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Abstract

How to best explore in domains with sparse, delayed, and de-
ceptive rewards is an important open problem for reinforce-
ment learning (RL). This paper considers one such domain,
the recently-proposed multi-agent benchmark of Pommer-
man. This domain is very challenging for RL — past work has
shown that model-free RL algorithms fail to achieve signifi-
cant learning without artificially reducing the environment’s
complexity. In this paper, we illuminate reasons behind this
failure by providing a thorough analysis on the hardness of
random exploration in Pommerman. While model-free ran-
dom exploration is typically futile, we develop a model-based
automatic reasoning module that can be used for safer explo-
ration by pruning actions that will surely lead the agent to
death. We empirically demonstrate that this module can sig-
nificantly improve learning.

Efficient exploration is a long-standing problem in rein-
forcement learning (Haarnoja et al. 2017; Nachum, Norouzi,
and Schuurmans 2017). Thrun (1992) divided exploration
methods in two: undirected, which are closely related to
a random walk with the advantage of not using specific
knowledge (Szepesvári 2010; Still and Precup 2012); and
directed, which need domain specific knowledge with the
advantage of generally better exploration. A subcategory
of directed exploration are model-based approaches, which
usually take into account how often a state-action pair has
been visited (Brafman and Tennenholtz 2002; Strehl and
Littman 2008). However, count approaches suffer in non-
tabular cases with large state spaces. In these challenging
cases, the agent is usually equipped with a function approx-
imator for effective generalization across familiar and unfa-
miliar states. An example that extends tabular count-based
exploration to non-linear function approximation is pseudo-
count (Bellemare et al. 2016), which can be used to evaluate
states that have not been visited in the past.

However, these methods usually struggle in hard-
exploration problems (Ecoffet et al. 2019) (e.g., Atari games
such as Montezuma’s Revenge and Pitfall) where many long
sequences of actions are needed before obtaining obtaining
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non-zero external signals.
This paper considers the exploration problems that arise

in a recently proposed benchmark for (multi-agent) rein-
forcement learning: Pommerman (Resnick et al. 2018a). The
environment is based on the classic console game Bomber-
man that involves 4 bomber agents initially placed at the four
corners of a board. The game can be played in Free-For-All
(FFA) or Team modes. In FFA the winner is the last agent
that survives; in Team mode each two diagonal agents form a
team, and one team wins if it successfully destroys all mem-
bers in the other team. In either mode, at every step, each
agent issues an action simultaneously from 6 discrete can-
didate actions: moving left, right, up, down, placing
a bomb, or stop. The bomb action is legal as long as the
agent’s ammo is greater than 0, and any illegal action (such
as moving towards a wall) is superseded with stop by the
environment. Figure 1 shows a snapshot of the game.

Pommerman is challenging for multi-agent learning,
in particular, model-free reinforcement learning, predomi-
nantly because exploration is difficult due to: (1) delayed
action effects: the only way to make a change to the environ-
ment (e.g., kill an agent) is by means of bomb placement, but
the effect of such an action is only effective when the bomb
explodes after 10 time steps; and (2) sparse and deceptive
rewards: the former refers to the fact that the only non-zero
reward is obtained at the end of an episode. The latter refers
to the fact that quite often a winning reward is due to the
opponents’ involuntary suicide, which makes reinforcing an
agent’s action based on such a reward deceptive.

While techniques like Reward Shaping and Difference
Rewards (Agogino and Tumer 2008; Devlin et al. 2014) have
been used to deal with (2), for (1), efficient and safe ex-
ploration is crucial because failing to avoid the side-effect
of the bomb actions results in irreversible events (Farquhar
et al. 2017; Racanière et al. 2017), i.e., the agent is elimi-
nated. Although it has been suggested that model-free RL
does not learn well in Pommerman, particularly because the
exploration with bomb action is highly correlated to los-
ing (Resnick et al. 2018a; 2018b; Kartal, Hernandez-Leal,
and Taylor 2019), a formal analysis about the exploration
difficulty is lacking. In this paper we fill this gap by pre-
senting an analysis on the exploration hardness in Pommer-
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Figure 1: The game of Pommerman in Team mode, where
each two-diagonal agents form a team. The right column
shows the partial view of the board for each agent; the view
is fully observable in FFA mode.

