
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Agent Modeling as Auxiliary Task for Deep Reinforcement Learning

Pablo Hernandez-Leal,∗ Bilal Kartal,∗ Matthew E. Taylor
Borealis AI

Edmonoton, Canada
{pablo.hernandez, bilal.kartal, matthew.taylor}@borealisai.com

Abstract

In this paper we explore how actor-critic methods in deep
reinforcement learning, in particular Asynchronous Advan-
tage Actor-Critic (A3C), can be extended with agent model-
ing. Inspired by recent works on representation learning and
multiagent deep reinforcement learning, we propose two ar-
chitectures to perform agent modeling: the first one based on
parameter sharing, and the second one based on agent policy
features. Both architectures aim to learn other agents’ poli-
cies as auxiliary tasks, besides the standard actor (policy) and
critic (values). We performed experiments in both coopera-
tive and competitive domains. The former is a problem of
coordinated multiagent object transportation and the latter is
a two-player mini version of the Pommerman game. Our re-
sults show that the proposed architectures stabilize learning
and outperform the standard A3C architecture when learning
a best response in terms of expected rewards.

Introduction

An important ability for agents to have is to reason about the
behaviors of other agents by constructing models that make
predictions about the modeled agents (Albrecht and Stone
2018). This agent modeling (Schadd, Bakkes, and Spronck
2007)1 area usually takes concepts and algorithms from mul-
tiagent systems (since the environment includes at least two
agents), game theory (which studies the strategic interac-
tions among agents), and reinforcement learning (since the
model may be based on information observed from interac-
tions).

Agent modeling usually serves two purposes in multia-
gent settings: it improves the coordination efficiency in co-
operative scenarios (Chalkiadakis and Boutilier 2003) and,
in competitive scenarios, it helps the agent to better optimize
(best respond) its actions against the predicted opponent pol-
icy (Carmel and Markovitch 1995), e.g., by exploiting oppo-
nent mistakes.

Early algorithms for agent modeling came from game the-
ory literature, e.g., fictitious play (Brown 1951). Later, many

∗Equal contribution
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Sometimes referred as opponent modelling since “opponent”
is used to refer to another agent in the environment.

works adapted reinforcement learning algorithms for this
task (Banerjee and Peng 2005). Recently, agent modeling
has been also considered in the context of deep reinforce-
ment learning (DRL).

DRL has shown outstanding results in Atari games, Go,
Poker and recently in strategy video games (Mnih et al.
2013; Torrado et al. 2018). Due to these successes, it is
natural that DRL is now being tested in multiagent envi-
ronments (Hernandez-Leal, Kartal, and Taylor 2018). Some
works have explored using DRL to evaluate emergent behav-
iors in multiagent environments (Tampuu et al. 2017), and
others have proposed algorithms for multiagent DRL (Fo-
erster et al. 2017). In contrast, our goal is to estimate other
agents’ (opponent or teammate) policies by means of an aux-
iliary task at the same time that the agent is learning its re-
spective (best response) policy. In general, (self-supervised)
auxiliary tasks are not used for anything other than shaping
the features of the agent, i.e., facilitating the representation
learning process (Bellemare et al. 2019), improving learn-
ing stability (Jaderberg et al. 2017), and have broadened the
horizons of RL to learn from all experience, whether re-
warded or not. Self-supervision defines losses via surrogate
annotations that are synthesized from unlabeled inputs. Ex-
amples are reward prediction which can be cast into a regres-
sion task (Jaderberg et al. 2017) and dynamics prediction
that captures state, action, and successor relationships. Since
the purpose is representation learning and not full modeling
of the dynamics and reward, the losses need not form a tran-
sition model and proxies can suffice to help tune the repre-
sentation, i.e., these losses are expected to give gradients not
necessarily a generative model (Shelhamer et al. 2017).

In this work we take advantage of auxiliary tasks when
learning a best response and the opponent/teammate model.
Since these two elements are linked to each other, we pro-
pose two architectures that take advantage of this realization.

