
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Terminal Prediction as an Auxiliary Task for Deep Reinforcement Learning

Bilal Kartal,∗ Pablo Hernandez-Leal,∗ Matthew E. Taylor
Borealis AI

Edmonoton, Canada
{bilal.kartal, pablo.hernandez, matthew.taylor}@borealisai.com

Abstract

Deep reinforcement learning has achieved great successes in
recent years, but there are still open challenges, such as con-
vergence to locally optimal policies and sample inefficiency.
In this paper, we contribute a novel self-supervised auxil-
iary task, i.e., Terminal Prediction (TP), estimating tempo-
ral closeness to terminal states for episodic tasks. The intu-
ition is to help representation learning by letting the agent
predict how close it is to a terminal state, while learning its
control policy. Although TP could be integrated with multi-
ple algorithms, this paper focuses on Asynchronous Advan-
tage Actor-Critic (A3C) and demonstrating the advantages
of A3C-TP. Our extensive evaluation includes: a set of Atari
games, the BipedalWalker domain, and a mini version of the
recently proposed multi-agent Pommerman game. Our results
on Atari games and the BipedalWalker domain suggest that
A3C-TP outperforms standard A3C in most of the tested do-
mains and in others it has similar performance. In Pommer-
man, our proposed method provides significant improvement
both in learning efficiency and converging to better policies
against different opponents.

Introduction

Deep reinforcement learning (DRL) combines reinforce-
ment learning (Sutton and Barto 2018) with deep learn-
ing (LeCun, Bengio, and Hinton 2015), enabling better scal-
ability and generalization for high-dimensional domains.
DRL has been one of the most active areas of research in
recent years with great successes such as mastering Atari
games from only raw images (Mnih et al. 2015), a Go
playing agent skilled well beyond any human player (Sil-
ver et al. 2017), and very recently, great successes in mul-
tiagent games (e.g., DOTA 2 and Starcraft II). Reinforce-
ment learning has also been applied for interactive narra-
tive generation (Wang et al. 2017) and learning companion
NPC (Non-Player Character) behaviors (Sharifi, Zhao, and
Szafron 2010). For a more general and technical overview of
DRL, please see the recent comprehensive surveys (Arulku-
maran et al. 2017; François-Lavet et al. 2018; Hernandez-
Leal, Kartal, and Taylor 2018).

∗Equal contribution
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One of the biggest challenges for reinforcement learning
is sample efficiency (Yu 2018). Data hungriness of model-
free RL methods is only aggravated when the reward signals
are sparse, delayed, or noisy. Standard RL problem formu-
lations with non-linear function approximation (i.e., DRL)
combine representation learning together with policy learn-
ing. In this case, the problem is further deepened when re-
wards are sparse since most of the collected experiences
do not produce a learning signal for the agent, thus delay-
ing representation learning for the environment. To address
these issues, the concept of auxiliary tasks was introduced
where an RL agent can learn from all experiences inde-
pendent of external reward signals (Shelhamer et al. 2016;
Sutton and Barto 2018). Auxiliary tasks can be any task
that the RL agent can predict and observe from the envi-
ronment in a self-supervised fashion such as reward pre-
diction (Jaderberg et al. 2017), or predicting a game spe-
cific feature such as presence/absence of enemies in the cur-
rent observation (Lample and Chaplot 2017). Also note that
auxiliary tasks are different from model-based RL where
the learned model is used for planning (Oh et al. 2015;
Leibfried, Kushman, and Hofmann 2016). In contrast, aux-
iliary tasks were originally presented as hints that improved
the network performance and learning time (Suddarth and
Kergosien 1990). In a minimal example of a small neural
network it was shown that adding an auxiliary task effec-
tively removed local minima. Thus, the auxiliary losses are
expected to give more ambient gradients, not necessarily
yield a generative model (Shelhamer et al. 2016).