man: we show that suicides happen frequently during learn-
ing because of the nature of using model-blind random ac-
tions for exploration. Furthermore, the high rate of suicides
has a direct effect on the samples needed to learn. We exem-
plify this in a case for which an exponential number of sam-
ples are needed to obtain a positive experience. This high-
lights that performing non-suicidal bomb placement could
require complicated, long-term, and accurate planning. We
then propose an efficient reasoning module that prunes un-
safe actions. We experimentally demonstrate the usefulness
of the module by comparing the learning performances with
and without such a module, and further show the strength of
obtained players by competing against SimpleAgent, the
official baseline provided by Pommerman

Analysis of Random Exploration

Before presenting our analysis in Pommerman, we first de-
scribe a related classic problem of random walk in two-
dimensional world, then we generalize to the case of random
walk in a world with obstacles, and finally we describe the
results for Pommerman.

Obstacle-free 2D grid world

We start with a simplified scenario where an agent sits on a
2d world and has five actions — stop, left, right,
up, down — to navigate around. Assume the agent’s orig-
inal location is marked as (0, 0) and follows an uniform ran-
dom policy. The question of interest is: at time step t ≥ 0,
what is the probability that the agent will be at cell (i, j) for
arbitrary (i, j)?

Each step the agent has five actions to take, thus after t
steps, there are in total of 5t “paths,” because the probabil-
ity of each path is the same, the probability that the agent
be at position p = (i, j) can be computed as N(p,t)

5t , where
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Figure 2: At step 0, the agent is located at the origin; at step
1, the agent could be at any position 1-step away; at step 2,
the agent can at most reach a position that is two-steps away.
The probability of being at each position can be computed
by dividing the number of all feasible combinatorial trajec-
tories, i.e., 5t.

N(p, t) is the number of paths that lead the agent to posi-
tion p at time t. Therefore, the question is how to calculate
N(p, t) for any position p = (i, j) and time step t.

After any tick the agent can at most move to a cell that
is one step away. Therefore, to arrive at p at time step t, the
agent must get to the neighboring positions within t − 1, as
shown by the recursive relation:

N(p, t) =

{∑
q∈neighbor(p) N(q, t− 1) +N(p, t− 1),

1, p = (0, 0) and t = 0

(1)
where neighbor(p) = {(i−1, j), (i, j−1), (i+1, j), (i, j+
1)}, given p = (i, j).

This recursion expresses that to be on position (i, j) at
time t, in the previous time step t − 1, the agent must be at
(i−1, j), (i, j−1), (i+1, j), (i, j+1) or (i, j) from where
one action can be taken by the agent, resulting in (i, j).

Since N(p, t) in Equation 1 depends solely on the infor-
mation in time t− 1, and solution to the base case (t = 0) is
given, this indicates that ∀p, t ≥ 0, N(p, t) can be computed
bottom-up using dynamic programming by iteratively in-
creasing the value of t. As an illustration, Figure 2 shows the
number of paths to each position for time steps t = 0, 1, 2,
where unmarked positions are out of reach of the agent —
they can also be filled with 0. Note also that each number in
a sub-figure can be computed summing all the numbers of
its neighbors and itself from the sub-figure on the left.

Generalization to arbitrary obstacles

Now we generalize to a scenario where: (i) the board is
bounded and trying to move outside results in stop; and (ii)
there are arbitrary static obstacles that the agent cannot pass
through, i.e., the agent stays in the same position. This sce-
nario is similar to a typical situation in Pommerman, where
an agent is positioned on a board with limited size, has ammo
of 0 (no bomb placement allowed) and can use the remaining
five legal actions to explore the world.1

1Note that stripping the invalid bomb action when ammo=0
does not violate the model-free principle, since from the egocen-
tric perspective of view, ammo is an attribute of the agent rather
than a specification from model of the environment.

25



1

�

t=0

21
�

1
1

t=1

73
�

3
3

1

1

1
22

1 1

t=2

Figure 3: At step 0, the agent is located at the origin and
there is one obstacle in the board represented by �; step 1,
the agent could be at any position 1-step away; at step 2, the
agent can at most reach to a position that is two-steps away.
The probability of being at each position can be computed
by dividing the corresponding normalization constant 5t.