Recently, asynchronous actor-critic methods have become
widely used in DRL; Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al. 2016) is a major representative of this
category, which does not use an experience buffer and learns
completely on-policy. Thus, we take A3C as baseline and set
off to evaluate and better understand the use of agent mod-
eling as auxiliary task with on-policy actor-critic methods in

31

DRL with the following contributions:

• Agent modeling in DRL is still an open research area with
opportunities in video games (Zhao and Szafron 2009;
Torrado et al. 2018; Borovikov et al. 2019). Our exper-
iments are performed in two recent multiagent environ-
ments, one cooperative and one competitive domain (mini
version of the Pommerman game).

• We propose two new architectures that take inspiration
from multiagent DRL and representation learning to do
agent modeling. The first architecture, Agent Modeling
by parameter Sharing (AMS-A3C), takes inspiration from
the concept of parameter sharing to learn the oppo-
nent/teammate policy as an auxiliary task as well as the
standard actor and critic.

• The second architecture, Agent Modeling by policy Fea-
tures (AMF-A3C), leverages the concept of policy fea-
tures to learn latent space features that are used as input
when computing the actor and critic of the learning agent.

Our results show that modeling the opponent/teammate
increases the expected rewards and improves the stability of
the learning process. In particular, in this work we show the
benefits of using opponent/teammate policy prediction as an
auxiliary task with respect to non-learning stochastic agents
in both cooperative and competitive scenarios.

Related Work

In this section, we describe related work on agent modeling
in DRL, multiagent DRL and auxiliary tasks.

Deep Reinforcement Opponent Network (DRON) (He
et al. 2016) was the first DRL work that performed op-
ponent modeling. DRON’s idea is to have two networks:
one learns Q values (similar to DQN (Mnih et al. 2013))
and a second learns a representation of the opponent’s pol-
icy. DRON used hand-crafted features to define the oppo-
nent network. In contrast, Deep Policy Inference Q-Network
(DPIQN) and Deep Policy Inference Recurrent Q-Network
(DPIRQN) (Hong et al. 2018) learned opponent policy fea-
tures directly from raw observations of the other agents. The
way to learn these policy features is by means of auxiliary
tasks (Jaderberg et al. 2017) that provide additional learn-
ing goals; in this case, the auxiliary task is to learn the op-
ponent’s policy. Then, the Q value function of the learning
agent is conditioned on the policy features, which aim to
reduce the non-stationarity of the multiagent environment.
In contrast, our proposals do not need an experience replay
buffer, learn completely on-policy and we make use of full
parameter sharing (Foerster et al. 2017).

Deep Cognitive Hierarchies (Lanctot et al. 2017) is an al-
gorithm that aims to avoid overfitting in two-player games. It
uses deep reinforcement learning to compute best responses
to a distribution over policies and empirical game-theoretic
analysis to compute new meta-strategy distributions. The-
ory of Mind Network (Rabinowitz et al. 2018) tackles the
problem of meta-learning, i.e., the proposed network should
acquire a strong prior model for agents’ behaviour to boot-
strap to richer predictions. DeepBPR+ studies the problem
of efficient policy detection and reuse when playing against

non-stationary agents in Markov games (Zheng et al. 2018).
In contrast, our goal is to estimate the opponent/teammate’s
policy at the same time that the agent is learning its re-
spective (best response) policy; since these two elements are
linked to each other our proposals improve the stability of
the learning process as well as increase the obtained rewards.

Self Other Modeling (SOM) (Raileanu et al. 2018) is a
recently proposed algorithm that uses the agent’s own pol-
icy as a means to predict the opponent’s goal (and actions).
SOM is based on the assumption that the agents are identi-
cal, which is more suitable when agents share a fixed set of
goals and have similar abilities.

Auxiliary tasks were originally presented as hints that im-
proved the network performance and learning time. Sud-
darth and Kergosien (1990) presented a minimal example
of a small neural network where it was shown that adding an
auxiliary task effectively removed local minima. Recently,
some works have used them in single-agent RL problems,
for example, Mirowski et al. (2017) studied self-supervised
tasks (like depth prediction) in a navigation problem. Their
results show that augmenting an RL agent with auxiliary
tasks supports representation learning, which provides richer
training signals that enhance data efficiency. Another inter-
esting result is that using the auxiliary task as a loss was
better than using the value as input. Another example was
presented by Lample and Chaplot (2017) who added an aux-
iliary task (to predict game feature information such as the
presence of enemies or items) to a DQN network to improve
learning in First-Person-Shooting games. These ideas also
relate to Multi-Task Learning where by learning tasks in par-
allel using a shared representation, what is learned for each
task can help the learning of the others (Caruana 1997).