Different auxiliary tasks have been successfully evaluated
such as: reward prediction (Jaderberg et al. 2017), model-
ing the inverse dynamics of the environment (Shelhamer et
al. 2016), and depth prediction (Mirowski et al. 2016). In
contrast, we propose Terminal Prediction (TP), where the
intuition is to help the representation learning by letting the
agent predict how close it is to a terminal state while learning
the standard actor policy. TP targets are similarly computed
in a self-supervised fashion, but they are independent of re-
ward sparsity of the game or any other domain dynamics
that might render representation learning challenging such
as drastic changes in domain visuals.

In this paper, we consider Asynchronous Advantage

38



Actor-Critic (A3C) (Mnih et al. 2016) as a baseline algo-
rithm as it is one of the frontier approaches among asyn-
chronous distributed deep RL techniques. Then, we make
the following contributions:

• We propose a novel auxiliary task, namely Terminal Pre-
diction (TP), aiming to enhance the RL agent with a ca-
pability of predicting a measure of temporal closeness to
expected terminal states, i.e. likely to be reached with the
current agent policy, without extra signals from the en-
vironment. In this work, we propose A3C-TP, which re-
sults from integrating TP task to A3C with minimal re-
finements to ensure that it is still on-policy. Note that even
though we showcase TP with A3C, it can be combined
with other deep RL methods.

• We conduct experiments on a diverse set of Atari games
and the BipedalWalker domain where A3C-TP either
outperforms or performs similar to the standard A3C
method. We also conduct experiments on a mini version
of a recently released multi-agent domain, i.e. Pommer-
man (Resnick et al. 2018), showing that A3C-TP both
learns faster and converges to better policies, compared
to A3C, against different opponents.

Related Work

Reinforcement learning approaches mainly fall un-
der three categories: value-based methods such as
Q-learning (Watkins and Dayan 1992) or Deep-Q Net-
work (Mnih et al. 2015); policy-based methods such as
REINFORCE (Williams 1992); and a combination of
value- and policy-based techniques, i.e. actor-critic meth-
ods (Konda and Tsitsiklis 2000). In particular, in the last
category several distributed actor-critic based DRL algo-
rithms have been recently proposed (Jaderberg et al. 2017).
One notable example is A3C (Asynchronous Advantage
Actor-Critic) (Mnih et al. 2016), which is an algorithm
that employs a parallelized asynchronous training scheme
(using multiple CPU cores) for efficiency.

Recently, auxiliary tasks have been proposed to improve
representation learning in deep RL. For example, Mirowski
et al. (2016) studied self-supervised tasks in a navigation
problem. Their results show that augmenting the RL agent
with auxiliary tasks supports representation learning which
provides richer training signals that enhance data efficiency.
Lample and Chaplot (2017) proposed to add an auxiliary
task to a DRL agent in the Doom game; in particular,
the agent was trained to predict the presence/absence of
enemies in the current observation. Lastly, a concurrent
work (Leibfried and Vrancx 2018) proposed a model based
DRL architecture based on Deep-Q-Network which pre-
dicts: Q-values, next frame, rewards, and a binary terminal
flag that predicts whether the episode will end or not. The
terminal flag is similar to our Terminal Prediction except
that (i) our method is not model-based, and (ii) we formu-
late the prediction problem as a regression problem rather
than classification, thus we gather a lot more self-supervised
signals that are automatically class-balanced (this is particu-
larly essential for tasks with long episodes).

Another related work to ours is the UNREAL frame-
work (Jaderberg et al. 2017) which is built on top of the
A3C with several refinements and auxiliary task integration.
In particular, UNREAL proposes to learn a reward predic-
tion based task besides a pixel-control based task to speed
up learning by improving representation learning. In con-
trast to on-policy A3C, UNREAL uses an experience replay
buffer that is sampled with more priority given to positively
rewarded interactions to improve the critic network. Our
method, A3C-TP, differs from UNREAL in several ways: (i)
We do not introduce the additional critic improvement step
– to better isolate the gain of our auxiliary task over vanilla
A3C. (ii) Even though we also integrate an auxiliary task, we
keep the resulting method still on-policy with minimal re-
finements without an experience replay buffer which might
require correction for stale experience data. (iii) UNREAL’s
reward-prediction requires class balancing of observed re-
wards in an off-policy fashion depending on the game re-
ward sparsity and distribution whereas Terminal Prediction
is balanced automatically, it can be applied within on-policy
DRL methods, and it generalizes better for episodic tasks
independently of the domain-specific reward distribution.