Only a minor revision to Equation 1 is needed to represent
the number of paths of being at each p = (i, j) after t steps,
given a board configuration B, as:

N(p, t,B) =
∑
a∈A

N(prev(a, p,B), t− 1,B), t > 0 (2)

N(p, t,B) = 1, p = (0, 0) ∧ t = 0 (3)

where A = {stop, left, right, up, down} is
the action set and prev(a, p,B) returns the previous posi-
tion the agent must be if action a leads the agent to position
p = (i, j) on a board configuration B.

Figure 3 shows an example for t = 0, 1, 2. In this case,
there is one obstacle in the board (represented by �).

Suicide study: Pommerman

In Pommerman, it has been noted that the action of bomb
placing is highly correlated to losing (Resnick et al. 2018a),
which is presumably the major impediment for achieving
good results using model-free reinforcement learning. Now,
we provide a formal analysis of the suicide problem that was
suggested to be the reason to delay or prevent the agent
from learning the bombing skill (Kartal, Hernandez-Leal,
and Taylor 2019) when an agent follows a model-blind, ran-
dom exploration policy.

In Pommerman, an agent can only be killed when it inter-
sects with an exploding bomb’s flames, then we say a sui-
cide event happens if the death of the agent is caused by its
own bomb. For the ease of exposition we consider the fol-
lowing simplified scenario: (i) the agent has ammo=1 and
has just placed a bomb (i.e., the agent now sits on the bomb
with ammo=0); (ii) for the next time steps until the bomb ex-
plodes, the agent has 5 actions available at every time step;
and (iii) other items on the board are static.

One difference between this case and the previous section
is that the agent sits on an “obstacle” (i.e., a bomb), and
once it moves off it cannot come back. This is in contrast to
the previous assumption where the number of paths to any
position is always related to its adjacent cells. Formally, the
original position p of the agent represents a singleton point
that if the agent is at one neighbor of p in time t, it cannot

go back to p in any t′ ≥ t+1. Because of this special point,
we have the following observations:
Observation 1. Assuming p is the origin and the bomb has
not exploded yet, the number of paths of being at p after t
time steps on a board B is given by:

N(p, t,B) = (|obstacle(p,B)|+ 1)t with ∀t ≥ 0

where obstacle(p,B) is the set of obstacle cells adjacent to
p.

Proof. To stay at the origin, at each step, the agent must take
an action either is stop or results in a bounce back, so that
after t steps, there is in total (|obstacle(p,B)|+1)t possible
“paths.” Note that |obstacle(p,B)| ≤ 4.

Due to the special treatment of the origin, the asymmetric
impact needs to be propagated to its adjacent neighbours by
the following initialization (noted as N̂ ):
Observation 2. For any passable neighbor q ∈
neighbor(p), after t time steps in B:

N̂(q, t,B) = N̂(p, t− 1,B)
where p is the origin and N̂(p, t − 1,B) =
(|obstacle(p,B)|+ 1)t−1.

The other cells can be initialized N̂ with 0, because they are
out of direct influence of the origin.

Now, the remaining problem can be solved exactly by ap-
plying the scheme in the previous section, except that the
initialization value has to be added to the recursion for t ≥ 0
as follows:

N(p, t,B) = N̂(p, t,B) +
∑
a∈A

N(prev(a, p,B), t− 1,B).

Now, we use the previous analysis to exemplify a ran-
dom, best, and worst cases that happen in Pommerman. For
brevity, we call the number of paths to a cell c as the N value
of c, or N value of c at time t if t has to be explicitly noted.
Example 1. We take a random starting board configura-
tion, depicted in Figure 1, and compute the N values ending
at each position for t = 0 and t = 3 in Figure 4. This is
a typical starting board in Pommerman, where every agent
stays at its corner; they are disconnected with each other by
randomly generated obstacles. One noticeable phenomenon
is that the N values are concentrated around its origin.

We also compute for t = 9 (time steps needed for a
bomb to explode) before and after normalizing the num-
ber of paths into probabilities in Figure 5. Note that even
when the configuration of the agents is slightly differ-
ent their probabilities of ending up with suicide are ≈
40% (0.39, 0.38, 0.46, 0.38, counterclockwise starting from
upper-left corner).