Preliminaries

We start with the standard reinforcement learning setting of
an agent interacting in an environment over a discrete num-
ber of steps. At time t the agent in state st takes an action
at and receives a reward rt. The state-value function is the
expected return (sum of discounted rewards) from state s
following a policy π(a|s):

V π(s) = E[Rt:∞|st = s, π],

and the action-value function is the expected return follow-
ing policy π after taking action a from state s:

Qπ(s, a) = E[Rt:∞|st = s, at = a, π].

Algorithms, such as Q-learning, or its (deep) neural net-
work variant, DQN, approximate the action-value function
Q(s, a; θ) using parameters θ, and then update parameters
to minimize the mean-squared error, using the loss function:

LQ(θi) = E[(r + γmaxa′Q(s′, a′; θ−i)−Q(s, a; θi))
2]

where θ− represents the parameters of the target network
that is held constant, but synchronized to the behaviour net-
work θ− = θ, at certain periods to stabilize learning.

A3C (Asynchronous Advantage Actor-Critic) is an al-
gorithm that employs a parallelized asynchronous train-
ing scheme (e.g., using multiple CPUs) for efficiency; it

32

is an on-policy RL method that does not need an ex-
perience replay buffer. A3C allows multiple workers to
simultaneously interact with the environment and com-
pute gradients locally. All the workers pass their com-
puted local gradients to a global network that performs
the optimization and synchronizes the updated actor-critic
NN parameters with the workers asynchronously. A3C
maintains a parameterized policy (actor) π(a|s; θ) and
value function (critic) V (s; θv), which are updated as fol-
lows: �θ = ∇θ log π(at|st; θ)A(st, at; θv) and �θv =
A(st, at; θv)∇θvV (st) where

A(st, at; θv) =

n−1∑

k=0

γkrt+k + γnV (st+n)− V (st),

with A(s, a) = Q(s, a) − V (s) representing the advantage
function, commonly used to reduce variance.

The policy and the value function are updated after ev-
ery tmax actions or when a terminal state is reached. It
is common to use one softmax output for the policy head
π(at|st; θ) and one linear output for the value function head
V (st; θv), with all non-output layers shared, see Figure 1 (a).

The loss function for A3C is composed of two terms:
policy loss (actor), Lπ , and value loss (critic), Lv . An en-
tropy loss for the policy, H(π), is also commonly added to
help to improve exploration by discouraging premature con-
vergence to suboptimal deterministic policies (Mnih et al.
2016). Thus, the loss function is given by:

LA3C = λvLv + λπLπ − λHEs∼π[H(π(s, ·, θ)]
with λv = 0.5, λπ = 1.0, and λH = 0.01, being standard
weighting terms on the individual loss components.

The UNsupervised REinforcement and Auxiliary Learn-
ing (UNREAL) framework (Jaderberg et al. 2017) is built
on top of A3C. UNREAL proposes unsupervised auxiliary
tasks to speed up the learning process that requires no ad-
ditional feedback from the environment. The idea of ad-
ditional auxiliary predictions is to help with the represen-
tational learning problem (Bengio, Courville, and Vincent
2013) and had also been useful to improve the robustness
and stability of the learning process (Jaderberg et al. 2017).
UNREAL proposes two auxiliary tasks: auxiliary control
and auxiliary prediction that share the previous layers that
the base agent uses to act. By using this jointly learned repre-
sentation, the base agent learns to optimize extrinsic reward
much faster and, in many cases, achieves better policies at
the end of training. The UNREAL algorithm optimizes a
single combined loss function with respect to the joint pa-
rameters of the agent that combines the A3C loss, LA3C, to-
gether with an auxiliary control loss LPC , an auxiliary re-
ward prediction loss LRP and a replayed value loss LV R. In
contrast to A3C, UNREAL uses an experience replay buffer
that is sampled with more priority given to interactions with
positive rewards to improve the critic network.

Agent Modeling with A3C
In this section we first describe the challenges of opponent
modeling in the context of reinforcement learning and mul-
tiagent systems, then we present our two main contributions:
the AMS-A3C and AMF-A3C architectures.