Preliminaries

We start with the standard reinforcement learning setting
of an agent interacting in an environment over a discrete
number of steps. At time t the agent in state st takes an
action at and receives a reward rt. The state-value func-
tion is the expected return (sum of discounted rewards,
Rt:∞ =

∑∞
k=t γ

krk) from state s following a policy π(a|s):
V π(s) = E[Rt:∞|st = s, π],

and the action-value function is the expected return follow-
ing policy π after taking action a from state s:

Qπ(s, a) = E[Rt:∞|st = s, at = a, π].

A3C (Asynchronous Advantage Actor-Critic) is an al-
gorithm that employs a parallelized asynchronous train-
ing scheme (e.g., using multiple CPUs) for efficiency; it
is an on-policy RL method that does not need an expe-
rience replay buffer. A3C allows multiple workers to si-
multaneously interact with the environment and compute
gradients locally. All the workers pass their computed lo-
cal gradients to a global network which performs the op-
timization and synchronizes the updated actor-critic neu-
ral network parameters with the workers asynchronously.
A3C maintains a parameterized policy (actor) π(a|s; θ) and
value function (critic) V (s; θv), which are updated as fol-
lows: �θ = ∇θ log π(at|st; θ)A(st, at; θv) and �θv =
A(st, at; θv)∇θvV (st) where

A(st, at; θv) =

n−1∑

k=0

γkrt+k + γnV (st+n)− V (st),

with A(s, a) = Q(s, a) − V (s) representing the advantage
function, commonly used to reduce variance.

The policy and the value function are updated after ev-
ery tmax actions or when a terminal state is reached. It is

39



Figure 1: CNN represents convolutional neural network lay-
ers, and FC represents fully-connected layer. (a) A standard
actor-critic neural network architecture for A3C with policy
(actor) and value (critic) heads. (b) The neural network ar-
chitecture of A3C-TP is identical to that of A3C, except the
auxiliary TP head.

common to use a softmax output layer for the policy head
π(at|st; θ) and one linear output for the value function head
V (st; θv), with all non-output layers shared, see Figure 1 (a).

The loss function for A3C is composed primarily of two
terms: policy loss (actor), Lπ , and value loss (critic), Lv . An
entropy loss for the policy, H(π), is also commonly added,
which helps to improve exploration by discouraging prema-
ture convergence to suboptimal deterministic policies (Mnih
et al. 2016). Thus, the loss function is given by:

LA3C = λvLv + λπLπ − λHEs∼π[H(π(s, ·, θ)]
with λv = 0.5, λπ = 1.0, and λH = 0.01, being standard
weighting terms on the individual loss components.

Terminal Prediction as an Auxiliary Task

In this section, we describe our main contribution, i.e.,
the Terminal Prediction (TP) auxiliary task. We name our
method A3C-TP and present its neural network architecture
in Figure 1 (b). The main motivation is to equip the RL agent
with the capability to predict a measure of temporal close-
ness to terminal states that are more likely to be reached un-
der the agent’s current policy.1 We present how simple to
compute and integrate this auxiliary task is with deep RL
methods, particularly to A3C.

For the proposed auxiliary task of Terminal Prediction,
i.e., for each observation under the current policy, the agent
predicts a temporal closeness value to a terminal state for the
current episode under the agent’s current policy. The neural
network architecture of A3C-TP is identical to that of A3C,
fully sharing parameters, except the additional terminal state
prediction head.

1Sutton et al. (2011) mentioned a similar idea when discussing
general value functions: “Suppose we are playing a game for which
base terminal rewards are +1 for winning and -1 for losing (...) we
might pose an independent question about how many more moves
the game will last.” Interestingly, we only learned about this con-
nection after writing the paper.