Indeed, the problem of suicide stems from acting ran-
domly without considering constraints of the environment.
In extreme cases, in each time step, the agent may have only
one survival action, which means the safe path is always
unique as t increases while the total number of feasible paths
the agent can traverse grows exponentially. We illustrate this
by the following corridor example.
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Figure 4: In Pommerman, after placing a bomb, each agent
sits on the bomb; left and right figures are the number of
paths of being at each cell at step 0 and 3, respectively. Prob-
abilities can be obtained by dividing by 5t.
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Figure 5: After 9 steps, the N value and probability of being
at each cell for each agent. � indicates the cell is covered by
flames.

Example 2. Figure 6 shows a worst-case example: the agent
is in a corridor formed by wood at two sides and places a
bomb. If using model-blind exploration the chance of sui-
cide is extremely high since among the 59 “paths,” only one
of them is safe. In order to survive, it must precisely follow
the right action at each time step. This also implies that for
sub-problems of such in Pommerman, to acquire one positive
behaviour example requires exponential number of samples.

The previous example shows a worst-case scenario, now
we present also the best-case.

9 9 8 7 6 5 4 3 2 1

0

Figure 6: The corridor scenario: the agent places a bomb
with strength=10 on the leftmost cell. For each passage
cell, the marked value means the minimum number of steps
it is required to safely evade from impact of the bomb. After
placing the bomb, in the next step the bomb has life of 9,
thus in the remaining 9 ticks, the agent must exactly take the
right action to evade.
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Figure 7: Best case for an agent to be after placing a bomb
after 9 steps: empty board. The N value and probability of
being at each cell for each agent; � indicates the cell is cov-
ered by flames.

Observation 3. Suppose the agent starts by sitting on a
bomb and the agent uniform-randomly walks by taking ac-
tions left, right, up, down, or stop. The best board
configuration for the agent not committing suicide is when
there are no obstacles (except the bomb at the origin) and
the agent is at the center of the board.

Figure 7 shows the computation results in detail for this
best-case scenario where the suicide probability is 0.16.
However, in Pommerman, such an ideal case does not ex-
ist at all — we have seen from Figures 3, 4, 5 and 6, usually
the probability is higher. Specifically, for a whole game, if k
bombs have to be placed, suppose the agent’s suicide proba-
bility is x each time, then the suicide rate is thus 1−(1−x)k

which increases as k increases — this puts the agent in com-
plicated scenario: placing more bombs is required for play-
ing well while at the same time it also results more prob-
able suicide. For example, suppose an agent has to survive
k = 8 bombs to carve out a path to engage with enemies
(not an uncommon scenario in Pommerman), then assuming
x = 0.4, the probability of death after 8 bombs is ≈ 1. Fur-
thermore, even the agent somehow managed to survive from
these bombs, no reward is observed as the positive reward
signal appears only when all opponents are dead.

Action Pruning

In this section we show that if the model-free demand is re-
laxed, an action pruning algorithm for safe exploration exists
in Pommerman.

In the case illustrated in Figure 6, we see that the essence
for survival is to try to navigate to a position that is free from
the threat of future bombs (rightmost upper cell in Figure 6).
Let us call the safety value of a passable cell the minimum
number of steps to reach a safe region (that is out of the reach
of any bombs). Assuming static bombs, we can prune unsafe
actions by comparing the post-action location’s safety value
and its minimum bomb life value. Figure 6 shows the safety
values for the corridor example.

This idea can be generalized to arbitrary bombs: given a
board situation and the agent’s position, each resulting cell
after taking an action can be computed — the remaining
problem is to compute its safety value as well as the min-
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imum life value among the bombs covering this position,
where we say a position is covered by a bomb if (after the
explosion) the position is within reach of the flames.

We describe the complete algorithm for computing safety
values in Algorithm 1 (MinEvadeStep function). The in-
put to the algorithm are attributes of the agent as well as the
board information that the agent can see. The output (calling
GetSafeActions) is set of safe actions. Exact computa-
tion is impossible for partially observable environments, but
can be approximated by treating unseen areas as walls.