Opponent modeling and multiagent systems

In a multiagent environment, agents interact at the same time
with the environment and potentially with each other (Tuyls
and Weiss 2012). These environments are commonly for-
malized as a Markov game 〈S,N , A, T,R〉, which can be
seen as an extension of an MDP to multiple agents (Littman
1994). One key distinction is that the transition, T , and re-
ward function, R, depend on the actions of all, N , agents.
Given a learning agent i and using the common shorthand
notation −i = N \ {i} for the set of opponents, the value
function now depends on the joint action a = (ai,a−i), and
the joint policy π(s,a) =

∏
j πj(s, aj):

V π
i (s) =

∑

a∈A

π(s,a)
∑

s′∈S

T (s, ai,a−i, s
′)

[R(s, ai,a−i, s
′) + γVi(s

′)].
(1)

The optimal policy is dependant on the other agents’ poli-
cies:

π∗
i (s, ai,π−i) = argmax

πi

V
(πi,π−i)
i (s).

However, if the other agents’ policies are stationary (can
still be stochastic) then the problem can be reduced to a stan-
dard MDP where RL algorithms can be used to effectively
learn a best response to those other agents, irrespective if the
domain is cooperative or competitive. Our goal therefore is
to accurately estimate the opponent/teammate policy at the
same time that the agent is learning its respective (best re-
sponse) policy. Since these two elements are linked to each
other, below we propose two architectures that take advan-
tage of this realization. In this work we show advantage of
agent policy prediction with respect to non-learning agents.
We leave as future work how to deal with learning agents.

AMS-A3C: Agent Modeling by parameter Sharing

This architecture builds on the concepts of parameter shar-
ing and auxiliary tasks. Parameter sharing has been pro-
posed in multiagent DRL as a way to reduce the number
of parameters to learn and improve the performance. The
idea is to perform centralized learning where agents share
the same network (i.e., parameters) but the outputs represent
different agent actions (Foerster et al. 2017).

Building on the same principle, in our architecture we
want to also predict the opponent/teammate policies as well
as the standard actor and critic, with the key characteris-
tic that the previous layers will share all their parameters,
see Figure 1 (b). The change in the architecture is accompa-
nied by a modification in the loss function. In this case, we
treat the learning of the other agents’ policies as auxiliary
tasks (Jaderberg et al. 2017) by refining the loss function as:

LAMS-A3C = LA3C +
1

N
N∑

i

λAMi
LAMi

where and λAMi is weight term and LAMi is an auxiliary
loss for opponent/teammate i:

LAMi
= − 1

M

M∑

j

aji log(â
j
i)

33

Figure 1: CNN represents convolutional layers, FC represents fully connected layers, and ⊗ represents an element-wise vector
multiplication. (a) A3C outputs values and the agent’s policy. (b) AMS-A3C is similar to A3C but adds a head that predicts the
other agents’ policies. (c) AMF-A3C aims to learn other agents’ policy features in the latent space, hoppi

, which are then used
to compute the value and policy of the learning agent. Both approaches can be generalized to N opponents/teammates.

which is the supervised cross entropy loss between the ob-
served one-hot encoded opponent/teammate action (ground
truth), aji , and the prediction, âji , for a trajectory of length
M .

AMF-A3C: Agent Modeling by policy Features

The second architecture uses the concepts of policy features
and auxiliary tasks. Hong et al. (2018) proposed a modified
DQN architecture that conditions Q-values of the learning
agent on features in the latent space2 that also predict the
opponent/teammate policy, i.e., policy features.

We take a similar approach but in the context of on-policy
actor-critic methods, which means that policy features con-
dition on both actor and critic. In this case, after the convo-
lutional layers, the fully connected layers are divided in two
sections, one specialized in the opponent/teammate policy
and the other in the actor and critic (of the learning agent).
Then, we directly use opponent/teammate policy features,
hoppi

vector, to be conditioned (via an element-wise mul-
tiplication) when computing the actor and critic, see Fig-
ure 1 (c). The loss function is similarly refined as follows:
LAMF-A3C = LA3C + 1

N
∑N

i λAMi
LAMi

Note that we described AMS-A3C and AMF-A3C in the
general case with N agents in the environment. In the ex-
periments we evaluated scenarios with one opponent or one
teammate.

