceeds, the change in policy become less and
the transitions in replay buffer become more on-policy.
This combination of low exploration on majority of ac-
tors and multi-step bootstrap targets improve the overall
performance.

4.2 Evaluation on AIIDE 2017 StarCraft AI
Competition bots set

We then train our bot against the AIIDE 2017 StarCraft AI
Competition bots set over 10 maps to show the performance
and scalability. The 2017 bots set is comprised of 28 oppo-
nents including 4 Terran bots, 10 Protoss bots and 14 Zerg
bots. With the need of parallel training and fast evaluation,
we do not use the round robin mode in StarCraftAITounr-
namentManger (Churchill 2018a). All games are created as
soon as possible without waiting for previous round to fin-
ish. This running mode also disable the opponent’s online
learning strategy and may cause potential performance drop
in LastOrder in round robin mode. The final trained Las-
tOrder achieves 83% win-rate in 8000 games, outperform-
ing 26 bots on 28 bots set. The detailed evaluation result is
listed in Table 3.

4.3 AIIDE 2018 StarCraft AI Competition

We use the pre-trained LastOrder in 4.2 to attend the AIIDE
2018 StarCraft Competition and rank 11 in total 25 entrants.
The official result can be found in (AIIDE 2018).

The performance drop has two reasons. First, when the
opponent’s micro management suppress ours, our enhance-
ment to macro actions is insufficient to win the game. This
happens for SAIDA, CherryPi, Locutus, two Locutus-based
bots (CSE and DaQin), and McRave in 2018 competition.
Second, The insufficient Terran opponents in the training
sets(only 4 Terran bots in the 2017 bots set) leads to low
win-rate when playing against new Terran bots Ecgberht and
WillyT.

Despite the discussed two reasons, on the rest of newly
submitted bots set, LastOrder achieves about 75% win-rate.
Considering the use of online learning strategy by other bots

in round robin mode, this win-rate is close to the offline eval-
uation result.

5 Conclusions and Future Work

Developing a strong bot to act properly in StarCraft is a very
challenging task. In this paper, we propose a new frame-
work based on DRL to improve the performance of the bot’s
macro action selection. Via playing against AIIDE 2017
StarCraft Competition bots, our bot achieve 83% win-rate
showing promising result.

Our future work involves the following three aspects:
Fix bug and optimize micro. Current macro action ex-

ecution and micro management is hard coded. The bug in
these codes may cause unusual variance in transitions, and it
may severely influence training. Besides, the quality of mi-
cro is also a key aspect to the performance of bot. e.g., Iron
bot used to place building to block the choke point, whereas
current LastOrder can not identify the blocked choke point.
This usually results in a huge army loss and the macro model
cannot help with it.

Self-play training. We observe that to some extent the
performance of model is highly constrained by training op-
ponents. If opponents have bugs like a group of armies stuck
somewhere, even though we can get a high reward in the

Table 3: The detailed evaluation result of LastOrder against
AIIDE 2017 StarCraft AI competition bots without IO sync.

Bot name Race Games Win rate %
Iron Terran 303 98.68
PurpleWave Protoss 303 97.35
LastOrder Zerg 8484 83.06
Microwave Zerg 303 49.67
Ximp Protoss 303 31.91
LetaBot Terran 303 28.48
IceBot Terran 303 22.77
Arrakhammer Zerg 303 15.18
Skynet Protoss 303 15.13
Juno Protoss 303 15.13
Steamhammer Zerg 303 13.82
cpac Zerg 303 12.5
AILien Zerg 303 12.21
UAlbertaBot Random 303 10.6
McRave Protoss 303 9.54
Myscbot Protoss 303 9.24
CherryPi Zerg 303 7.59
Overkill Zerg 303 6.27
Aiur Protoss 303 3.29
Xelnaga Protoss 303 2.96
KillAll Zerg 303 1.97
GarmBot Zerg 303 1.65
Tyr Protoss 303 1.65
MegaBot Protoss 303 1.64
ZZZKBot Zerg 303 1.64
Sling Zerg 303 1
TerranUAB Terran 303 0.99
Ziabot Zerg 303 0.99
ForceBot Zerg 303 0.66

98



end, it is not a valuable reward and may lead the policy to a
wrong direction. A better solution may be the self-play train-
ing. But the self-play training needs micro and macro codes
of three races which may also be a big overhead.