Algorithm 1: Action Pruning
Input: board, agent, A

Output: Â
1 Function MinEvadeStep(board, p, history):
2 u, l ← FindMaxMinBombCovering(board, p)

/* no bomb covering p */
3 if u = −∞ then
4 return 0
5 else if |history| ≥ u then

/* bomb would have exploded upon
arrival; flame life=2 */

6 if |history| > u+ flame life then return 0
7 else return ∞
8 else if |history| ≥ l then
9 if |history| > l + flame life then return 0

10 else return ∞
11 end
12 num ← ∞
13 for a ∈ {left, right, up, down} do
14 q ← NextPosition(p, a)
15 if q �∈ history then
16 num ← min(num, 1 +

MinEvadeStep(board, q, history ∪ {q}))
17 end

18 end
19 return num
20 Function GetSafeActions(board, agent, A):

21 Â ← ∅
22 Let p be agent’s position
23 for a ∈ A = {left, right, up, down, stop, bomb} do
24 board, q ← Next(board, p, a)
25 if a = stop or a = bomb then H ← {None, q}
26 else H ← {q}
27 n ← MinEvadeStep(board, q,H)
28 m ← FindMinBombCovering(board, p)

29 if m > n then Â ← Â ∪ {a}
30 end

31 return Â

The essence of Algorithm 1 is a recursive reasoning pro-
cedure that leverages the relationship between bomb’s cov-
erage and safety value: (1) a cell is safe if it is not covered by
any bombs, and (2) a bomb-covering cell is also safe if the
agent has enough time and an viable way to evade to a bomb-
free region. In other words, if the board is fully observable
and bombs and opponents are not moving, optimal moves
will never be pruned. The immediate use of such pruning
is embedding it in model-free reinforcement learning sys-
tem where the goal is to learn a policy among the remaining

11×11×14 11×11×64

11×11×2

11×11×2

1 fc unit

6 fc unitagent’s observations

4 layers 64 3x3
(2,1x1)

(2,1x1)
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tanh

Safe Actions After Pruning

Figure 8: Architecture for learning.

“safe” actions, which we shall focus on in the remaining of
the paper. Algorithm 1 can also be used in dynamic envi-
ronments by looking-ahead tree-search (i.e., by expanding
all opponent moves), though this will not be explored in this
paper.

Algorithm 1 is computationally efficient, i.e., all utility
functions are computable in O(L), where L is width of the
board, while the recursion depth of MinEvadeStep is less
than the maximum bomb life (i.e., 10), thus the total com-
plexity is bounded by O(L2) because of repeated subprob-
lems; L = 11 in Pommerman.

Experiments

Here we show learning results both in modes, FFA and
Team, comparing with/without action pruning.

Learning Algorithm

We use the PPO algorithm (Schulman et al. 2017) as the
backend algorithm for our reinforcement learners, which
minimizes the following error function on its D, i.e., games
played by the old neural net represented policy πold

θ :

L(θ;D) =
∑

(st,at,Rt)∈D

[
− clip(

πθ(at|st)
πold
θ (at|st)

, 1 − ε, 1 + ε)A(st, at)+

1

4
· max

[
(vθ(st) − Rt)

2
, (v

old
θ (st)+

clip(vθ(st) − v
old
θ (st),−ε, ε) − Rt)

2
]]

.

(4)

Here, Rt is the return at time t , which can be of −1, 0 or
1 for lose, draw or win; clip range ε = 0.1, A(st, at) is
the generalized advantage function (Schulman et al. 2015),
where λ = 0.95, discount γ = 0.9, and n step = 32. Those
parameters were set in accordance with OpenAI baseline im-
plementation.

Architecture Similar to previous research (Resnick et al.
2018a), we extract 14 features planes from the agent’s ob-
servation which is the input to our network. As shown in
Figure 8, the architecture contains 4 convolution layers, fol-
lowed by two policy and value heads, respectively. The input
contains 14 features planes, each of shape 11×11. It then
convolves using 4 layers of convolution, each has 64 3×3
kernels; the result thus has shape 11×11×64. Then, each
head convolves using 2 1×1 kernels. Finally, the output is
squashed into action probability distribution and value esti-
mation, respectively.

Reward Shaping Following previous work on Pommer-
man (Resnick et al. 2018a), to cope with the sparse re-
ward problem, a dense reward function is added during

28



0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Iteration

S
u
cc
es
s
R
a
te

FFA, without action pruning

FFA, with action pruning

(a) FFA mode

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Iteration

S
u
cc
es
s
R
a
te

Team, without action pruning

Team, with action pruning

(b) Team mode

Figure 9: Success rate against static opponents with/without
action pruning module. Consistent with our prior analysis,
PPO failed to learn without pruning. x-axis is the iteration
number. Each iteration contains 80 games played by 8 par-
allel workers. When learning without pruning, the algorithm
ran for 5000 iterations, but never succeeded.

learning: (1) going to a cell not in a FIFO queue of size
30 gets 0.001 (to encourage the agent to move around
and not camp); (2) picking up power-ups kick, ammo,
increase blast strength gets 0.01; (3) killing a
teammate gets -0.5; (4) killing an opponent gets 0.5; and
(5) blasting a piece of wood gets 0.01.