Implementation details

For A3C, AMS-A3C, and AMF-A3C we used 3 or 4 con-
volutional layers (depending on the domain), with 32 fil-
ters, 3 × 3 kernels, stride and padding of 1. For A3C and
AMS-A3C the convolutional layers are followed with 2 fully
connected layers with 128 hidden units each, followed by
2-heads: the critic has a single output for state-value esti-
mate for the observation, and the actor has |A| outputs for
the policy probabilities for the given observation. For AMF-
A3C, the fully connected layers have 64 units (to keep the
same number of weights as AMS-A3C). For AMS-A3C and
AMF-A3C, the opponent/teammate policy head has |Aopp|
outputs corresponding to the opponent/teammate policy. We
used ELU activation functions. The parameters of all archi-
tectures have entropy weight of 0.01, a value loss weight of

2Not to be confused with latent variables.

(a) (b)

Figure 2: (a) The coordinated multiagent object transport
moving problem (Palmer et al. 2018). Two agents need to
coordinate to pick up an object and delivery it to the goal
zone. Our experiments use a stochastic teammate that moves
with higher probability towards the object and then to the
goal. (b) An example of the mini Pommerman with board
size 8×8. The board is randomly generated varying the num-
ber of wood (light brown cell), walls (dark brown cell) and
power-ups (yellow circle). Initial positions of the agents are
randomized close to any of the 4 corners of the board.

0.5, a policy loss weight of 1, and a discount factor of 0.99.
The parameters of the learning agent’s policy are optimized
using Adam with lr = 0.0001, β1 = 0.9, β2 = 0.999, ε =
1×10−8, and weight decay 1×10−5. In the next section we
compare different settings for λAM .

Experiments

This section describes the two experimental domains: a co-
operative multiagent transport moving problem and a com-
petitive mini version of Pommerman. We then present the
experimental results in terms of sensitivity of the loss weight
parameter λAM for AMS-A3C and AMF-A3C in the coor-
dination domain, and then we compare with A3C in terms
of rewards for the two domains.

Domains and setup

Coordination This domain is inspired by Coordi-
nated Multi-Agent Object Transportation Problems
(CMOTPs) (Palmer et al. 2018), in which two agents
are tasked with delivering one object to a goal within a

34

grid-world. The agents must locate and pick up the object
by standing in the grid cells on the left and right hand
side. The task is fully cooperative, i.e., objects can only
be transported upon both agents grasping the item (this
happens automatically when situated next to the object) and
choosing to move in the same direction. Agents only receive
a positive reward after placing the object in the goal, see
Figure 2(a). Agents have 1900 time steps to complete this
task, otherwise the object is reset to the starting position.
The actions available to each agent are to either stay in
place or move left, right, up, or down. We tested two
teammates: one hesitant agent which moves randomly but
with higher probability towards the object and once it has
grasped it then moves with higher probability towards the
goal; and a stubborn agent which prefers to follow a certain
path after grasping the object (i.e., some actions are fully
deterministic). Agents receive one observation per time step
from the environment as a 16× 16 pixel representation. We
used 12 CPU workers in these experiments.

Competition The Pommerman environment (Resnick et
al. 2018) is based on the classic console game Bomber-
man. Our experiments use the simulator in a mode with two
agents, see Figure 2(b). Each agent can execute one of 6
actions at every time step: move in any of four directions,
stay put, or place a bomb. Each cell on the board can be a
passage, a rigid wall, or wood. The maps are generated ran-
domly, albeit there is always a guaranteed path between any
two agents. The winner of the game is the last agent stand-
ing and receives a reward of 1. Whenever an agent places a
bomb it explodes after 10 time steps, producing flames that
have a lifetime of 2 time steps. Flames destroy wood and kill
any agents within their blast radius. When wood is destroyed
either a passage or a power-up is revealed. Power-ups can be
of three types: increase the blast radius of bombs, increase
the number of bombs the agent can place, or give the ability
to kick bombs. A single game of two-player Pommerman is
finished when an agent dies or when reaching 800 timesteps.

We considered the rule-based opponent baseline that
comes within the simulator (a.k.a. SimpleAgent). Its be-
haviour is stochastic since it collects power-ups and places
bombs when it is near an opponent. It is skilled in avoid-
ing blasts from bombs. It uses Dijkstra’s algorithm on each
time-step, resulting in longer training times.