We compute the loss term for the terminal state predic-
tion head, LTP , by using mean squared error between the
predicted value of closeness to a terminal state of any given
state (i.e., yp) and the target values approximately computed
from completed episodes (i.e., y) as follows:

LTP =
1

N

N∑

i=0

(yi − ypi )
2

where N represents the average length of previous episode
lengths during training. We assume that the target for ith
state can be approximated with yi = i/N implying yN =
1 for the actual terminal state and y0 = 0 for the initial
state for each episode, and intermediate values are linearly
interpolated between [0, 1].

We initially used the actual current episode length for N
to compute TP labels. However, this delays access to the la-
bels until the episode is over, similar to observing an ex-
ternal reward signal only when the episode ends. Further-
more, it did not provide significant improvement. To be able
to have access to dense signals through our auxiliary task,
we decided to use the running average of episode lengths
computed from the most recent 100 episodes, to approxi-
mate the actual current episode length for N . We observed
that the running average episode length does not abruptly
change, but it can vary in correlation with the learned pol-
icy improvements. This approximation not only provides
learning performance improvement, but also provides signif-
icant memory efficiency for distributed on-policy deep RL
as CPU workers do not have to retain the computation graph,
i.e. used within deep learning frameworks, until episode ter-
mination to compute terminal prediction loss.

Given LTP , we define the loss for A3C-TP as follows:

LA3C-TP = LA3C + λTPLTP

where λTP is a weight term that we set to 0.5 from exper-
imental results (presented in the next section) to enable the
agent to mainly focus on optimizing the policy.

The hypothesis is that the terminal state prediction pro-
vides some grounding to the neural network during learning
with a denser signal as the agent learns not only to maximize
rewards but it can also predict approximately how close it is
to the end of episode.

Experiments

First, we describe our experimental domains, and then we
present results comparing our proposed A3C-TP with A3C.

Domains and Setup

We trained on 6 Atari games (with discrete actions), the
BipedalWalker domain (with continuous actions), and Pom-
merman (with discrete actions and two different opponents).
In all cases, we trained both standard A3C and A3C-TP with
3 different random seeds. For Atari games and the Bipedal-
Walker domain, we employed only 8 CPU workers. For the
Pommerman domain, we increased to 24 CPU workers as
Pommerman is very challenging for model-free RL.

40



Figure 2: An example of the 8 × 8 Pommerman board, ran-
domly generated by the simulator. Agents’ initial positions
are randomly selected among four corners at each episode.

Atari Games and BipedalWalker We conducted exper-
iments using OpenAI Gym (Brockman et al. 2016) using
sticky actions and stochastic frame-skipping. We did not
perform any reward scaling across the games (Chrabaszcz,
Loshchilov, and Hutter 2018) so that agents can distinguish
the reward magnitudes rather than just being rewarded with
+1 or −1.

The Atari benchmark provides several games with diverse
challenges that render different methods more successful
in different subset of games,2 e.g., the game Frostbite is
mastered by DQN, but A3C performs poorly on it. Thus,
we aimed to select a small but diverse set of games with
varying difficulties for computational cost reasons. The se-
lected games are: Pong, Breakout, CrazyClimber, Q*bert,
BeamRider, and SpaceInvaders. The first 3 games are sim-
pler games where dense reward signals are ubiquitous and
reactive strategies learned by the RL method provide high
rewards to progress the policy learning; Q*bert, Seaquest,
and SpaceInvaders are relatively harder as longer term non-
reactive strategies are needed (Mnih et al. 2015; 2016;
Chrabaszcz, Loshchilov, and Hutter 2018).

We also experimented with the BipedalWalker (available
through OpenAI Gym), which takes only a few hours to train
on a standard laptop. Main difference of this domain is that
it is a continuous action-space one.