Unit level control. Micro management in StarCraft is a
multi-agent system. It is difficult for rule-controlled units to
behave properly in different situations and cooperate with
each other. But how to train this multi-agent model and react
in real time at a relatively large scale is still an open question.

References

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: a system for large-scale machine learn-
ing. In OSDI, volume 16, 265–283.
AIIDE. 2018. Official AIIDE 2018 StarCraft Competition
Results. http://www.cs.mun.ca/∼dchurchill/starcraftaicomp/
2018/.
AIUR. 2018. AIUR for StarCraft AI Competitions. https:
//aiur-group.github.io/AIUR/.
Churchill, D. 2018a. Tournament Manager Soft-
ware for StarCraft AI Competitions. https://github.com/
davechurchill/StarcraftAITournamentManager.
Churchill, D. 2018b. UAlbertaBot for StarCraft AI Compe-
titions. https://github.com/davechurchill/ualbertabot.
Hausknecht, M., and Stone, P. 2015. Deep recur-
rent q-learning for partially observable mdps. CoRR,
abs/1507.06527 7(1).
Heinermann, A. 2018. BWAPI: Brood war api, an api for
interacting with starcraft: Broodwar (1.16.1). https://github.
com/bwapi/bwapi.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel,
M.; Van Hasselt, H.; and Silver, D. 2018. Distributed prior-
itized experience replay. arXiv preprint arXiv:1803.00933.
Hostetler, J.; Dereszynski, E. W.; Dietterich, T. G.; and Fern,
A. 2012. Inferring strategies from limited reconnaissance in
real-time strategy games. arXiv preprint arXiv:1210.4880.
Hsieh, J.-L., and Sun, C.-T. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In
Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on, 3106–3111. IEEE.
Kim, J.; Yoon, K. H.; Yoon, T.; and Lee, J.-H. 2010. Co-
operative learning by replay files in real-time strategy game.
In International Conference on Cooperative Design, Visual-
ization and Engineering, 47–51. Springer.
Kong, X.; Xin, B.; Liu, F.; and Wang, Y. Effective master-
slave communication on a multi-agent deep reinforcement
learning system.
Kong, X.; Xin, B.; Liu, F.; and Wang, Y. 2017. Revisiting the
master-slave architecture in multi-agent deep reinforcement
learning. arXiv preprint arXiv:1712.07305.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, 278–287.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and AI in
games 5(4):293–311.
OpenAI. 2018. OpenAI Five. https://blog.openai.com/
openai-five/.
Robertson, G., and Watson, I. D. 2014. An improved dataset
and extraction process for starcraft ai. In FLAIRS Confer-
ence.
Shao, K.; Zhu, Y.; and Zhao, D. 2018. Starcraft microman-
agement with reinforcement learning and curriculum trans-
fer learning. IEEE Transactions on Emerging Topics in
Computational Intelligence.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Sun, P.; Sun, X.; Han, L.; Xiong, J.; Wang, Q.; Li, B.; Zheng,
Y.; Liu, J.; Liu, Y.; Liu, H.; et al. 2018. Tstarbots: Defeating
the cheating level builtin ai in starcraft ii in the full game.
arXiv preprint arXiv:1809.07193.
Synnaeve, G.; Bessiere, P.; et al. 2012. A dataset for starcraft
ai & an example of armies clustering. In AIIDE Workshop
on AI in Adversarial Real-time games, volume 2012.
Synnaeve, G.; Nardelli, N.; Auvolat, A.; Chintala, S.;
Lacroix, T.; Lin, Z.; Richoux, F.; and Usunier, N. 2016.
Torchcraft: a library for machine learning research on real-
time strategy games. arXiv preprint arXiv:1611.00625.
Weber, B. G., and Mateas, M. 2009. A data mining ap-
proach to strategy prediction. In Computational Intelligence
and Games, 2009. CIG 2009. IEEE Symposium on, 140–
147. IEEE.
Wu, Y., and Tian, Y. 2016. Training agent for first-person
shooter game with actor-critic curriculum learning.

99