We evaluated our two proposed architectures and the stan-
dard A3C against the opponents mentioned above. In all
cases we provided learning agents with dense rewards and
we did not tune those reward terms. In our setting the entire
board is visible and agents receive one observation per time
step from the environment as a 18×8×8 matrix which con-
tains the current time step board description of the board for
the current time step, similar to Resnick et al. (2019).

Results

Sensitivity of λAM In the first set of experiments
we used the coordination domain to evaluate different
weights for the opponent modeling loss value: annealing
λAM = 1.0 → 0.0 varying discount rates exponentially

(a) (b)

(c) (d)

Figure 3: Comparison for the weight for the opponent mod-
eling loss value, λAM , annealing 1.0 → 0.0 with varying
discount rates (exponentially) or fixing the value. Learning
curves in the coordination domain with the hesitant team-
mate for (a) AMS-A3C and (b) AMF-A3C: no significant
variation; with the stubborn teammate for (c) AMS-A3C and
(d) AMF-A3C: best results were obtained with λAM = 0.1

{0.999, 0.9999, 0.99999} or keeping the value fixed with
λAM = {0.1, 0.5}. With the hesitant teammate both AMS-
A3C and AMF-A3C show similar behavior for all the eval-
uated parameters (better than A3C), see Figures 3(a)-(b).
When testing with the stubborn teammate we observed more
variation among parameters, for both AMS-A3C and AMS-
A3C using a fixed λAM = 0.1 or quickly annealing with
0.999 gave the best results, see Figures 3(c)-(d). Our hypoth-
esis is that this teammate is easier to learn and the network
does not need too much weight on their modeling; instead it
can focus on policy learning.

(a) (b)

Figure 4: Coordination domain: Learning curves with two
different teammates (a) hesitant and (b) stubborn in the co-
ordination problem. Vanilla A3C shows instability and even
reduces its rewards after some episodes, in contrast, AMS-
A3C and AMF-A3C are more stable, with lower variance
and higher rewards.

35

Figure 5: Competition domain: Moving average over 10k
games of the rewards (shaded lines are standard deviation
over 5 runs) obtained by the two proposed architectures and
A3C against the rule-based opponent: AMS-A3C and AMF-
A3C obtained significantly higher scores than A3C.

Coordination Using the best parameters for AMS-A3C
and AMF-A3C we compare to A3C. Figure 4 depicts learn-
ing curves3 (average with standard deviations of 10 runs)
where it can be seen that in the first part of the learning
(30k episodes), all learning agents behave similarly, how-
ever, in the long run AMS-A3C and AMF-A3C obtained
higher rewards than A3C (AMS-A3C was statistically sig-
nificantly better than A3C from episode 60k, α = 0.05).
We noted that against the hesitant teammate A3C decreases
its rewards, likely because of its on-policy nature, see Fig-
ure 4(a). In contrast, AMS-A3C and AMF-A3C show stabil-
ity and start increasing their rewards. When facing the stub-
born teammate, AMS-A3C and AMF-A3C show less vari-
ance than A3C due to their accurate agent modeling (AMS-
A3C is statistically significant over A3C from episode 90k
with α = 0.05), see Figure 4(b). Examining the trained
agents, AMS-A3C and AMF-A3C show better coordination
skills once the object is grasped compared to vanilla A3C,
i.e., agents reached the goal faster once grabbing the object.

Competition One clear distinction from the previous do-
main is that it is more elaborate and stochastic (board is
randomized and changes depending on the agents’ actions).
In this experiments we set λAM = 0.01 and we evaluate
against the rule-based opponent. In this case, we let the
learning agents train for 6 million episodes to guarantee con-
vergence (≈ 3 days of training with 50 workers). Results are
depicted in Figure 5 (with standard deviations over 5 runs),
where it can be seen that AMS-A3C and AMF-A3C both
clearly outperform A3C in terms of rewards (AMS-A3C is
statistically significant over A3C from episode 3.5M and
AMF-A3C from 5.5M, α = 0.05). When observing the poli-
cies generated we noted that during game play the agents
trained with AMS-A3C and AMF-A3C were able to make
the opponent commit suicide by blocking its moves (in Pom-

3Because of the stochasticity of the opponent actions an upper
bound of the expected reward is ≈ 0.7 (experimentally computed)
with the selected parameters.