Learn with Static Opponents

To show the effectiveness of our action pruning algorithm,
we first learn against a team of two static opponents, i.e.,
agents who always take the stop action. This reduces the
problem to a task where the learning agent’s role is just to
remove wood, get close to, and kill opponents.

Figure 9 shows the results in both FFA and Team modes.
In FFA mode, at each game, one corner agent is selected as
the learning agent, and it wins if and only if it can kill the
three static agents in 800 steps. Similarly, in Team mode,
two corner agents are randomly selected as neural net team
players, and they win if in 800 steps both of the two oppo-
nents are destroyed. Note that, even though static opponents
may appear simple, the learning agents need to overcome
obstacles (i.e, blasting wood) by bomb placement in a ran-
domly generated board.

From Figure 9, it is clear that without any pruning, the
neural nets failed to learn at all even after a training period
of 5 days — the success rate remains zero, consistent with
previous findings (Resnick et al. 2018a). By contrast, after
equipping the agent with the action pruning module, PPO
successfully learns the tasks.

Evaluate Against Baseline Opponents

SimpleAgent is a search-based baseline provided by the
competition which uses hand-crafted rules for enemy in-
teraction, bomb placement, and search for navigation.2 To
show the relative strength of our trained player, we tested the
neural net model of the final iteration against this baseline
opponent. The win-percentage of our player is around 40%
against 3 SimpleAgents in FFA (note that a player with
similar strength of SimpleAgent shall win in about 25%),
and around 70% against a SimpleAgent team in Team

2https://github.com/multiagentlearning/playground

Table 1: Results against SimpleAgent in FFA and Team
modes. In FFA, one neural net plays against three Sim-
pleAgent; in Team, one neural net team plays against one
SimpleAgent team. Final iteration neural net models on FFA
and Team training are selected respectively for the test.
Three independent trials were tried, where each trial con-
tains 100 games.

Trial FFA Team
win draw lose win draw lose

1 43 12 45 69 6 25
2 40 12 48 65 5 30
3 42 17 41 76 6 18

mode. These results indicate that our player outperforms
SimpleAgent baseline, even though the neural nets were
only trained against static opponents. Indeed, an early ver-
sion of such a module has been used in a competition agent;
by further training against a curriculum of opponents, the fi-
nal player won the second-place in the learning category at
NeurIPS 2018 team competition (Gao et al. 2019). The best
learning agent Navocado employed Dijkstra-based short-
est path search, used an ensemble of several neural net mod-
els, in execution (Peng et al. 2018). The strongest agent is
purely based on heuristic search (Osogami and Takahashi
2019).

Conclusions

We have provided an analysis on the hardness of direction-
less exploration in Pommerman. Our analysis sheds light on
the previous negative results of using model-free RL for this
domain. Our analysis may also apply to other grid-world
like environments for game difficulty analysis. We further
presented a model-based reasoning module and empirically
showed its merit in both single-agent FFA and multi-agent
Team environments. With the reasoning module our neural
nets can learn to solve the pure exploration task given the op-
ponents are static, while without the reasoning module the
learning agent did not improve its performance after days
of training. We hope our analysis will bring more attention
on using Pommemran as a challenging domain in safe rein-
forcement learning (Garcıa and Fernández 2015).

A number of works on analyzing the limitations of deep
learning methods have emphasized on the need use mod-
els (Pearl 2018; Darwiche 2018), often drawn connection
to Systems I and II theories on human mind (Evans and
Stanovich 2013). Recent success (Silver et al. 2016; 2017;
2018) in complex game playing relies on effective integra-
tion of model-based solver and model-free learner (Geffner
2018). Given the exploration difficulty of Pommerman, the
promising direction for high-level playing is to incorporate
action-pruning (for dealing with the survival problem) and
tree-search (for look-ahead opponent moves) into the multi-
agent learning system.
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