Pommerman The Pommerman environment (Resnick et
al. 2018) is based off of the classic console game Bomber-
man, played with four agents on an 11x11 board. Our ex-
periments use a mini version of the simulator with only two
agents on an 8x8 board (see Figure 2). Each agent can exe-
cute one of 6 actions at every timestep: move in any of car-
dinal directions, stay put, or place a bomb. Each cell on the
board can be a passage, a rigid wall, or wood. The maps are
generated randomly, albeit there is always a guaranteed path
between any two agents. Whenever an agent places a bomb
it explodes after 10 timesteps, producing flames that have a
lifetime of 2 timesteps. Flames destroy wood and kill any

2Emekligil et al. (2018) recently analyzed which factors con-
tribute to the Deep RL methods’ success within Atari games.

agents within their blast radius. When wood is destroyed ei-
ther a passage or a power-up is revealed. Power-ups can be
of three types: increase the blast radius of bombs, increase
the number of bombs the agent can place, or give the ability
to kick bombs. A single game is finished when an agent dies
or when reaching 800 timesteps.

Pommerman is a very challenging benchmark for RL
methods. The first challenge is that of sparse and delayed
rewards: the game can last up to 800 timesteps and the envi-
ronment only provides terminal reward per episode. A sec-
ond issue is the complex environment since tile locations and
agents’ initial locations are randomized at the beginning of
every game (episode). The game board changes within each
episode too due to the (dis)appearance of the wood, power-
ups, flames, and bombs. The last complication is the mul-
tiagent component since the agent needs to best respond to
any type of opponent whose behaviour could change based
on collected power-ups.

Also, the rewards in Pommerman game can be deceiving.
We consider false positive episodes when our agent gets a
positive reward because the opponent commits suicide (not
due to our agent’s combat skill), and false negative episodes
when our agent gets a negative reward due to its own suicide
(rather than getting killed by an enemy bomb). False nega-
tive episodes are a major bottleneck for learning reasonable
behaviours with pure-exploration within the RL. Besides,
false positive episodes also can reward agents for arbitrary
passive survival policies such as camping rather than engag-
ing actively with opponents.

For these reasons, generally a local optimum is commonly
learned, i.e., not placing bombs (Resnick et al. 2018).

We considered two types of opponents in this domain:

• Static opponents: the opponent waits in the initial position
and always executes the ‘stay put’ action. This opponent
is the simplest possible opponent as it provides a more
stationary environment.

• Rule-based opponents: the baseline agent that comes
within the simulator. It collects power-ups and places
bombs when it is near an opponent. It is skilled in avoid-
ing blasts from bombs. It uses Dijkstra’s algorithm on
each time-step, resulting in longer training times. Its be-
haviour is highly stochastic based on the power-ups it has
collected, e.g., if it collected certain power-ups, it can
place many bombs triggering chain explosions (bombs
explode earlier due to being on a flame zone created by
another exploding bomb).

Implementation Details

NN Architecture and Hyperparameters: For Atari and
BipedalWalker domains, our NN architecture uses 4 con-
volutional layers where the first two have 32 filters with a
kernel size of 5 × 5, and the remaining ones have 64 filters
with a stride and padding of 1 with a filter size of 4× 4 and
3 × 3. This is followed with an LSTM layer with 128 units
leading to standard actor-critic heads along with our Termi-
nal Prediction head. For Pommerman, our NN architecture
similarly uses 4 convolutional layers, each of which has 32
filters and 3 × 3 filters with a stride and padding size of 1,

41



(a) Pong (b) Breakout

Figure 3: Sensitivity Analysis on λTP : Moving average
over 100 games of the rewards (horizontal lines depict in-
dividual episodic rewards) is shown. Each training curve de-
picts the average and standard deviation of 3 experiments
with different random seeds. Both games are trained for a
day using 8 CPU cores.

followed with a fully connected layer with 128 hidden units
which leads to the three output heads. For both domains,
we employed the Adam optimizer with a learning rate of
0.0001. Neural network architectures are not tuned.