(a) (b)

Figure 6: T-SNE analysis from trained (a) A3C and (b)
AMS-A3C agents from 100 episodes (colors are obtained
from the value head). AMS-A3C t-SNE shows many more
clusters, in particular, the cluster highlighted on the left cor-
responds to states when AMS-A3C is about to win the game
(value close to 1).

merman, if two agents simultaneously want to move to the
same cell, they both stay in their current locations) and make
it stand on the path of the flames, in contrast to A3C which
was unable to learn this strategy and obtained lower rewards.

Lastly, we performed a visual analysis similar to Zahavy,
Ben-Zrihem and Mannor (2016). We took trained agents of
A3C and AMS-A3C and for 100 episodes we recorded both
the activations of the last layer and the value output. We ap-
plied t-SNE (Maaten and Hinton 2008) on the activations
data (as input) and the value outputs (as labels). Figure 6
depicts the t-SNEs where it can be seen that AMS-A3C
has more well-defined clusters than A3C’s, in particular the
highlighted cluster on the left represents states when AMS-
A3C is about to win the game because it can accurately pre-
dict the opponent’s moves, which implies values close to 1.

Conclusions

Deep reinforcement learning has shown outstanding results
in recent years. However, there are still many open ques-
tions regarding different recent learning algorithms. We take
as base a major representative of actor-critic methods, i.e.,
A3C, and propose two architectures that are designed to do
agent modelling as an auxiliary task. This means that at the
same time the network improves the representation learn-
ing, it will also aim to learn other agents policies. Even
though auxiliary tasks are not new, their use in deep RL
and opponent modeling is still not well studied. Our work
serves as an important stepping stone in this direction by
proposing two architectures that improve learning when do-
ing opponent/teammate modeling in deep RL. Our archi-
tectures AMS-A3C and AMF-A3C are inspired by multi-
agent DRL concepts: parameter sharing and opponent pol-
icy features. We experimented in both cooperative and com-
petitive domains. In the former, our proposals were able to
learn coordination faster and more robustly compared to the
vanilla A3C. In the latter, our agents were able to predict
opponent moves in complex simultaneous move, Pommer-
man, and successfully obtain a best response that resulted in
higher scores in terms of rewards. As future work, we are
interested in exploring self-play, learning agents, and mixed
(coordination-competition) environments.

36

References

Albrecht, S. V., and Stone, P. 2018. Autonomous agents
modelling other agents: A comprehensive survey and open
problems. Artificial Intelligence 258:66–95.
Banerjee, B., and Peng, J. 2005. Efficient learning of multi-
step best response. In AAMAS, 60–66.
Bellemare, M. G.; Dabney, W.; Dadashi, R.; Taiga, A. A.;
Castro, P. S.; Roux, N. L.; Schuurmans, D.; Lattimore, T.;
and Lyle, C. 2019. A geometric perspective on optimal
representations for reinforcement learning. arXiv preprint
arXiv:1901.11530.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence
35(8):1798–1828.
Borovikov, I.; Zhao, Y.; Beirami, A.; Harder, J.; Kolen, J.;
Pestrak, J.; Pinto, J.; Pourabolghasem, R.; Chaput, H.; Sar-
dari, M.; et al. 2019. Winning isn’t everything: Training
agents to playtest modern games. In AAAI Workshop on Re-
inforcement Learning in Games.
Brown, G. W. 1951. Iterative solution of games by ficti-
tious play. Activity analysis of production and allocation
13(1):374–376.
Carmel, D., and Markovitch, S. 1995. Opponent Modeling
in Multi-Agent Systems. In IJCAI. Springer-Verlag.
Caruana, R. 1997. Multitask learning. Machine learning
28(1):41–75.
Chalkiadakis, G., and Boutilier, C. 2003. Coordination in
Multiagent Reinforcement Learning: A Bayesian Approach.
In AAMAS.
Foerster, J. N.; Nardelli, N.; Farquhar, G.; Afouras, T.; Torr,
P. H. S.; Kohli, P.; and Whiteson, S. 2017. Stabilising Expe-
rience Replay for Deep Multi-Agent Reinforcement Learn-
ing. In ICML.
He, H.; Boyd-Graber, J.; Kwok, K.; and Daume, H. 2016.
Opponent modeling in deep reinforcement learning. In
ICML, 2675–2684.
Hernandez-Leal, P.; Kartal, B.; and Taylor, M. E. 2018. Is
multiagent deep reinforcement learning the answer or the
question? A brief survey. arXiv preprint arXiv:1810.05587.
Hong, Z.-W.; Su, S.-Y.; Shann, T.-Y.; Chang, Y.-H.; and Lee,
C.-Y. 2018. A Deep Policy Inference Q-Network for Multi-
Agent Systems. In AAMAS.
Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.;
Leibo, J. Z.; Silver, D.; and Kavukcuoglu, K. 2017. Re-
inforcement Learning with Unsupervised Auxiliary Tasks.
In ICLR.
Lample, G., and Chaplot, D. S. 2017. Playing FPS Games
with Deep Reinforcement Learning. In AAAI, 2140–2146.
Lanctot, M.; Zambaldi, V. F.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017. A
Unified Game-Theoretic Approach to Multiagent Reinforce-
ment Learning. In NIPS.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In ICML, 157–163.

