
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Automatic Abstraction and Refinement
for Simulations with Adaptive Level of Detail

Michelangelo Diamanti,1 David Thue1,2

1Department of Computer Science, Reykjavik University, Menntavegur 1, 101, Reykjavik, Iceland;
2School of Information Technology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

michelangelo17@ru.is, david.thue@carleton.ca

Abstract

Optimizing the level of detail of an interactive simulation in-
volves maximizing its perceived scope while minimizing the
computational resources that are required to maintain it. Us-
ing varying levels of detail is common in computer graph-
ics, but the challenges of doing so in simulations remain sub-
stantially less explored. The interactive simulations of video
games often govern the behaviour of intelligent agents in the
environment, and such behaviours can take substantial com-
putational resources to maintain. As the ambitions of design-
ers and players demand larger and more complex simula-
tions, new strategies are needed to disassociate the perceived
scope of a simulation with its computational needs. To this
end, we propose a way to automatically adjust between dif-
ferent levels of detail in an interactive, narrative planning con-
text, while simultaneously identifying and visualizing the el-
ements that can currently be perceived.

1 Introduction

For many years, the graphical components of video games
have often been targeted as a crucial point of optimization.
Every modern graphics engine employs a wide set of tech-
niques aimed at automatically adjusting the level of detail of
the rendered objects, to maximize the game’s performance
while providing rich visual details. Video games, however,
involve more than only graphics; behind almost everything
that happens in a game’s environment, there is an algorithm
that decides its behaviour. Although optimizing the simu-
lations that underpin video games is highly important, the
concept of adaptive level of detail has received relatively lit-
tle attention in this context, and particularly in academia. As
a result, recent advances on this front have been limited, as
industry-focused solutions have remained tightly bound to
the games for which they were made (e.g., Total War – Rome
II (The Creative Assembly 2013; Beacco, Pelechano, and
Andújar 2016) or Assassin’s Creed Unity (Ubisoft Montreal
2015; Cournoyer and Fortier 2015)).

There are at least two points that make adjusting simu-
lation level of detail (LoD) more difficult than optimizing
graphics. First, while the way that graphics are represented

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has become relatively fixed, there are many different ways to
model the behavioural simulation of a game’s environment.
When a simulation is modelled in a new way, it requires a
new way to adjust its level of detail. This greatly hinders the
re-usability of LoD self-adjustment techniques across dif-
ferent implementations. Second, since simulation LoD deals
with semantics rather than visual props, there is no easy way
to find which parts are best to optimize, nor which metrics
can serve as good indicators for switching the level of detail.

In this work, we seek an approach that can be employed in
many different scenarios to adjust the level of detail of vari-
ous components of a simulation. To this end, we introduce a
system that helps the user design simulations that are capa-
ble of self-adjusting their level of detail. The system consists
of three components:

• A framework for simulations that allows the differen-
tiation of multiple LoDs, accounts for multiple parallel
agents, and can be easily ported to other systems.

• An algorithm for detecting LoD transition points that
estimates the observability of each region that is being
simulated in the environment, with regard to the player’s
perception of the world.

• An algorithm for adjusting the level of detail according
to changes in the observability metric. When the metric is
above a certain threshold, the algorithm parses each previ-
ous abstract simulation step into a series of more granular
steps, whose combined effects lead to an equivalent state.
Analogously, when a region’s observability decreases be-
low a certain level, the algorithm drops all the aspects of
the simulation that are absent from next lower level of de-
tail, while still maintaining the aspects that remain.