NN State Representation: For Atari games, the visual
input is fed to the NN as an input whereas in Pommerman,
similar to (Resnick et al. 2018), we maintain 22 feature
maps that are constructed from the agent observation. These
feature channels maintain location of walls, wood, power-
ups, agents, bombs, and flames. Agents have different prop-
erties such as bomb kick, bomb blast radius, and number
of bombs. We maintain 3 feature maps for these abilities per
agent. We also maintain a feature map for the remaining life-
time of flames.

Results

In this section, we first present a sensitivity analysis on the
Terminal Prediction loss weight term. Then, we show train-
ing results for both Atari and Pommerman domains to ab-
late the contribution of our proposed method, i.e., A3C-TP,
against the standard A3C.

Sensitivity Analysis on λTP We conducted preliminary
experiments on two (fast to train) Atari games, i.e., Pong
and Breakout. We tested learning performance on 4 values
{0.25, 0.5, 0.75, 1} for the Terminal Prediction weight. Each
curve is obtained from training with 3 random seeds. As
Figure 3 shows, the learning performance gets worse when
λTP = 1 as the agent puts too much emphasis on learning
the auxiliary task compared to the main policy learning task.
On the other hand, when λTP = 0.25 the variance is higher
for both games. Given this preliminary analysis where in-
termediate values of {0.5, 0.75} perform more reliably, we
chose to employ λTP = 0.5 for all the experiments.

Atari Games We present comparisons of our proposed
method, A3C-TP against standard A3C method in Figure 4.
Our method significantly improves upon standard A3C in
Q*bert and CrazyClimber games while performing similarly
in the rest of the tested games. As we employed relatively

easy games Pong and Breakout games for sensitivity anal-
ysis for A3C-TP, we omitted them from Figure 4. Our hy-
pothesis is that A3C-TP does not hurt the policy learning
performance, however it can provide improvement in some
benchmarks.

BipedalWalker We also benchmark on a continuous
action-space domain, BipedalWalker. The experimental re-
sults in Figure 4 (e) show that A3C-TP outperforms A3C,
and it has relatively lower variance.

Pommerman We present comparison results based on the
training performance in terms of converged policies and
time-efficiency against Static and Rule-based opponents.

The training results for A3C and our proposed method,
A3C-TP, against a Static opponent are shown in Figure 5 (a).
Our method both converges much faster compared to the
standard A3C. As Static opponents do not commit suicide,
there are no false positives in observed positive rewards.
However there are still false negatives due to our agent’s pos-
sible suicides during training that negatively reinforces the
essentially needed bombing skill. In this scenario, A3C takes
almost one million episodes to converge because the agent
needs to learn to execute a series of actions (without killing
itself): get close to the enemy, place a bomb near the en-
emy and stay alive until the bomb explodes in 10 timesteps,
eliminating the enemy. Only after successful execution of
these actions, the agent obtains a non-zero external reward
signal. One reason we present results and analysis against
Static opponents is to convey how challenging the Pommer-
man domain is for purely model-free RL.

Against the Rule-based opponent our method learns
faster, and it finds a better policy in terms of average re-
wards, see Figure 5 (b). Training against Rule-based oppo-
nents takes much longer, possibly due to episodes with false
positive rewards.

Discussion and Future Work

Atari games have been heavily used by RL researchers, but
Pommerman was recently released and there are many open
problems. Some recent works have used Pommerman as a
test-bed, e.g. Zhou et al. (2018) proposed a hybrid method
combining rule-based heuristics with depth-limited search.
Resnick et al. (2019) proposed a framework that uses a
single demonstration to generate a training curriculum for
sparse reward RL problems, including Pommerman, assum-
ing episodes can be started from arbitrary states. In this
work, we use this highly challenging domain and show that
our proposed method provides significant improvement for
sample efficiency.