Maaten, L. v. d., and Hinton, G. 2008. Visualizing data using
t-SNE. Journal of Machine Learning Research 9(Nov).
Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard,
A. J.; Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.;
Kavukcuoglu, K.; et al. 2017. Learning to navigate in com-
plex environments. ICLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602v1.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T.; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous methods for deep reinforcement learning. In
ICML, 1928–1937.
Palmer, G.; Tuyls, K.; Bloembergen, D.; and Savani, R.
2018. Lenient Multi-Agent Deep Reinforcement Learning.
In AAMAS.
Rabinowitz, N. C.; Perbet, F.; Song, H. F.; Zhang, C.; Es-
lami, S. M. A.; and Botvinick, M. 2018. Machine Theory of
Mind. In ICML.
Raileanu, R.; Denton, E.; Szlam, A.; and Fergus, R. 2018.
Modeling Others using Oneself in Multi-Agent Reinforce-
ment Learning. In ICML.
Resnick, C.; Eldridge, W.; Ha, D.; Britz, D.; Foerster, J.; To-
gelius, J.; Cho, K.; and Bruna, J. 2018. Pommerman: A
multi-agent playground. AIIDE Multi-Agent Workshop.
Resnick, C.; Raileanu, R.; Kapoor, S.; Peysakhovich, A.;
Cho, K.; and Bruna, J. 2019. Backplay:” man muss immer
umkehren”. AAAI-19 Workshop on Reinforcement Learning
in Games.
Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent
modeling in real-time strategy games. In GAMEON, 61–70.
Shelhamer, E.; Mahmoudieh, P.; Argus, M.; and Darrell, T.
2017. Loss is its own reward: Self-supervision for reinforce-
ment learning. ICLR workshops.
Suddarth, S. C., and Kergosien, Y. 1990. Rule-injection
hints as a means of improving network performance and
learning time. In Neural Networks. Springer. 120–129.
Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus,
K.; Aru, J.; Aru, J.; and Vicente, R. 2017. Multiagent coop-
eration and competition with deep reinforcement learning.
PLOS ONE 12(4):e0172395.
Torrado, R. R.; Bontrager, P.; Togelius, J.; Liu, J.; and Perez-
Liebana, D. 2018. Deep Reinforcement Learning for Gen-
eral Video Game AI. arXiv preprint arXiv:1806.02448.
Tuyls, K., and Weiss, G. 2012. Multiagent learning: Basics,
challenges, and prospects. AI Magazine 33(3):41–52.
Zahavy, T.; Ben-Zrihem, N.; and Mannor, S. 2016. Graying
the black box: Understanding DQNs. In ICML.
Zhao, R., and Szafron, D. 2009. Learning character behav-
iors using agent modeling in games. In AIIDE.
Zheng, Y.; Meng, Z.; Hao, J.; Zhang, Z.; Yang, T.; and Fan,
C. 2018. A deep bayesian policy reuse approach against
non-stationary agents. In NeurIPS. 962–972.

37