1.1 Background and Motivation

Adjusting the simulation level of detail of a video game is
a challenging problem. Many modern video games strive to
fill their environments with detailed agents and features, to-
ward enabling ever deeper levels of player immersion. At
the same time, the complex simulations of games often have
many connected parts that influence one another with vary-
ing degrees of magnitude, and fully computing these simula-
tions can require a prohibitive amount of resources. Finally,

17

this tension between maximizing complexity and minimiz-
ing resource usage is further complicated by the presence of
a player, and particularly in games that focus on their narra-
tive. In such games, both the state of the simulated world and
the state of the story must be maintained with consistency, so
as not to challenge the player’s suspension of disbelief. Sim-
ulating narrative-focused world spaces thus involves strik-
ing a balance between minimizing the use of resources and
maintaining a consistent world.

Most video game simulations belong to one of two cat-
egories. In one category, two levels of simulation detail
are used: game elements located near the player are fully
simulated, while elements that are out of range are not
simulated at all. For example, in open-world games like
Skyrim (Bethesda Game Studios 2011), the player can eas-
ily gain the impression that nothing in the world advances
without them being present. This approach works well to
lower the game’s overall resource requirements, but when
different elements should reasonably be affected by one an-
other, the lack of simulation of one might create incon-
sistencies in the simulation of the other. For this reason,
other video game simulations consider only a single level
of detail, spending the same amount of resources even for
elements that are not perceived by the player (e.g., Star-
craft II (Blizzard Entertainment 2010)). We aim to strike a
balance between these two alternatives that retains the bene-
fits of both: avoid the computation of certain details to min-
imize resource use, but ensure the computation of sufficient
details to maintain a consistent simulation.

At a high level, we approach this challenge by distinguish-
ing between three kinds of details: (i) those whose computa-
tion must be immediate, (ii) those whose computation can be
delayed, and (iii) those whose computation can be avoided.
The main advantages of this approach are twofold:

• Avoiding Unnecessary Details: If the simulation never
reaches a state that compels the computation of details
that were delayed, then those details become avoided and
the simulation is spared their computation.

• Computation Scaffolding: If the simulation does reach
a state that compels the computation of delayed details,
then this computation can be constrained by the structure
of what had occurred at a more abstract level of detail.
This greatly reduces the size of the problem.

The following definitions will aid in presenting our work.
A domain is a model that can be used to simulate a given
phenomenon. It contains all the constructs that can be used
to describe an instance of the environment, as well as tran-
sition model that governs how the simulation progresses be-
tween states. Given two domains, δ1 and δ2, we say that δ1
is a consistent abstraction of δ2 if every possible state that is
reachable by applying transitions defined in δ1 is also reach-
able by applying transitions defined in δ2. Given a sequence
of n domains Δ = 〈δ1, . . . , δn〉, if each δi ∈ Δ is a consis-
tent abstraction of δi+1 ∈ Δ, ∀i ∈ [1, n − 1], then we say
that Δ is a multi-level domain, and use δi to denote the do-
main at level of detail i. The most detailed domain in Δ is
δn, at level of detail n.

2 Problem Formulation

The problem that we aim to solve is as follows. Given a
multi-level domain for an interactive, narrative simulation,
how can we:
1. Translate a given detailed state into a more abstract state;
2. Translate a given abstract state into a more detailed state;

and
3. Use knowledge of what the player can observe to decide

when the level of detail should be changed?
The simulated story should be consistent at all times so as

not to challenge the user’s suspension of disbelief. The simu-
lation should provide an adequate level of detail to account
for every aspect of the world that the user can perceive. The
switch in level of detail should take place according to an
objective estimate of the user’s world perception. Adaptive
level of detail should result in saving resources compared to
always simulating at the highest possible level of detail.

3 Related Work

There have been several attempts to adjust the level of de-
tail of the behavioural component of simulations, and many
of them have focused on virtual humans. O’Sullivan et
al. (2003) introduced a way to adjust the LoD of simulations
with regards to three aspects: geometry (graphics), motion,
and behaviour such as spoken and unspoken cues. Paris,
Gerdelan, and O’Sullivan (2009) discussed the simulation
of a large crowd of virtual humans, including finding paths
and avoiding obstacles. Niederberger and Gross (2005) pre-
sented a scheduling algorithm that divides the time allocated
for computing the behaviour of each agent depending on
its observability. They considered two types of behaviour:
proactive (accurate, but expensive), and reactive (cheap, but
only avoids inconsistencies).