We want to note that there are already a variety of aux-
iliary tasks proposed in the literature, and they are in gen-
eral heuristics proposed as additional self-supervised learn-
ing targets to help RL agents to improve its representation
learning with more contextual information. A recent work
shows that using some auxiliary tasks can result in worse
performance for the main task (Du et al. 2018). Thus, de-
pending on the domain properties, different auxiliary tasks
are likely to have varying performances. However, we note

42



(a) Q*bert (b) CrazyClimber (c) SpaceInvaders (d) BeamRider (e) BipedalWalker

Figure 4: Moving average over 50 games of the rewards (horizontal lines depict individual episodic rewards) is shown. Atari
games are trained for 3 days, BipedalWalker is trained for 5 hours, all using 8 CPU workers with 3 random seeds. Our method,
A3C-TP, performed no worse than standard A3C in any tested games, and it outperformed A3C in Q*bert and CrazyClimber
games, and BipedalWalker domain.

(a) Learning against a Static opponent.

(b) Learning against a Rule-based opponent

Figure 5: Pommerman Domain Results: Moving average
over 5k games of the rewards (horizontal lines depict indi-
vidual episodic rewards) is shown. Each training curve de-
picts average and standard deviation of 3 experiments with
different random seeds. Our method, A3C-TP, outperforms
the standard A3C in terms of both learning faster and con-
verging to a better policy in learning against both Static and
Rule-based opponents. The training times was 6 hours for
(a) and 3 days for (b) both using 24 CPU cores.

that more theoretical understanding of auxiliary tasks and
how to devise them automatically is still an open research
avenue (Bellemare et al. 2019; Sutton and Barto 2018).

As future research, we think TP could be employed for
safe exploration and within the context of learning from
demonstrations. TP values could be used to bias the explo-
ration strategy within the context of safe RL (Garcıa and
Fernández 2015). For example, the RL agent could combine
state-value function estimates with TP estimate: it can trig-
ger exploitation when both state-value and TP estimates are
high (e.g., a win case) whereas exploration could be trig-
gered when state-value estimate is low and TP estimate is
high, implying for example, a dead-end for the agent.

Another avenue we want to investigate is to use TP val-
ues for better integration of demonstrators and model-free
RL within the context of imitation learning. For example,
a (search-based, simulated) demonstrator can be asked for
action-guidance when the TP value is high and state-value
estimate is low, i.e., implying the episode is predicted to be
close to a terminal state against the favor of the agent. TP es-
timates could also be used to determine a reward discounting
schedule or the effective horizon length to consider future re-
wards (Fedus et al. 2019). One main limitation of Terminal
Prediction auxiliary task is its applicability to only episodic
tasks (in contrast to other existing auxiliary tasks).

Conclusions

Deep reinforcement learning has achieved great successes
in recent years with the help of novel methods and higher
compute power. However, DRL is often sample inefficient.
One of the active research area to address this challenge is
to use auxiliary tasks. Along this line of research, in this pa-
per, we propose a novel self-supervised auxiliary task, i.e.,
Terminal Prediction (TP), estimating the temporal closeness
to terminal states for episodic tasks, which can be easily
integrated to existing DRL methods to improve the learn-
ing efficiency. We experimented integrating this task with
A3C proposing A3C-TP which improves the policy learning
performance across different domains (e.g., Atari, Bipedal-
Walker, and Pommerman) with diverse dynamics. Our TP
task is general as can be easily integrated with other DRL
methods and with any episodic domain.