Other approaches have sought to leverage the advantages
of particular representations of the simulated world. For ex-
ample, Brom, Šerý, and Poch (2007) presented a way to ad-
just the level of detail of both spatial and behavioural com-
ponents of simulations. Their approach relied on the concept
that, if spaces are organized hierarchically, they can be di-
vided in multiple layers of abstraction. Osborne, Dickinson,
and others (2010) focused on simplifying the LoD of simula-
tions that are composed of hierarchically structured groups
of intelligent agents. The authors simulated many separate
groups of similar entities, comparable to a flock, where each
group may contain an arbitrary number of agents.

Some literature has explored the question of when
to switch the LoD. For example, Chenney, Arikan, and
Forsyth (2001) presented an approach for decreasing the
motion level of detail for objects that are not perceivable
by the user. The authors define the term “proxy simula-
tion” as the procedure responsible for managing the objects
that are out of scope, with a lower level of detail. Kistler,
Wißner, and André (2010) devised a formula for switch-
ing LoD based on distance from the camera and occlusion.
Sunshine-Hill (2013) proposed to change the LoD using a
more comprehensive formula, taking into account metrics of
observability, memory, return time, and duration. All those

18

values were used to estimate the inverse probability of in-
curring a break in realism, toward choosing the LoD.

Some authors have applied notions from AI planning in
the context of simulations, similarly to what we do in this
work. For example, Sacerdoti (1974) studied the difficulties
of devising efficient plans for complex environments. The
core concept of their work was that one can greatly increase
the performance of classic planners by reasoning about the
problem at hand on different levels of abstraction. The plan-
ner starts by differentiating between important parts of the
problem and the ones that can be regarded as (trivial) de-
tails. In this regard, each level of abstraction can be thought
of as a distinct planning domain. Plans are devised at high
level and then refined to account for details at ground level.

Riedl and Young (2005), Li et al. (2014), Thue et al.
(2016), and Robertson and Young (2019) all described
types of narrative planning that leveraged a player’s limited
knowledge about the story’s world. While they exploited this
limitation to better meet a set of narrative constraints, we use
it to reduce the complexity of simulating the story’s world.

Several of these approaches are confined within their own
scopes (limiting their use for other scenarios), and those that
are more general often put a limit on the number of levels of
detail that can be used. Differently from these methods, our
work seeks a way to adapt the granularity of a simulation
that supports an arbitrary number of detail levels, and in a
way that offers general support for narrative reasoning in the
context of a simulated world (Ware and Young 2014).

4 Proposed Approach

We first introduce and describe the language that we used to
model the simulation and the resulting framework that we
implemented. We then explain how we used the framework
to model a simulation that can adjust its level of detail, and
present an algorithm for increasing or decreasing the level of
detail. Finally, we explain how we estimated observability
and how we employed that measurement to switch between
the various levels of detail.

4.1 The Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) is an
attempt to standardize Artificial Intelligence (AI) planning
languages (Ghallab et al. 1998). A classic problem ex-
pressed in PDDL has two main components:

• A domain description contains the elements that are
common across all variations of a problem that we are
modelling, including predicates that can be used to de-
scribe facts about the world and actions that each agent
can perform. See Figure 1 (left). The actions defined in the
domain define its transition model (how the world moves
between states) since their preconditions and effects de-
termine which actions can be performed in which states.

• A problem description describes a specific problem to
be solved within the given domain. It contains all the en-
tities that are part of the problem and the relations (pred-
icates instantiated with entities) whose conjunction de-
scribes the world’s initial state. See Figure 1 (right).

Types:
 ROVER, WAYPOINT
Predicates:
 AT(ROVER, WAYPOINT)
 CONNECTED(WP, WP)
Actions:
 MOVE(rover, WP1, WP2)
 Preconditions:
 rover AT WP1
 WP1 CONNECTED WP2
 Postconditions:
 rover AT WP2

Domain Description
Entities:
 ROVER rov1
 ROVER rov2
 WAYPOINT way1
 WAYPOINT way2
 WAYPOINT way3

Relations:
 rov1 AT way1
 rov2 AT way2
 way1 CONNECTED way2
 way2 CONNECTED way3

Problem Description

Figure 1: A possible representation of a PDDL problem.
Usually PDDL would include a goal state definition in the
domain, but we use PDDL for simulation – not planning.

The actions defined in the domain of a PDDL problem
do not distinguish which (if any) of their parameters is the
one that actually performs the action, since simple plan-
ning problems only have one entity that can perform actions.
Given our desire to model environments with more than one
active entity, we modified the PDDL standard to additionally
specify the subject and object (if any) of each action.

4.2 Simulation Using the PDDL Framework

We represented each level of the simulation using a directed
tree structure. A directed tree is a graph in which any two
vertices are connected by exactly one path (ignoring edge
directions). Each node represents a world state, while each
edge represents an action from the domain. Figure 2 depicts
a possible unfolding of the game tree after 3 steps. Although
this representation has many branches, once an action is se-
lected, the ones that start with other actions are discarded.

sn
a1

a2
a3

a2 a3a1 a1 a2 a3 a1 a2 a3

sn+1sn+1 sn+1

sn+2 sn+2sn+2 sn+2 sn+2sn+2 sn+2 sn+2sn+2

Figure 2: PDDL simulation represented in a tree structure.
The nodes of the tree are the states, while the edges are the
actions performed to transition from one state to the next.

As shown in Figure 3, the simulation process iterates be-
tween planning and visualization: the simulator chooses an
action from the domain’s transition model according to the
current world state and then instructs the visualizer to per-
form it. The visualizer is responsible for showing the action
to the player as well as detecting any errors or player actions

19

that may occur during the process. After the visualization
cycle is completed, the simulator will receive an acknowl-
edgement that will inform it about the outcome of the ac-
tion: if it was successfully visualized, the simulation moves
forward to consider a new action; otherwise, it rolls back.

Simulator Visualizer

Action Request

Action Outcome

World State View

Interaction

Figure 3: Representation of the simulation loop.

To choose an action from the current domain’s transition
model, the simulator must first compute a list of actions that
are allowed in the current world state: an action is deemed
performable if the entities in its parameter are part of the
entities of the world state and all its preconditions are sat-
isfied by relations in the current world state. Since part of
our approach involves delaying the computation of certain
world state details and then revisiting that computation later,
it is important to store at least a partial history of the states
that have been traversed by the simulation. Since we repre-
sent the simulation using a tree, it is enough to save the last
visited node for each level of detail (see Figure 4).

S1 S1 S1

1 2 3
level

...

S1 S1 Sn

1 2 3
level

S1 Sn
Actions at LoD3

Figure 4: A visualization of how a separate history is main-
tained at each LoD. If the simulation starts in s1 at LoD3
and actions occur leading to state sn, then sn will be stored
as the last observed state at LoD3.

4.3 Level of Detail Adjustment

To delay or avoid the computation of different details in the
world state, we devised an algorithm to translate information
between two levels of a multi-level domain. We refer to the
process of decreasing detail as abstraction, and the process
of increasing detail as refinement. We describe each in turn.

Abstraction. Abstraction is the process of translating in-
formation from a detailed model to a more abstract one. Per-
forming abstraction means that we drop some of the details
of the current world state so that we can reduce the size of
the state space, thus reducing required resources in terms of
memory and computation time.