43



References

Arulkumaran, K.; Deisenroth, M. P.; Brundage, M.; and
Bharath, A. A. 2017. Deep reinforcement learning: A brief
survey. IEEE Signal Processing Magazine 34(6):26–38.
Bellemare, M. G.; Dabney, W.; Dadashi, R.; Taiga, A. A.;
Castro, P. S.; Roux, N. L.; Schuurmans, D.; Lattimore, T.;
and Lyle, C. 2019. A geometric perspective on optimal
representations for reinforcement learning. arXiv preprint
arXiv:1901.11530.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
gym. arXiv preprint arXiv:1606.01540.
Chrabaszcz, P.; Loshchilov, I.; and Hutter, F. 2018. Back
to basics: Benchmarking canonical evolution strategies for
playing atari. arXiv preprint arXiv:1802.08842.
Du, Y.; Czarnecki, W. M.; Jayakumar, S. M.; Pascanu, R.;
and Lakshminarayanan, B. 2018. Adapting auxiliary losses
using gradient similarity. arXiv preprint arXiv:1812.02224.
Emekligil, E., and Alpaydın, E. 2018. What’s in a game? the
effect of game complexity on deep reinforcement learning.
In Workshop on Computer Games, 147–163.
Fedus, W.; Gelada, C.; Bengio, Y.; Bellemare, M. G.; and
Larochelle, H. 2019. Hyperbolic discounting and learning
over multiple horizons. arXiv preprint arXiv:1902.06865.
François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare,
M. G.; Pineau, J.; et al. 2018. An introduction to deep re-
inforcement learning. Foundations and Trends in Machine
Learning 11(3-4):219–354.
Garcıa, J., and Fernández, F. 2015. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learn-
ing Research 16(1):1437–1480.
Hernandez-Leal, P.; Kartal, B.; and Taylor, M. E. 2018. Is
multiagent deep reinforcement learning the answer or the
question? A brief survey. arXiv preprint arXiv:1810.05587.
Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.;
Leibo, J. Z.; Silver, D.; and Kavukcuoglu, K. 2017. Re-
inforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations.
Konda, V. R., and Tsitsiklis, J. N. 2000. Actor-critic algo-
rithms. In Advances in neural information processing sys-
tems, 1008–1014.
Lample, G., and Chaplot, D. S. 2017. Playing FPS Games
with Deep Reinforcement Learning. In AAAI, 2140–2146.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436.
Leibfried, F., and Vrancx, P. 2018. Model-based regular-
ization for deep reinforcement learning with transcoder net-
works. arXiv preprint 1809.01906.
Leibfried, F.; Kushman, N.; and Hofmann, K. 2016. A deep
learning approach for joint video frame and reward predic-
tion in atari games. In ICML 2017 Workshop on Principled
Approaches to Deep Learning.
Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard,
A. J.; Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.;

Kavukcuoglu, K.; et al. 2016. Learning to navigate in com-
plex environments. In ICLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
Oh, J.; Guo, X.; Lee, H.; Lewis, R. L.; and Singh, S. 2015.
Action-conditional video prediction using deep networks in
atari games. In NIPS, 2863–2871.
Resnick, C.; Eldridge, W.; Ha, D.; Britz, D.; Foerster, J.; To-
gelius, J.; Cho, K.; and Bruna, J. 2018. Pommerman: A
multi-agent playground. AIIDE Multi-Agent Workshop.
Resnick, C.; Raileanu, R.; Kapoor, S.; Peysakhovich, A.;
Cho, K.; and Bruna, J. 2019. Backplay:” man muss immer
umkehren”. AAAI-19 Workshop on RL in Games.
Sharifi, A.; Zhao, R.; and Szafron, D. A. 2010. Learn-
ing companion behaviors using reinforcement learning in
games. In Sixth Artificial Intelligence and Interactive Digi-
tal Entertainment Conference.
Shelhamer, E.; Mahmoudieh, P.; Argus, M.; and Darrell, T.
2016. Loss is its own reward: Self-supervision for reinforce-
ment learning. arXiv preprint arXiv:1612.07307.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Suddarth, S. C., and Kergosien, Y. 1990. Rule-injection
hints as a means of improving network performance and
learning time. In Neural Networks. Springer. 120–129.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction.
Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski,
P. M.; White, A.; and Precup, D. 2011. Horde: A scalable
real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In AAMAS.
Wang, P.; Rowe, J. P.; Min, W.; Mott, B. W.; and Lester,
J. C. 2017. Interactive narrative personalization with deep
reinforcement learning. In IJCAI, 3852–3858.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Yu, Y. 2018. Towards sample efficient reinforcement learn-
ing. In IJCAI, 5739–5743.
Zhou, H.; Gong, Y.; Mugrai, L.; Khalifa, A.; Nealen, A.; and
Togelius, J. 2018. A hybrid search agent in pommerman.
In Proceedings of the 13th International Conference on the
Foundations of Digital Games.

44