Figure 5 shows an example of how abstraction is per-
formed. First, the domain at each level of detail (columns 1
and 3) and the detailed state (column 2) are given as inputs;

Domain State
Type1
Type2
Type3
Predicate1
Predicate2
Predicate3
Action1
Action2

Entity1
Entity2
Entity3

Relation1
Relation2
Relation3
Relation4

Entity4

Domain State

Type2
Type3

Predicate1

Predicate3

Action2

Entity1

Entity3

Relation1
Relation2

Detailed Abstract

Figure 5: An example of the outcome of abstraction. Gray
highlights in column 1 indicate elements of the detailed
level’s domain that are removed by the algorithm in the more
abstract level’s domain (column 3). Similar highlights in col-
umn 2 indicate which entities or relations are removed from
the detailed state while creating the abstract state.

the goal is to produce an abstract state (column 4). Next,
the types and predicates that are present in in the detailed
domain but missing from the abstract domain are identified
(shaded gray in the figure). Since each entity depends on
a type and each relation depends on a predicate, the miss-
ing elements can act as a filter when determining the target
abstract state. Starting with a copy of the detailed state, an
abstract state is produced by removing every entity whose
type is missing and every relation whose predicate is miss-
ing. The result is shown in column 4 of the figure. It is im-
portant to specify that each time we perform abstraction, we
replace the old abstract branch with a new one containing
only the current abstract node as the root. The old branch
is useless because we have a more detailed version saved in
the structure of Figure 4. The system then continues from
the root node to advance the simulation at the abstract level.

Refinement. Refinement is the process of translating in-
formation from an abstract model to a more detailed model.
This function is performed when the player triggers the
switch from an abstract simulation to a more detailed one.
We first roll back the simulation until we hit the root node.
Since every time we perform abstraction we discard the cur-
rent branch and only store the last node in the table, the
root node will correspond to the last observed state at the
previous level. After that, we start traversing the simulation
tree and pairing each abstract action with a list of detailed
ones, whose cumulative effect produce an equivalent result-
ing node. To do that, we use a search algorithm whose inputs
are the starting node at the detailed level and the desired
node at the abstract level. The algorithm applies the detailed
transition model to traverse the tree and tries to reach a node,
at the detailed level, which is equivalent to the desired ab-
stract one. An equivalent detailed node is one that contains
all the effects of the abstract actions, while still also satisfy-
ing the constraints for the additional details.

Referring to Algorithm 1, we first roll back the simulation
at the abstract level of detail until we hit the root node (lines
3-5). At this point, we have both the detailed and abstract
version of a common node, from before the last abstraction

20

Algorithm 1: The subgoal search algorithm used to ob-
tain a detailed node during refinement.

Input : Leaf node at abstract level of detail
Output: Equivalent node at detailed level of detail

1 currentAbstract : Current abstract node;
2 lastDetailed : Last observed detailed node;
3 while not IsRoot(currentAbstract) do
4 currentAbstract ← Parent(currentAbstract);
5 end
6 nextAbstract ← Child(currentAbstract);
7 while nextAbstract �= null do
8 detailedPlan ← FindPlan(lastDetailed,
9 nextAbstract);

10 lastDetailed ← Apply(lastDetailed,
11 detailedPlan);
12 nextAbstract ← Child(nextAbstract);
13 end
14 return lastDetailed

step. Note that in line 6, we can traverse the tree as a list;
after we commit the chosen action, the branching factor at
every depth becomes one, and so each parent is left with only
one child. We start traversing the simulation tree and pairing
each abstract node with a list of detailed ones, until we reach
a detailed node equivalent to the abstract one (lines 7-13).
We do so by feeding the nodes at both levels of detail to a
planner (line 8-9). This planner finds a sequence of actions -
a plan - that leads the system from the old detailed state, to
a new one, which is equivalent to the next abstract state. The
plan is then applied to the last detailed state to obtain a new
detailed state (lines 10-11). This process continues until we
have a detailed plan for the whole abstract branch. The most
basic version of our planner is a slight modification of the
classic Breadth First Search.

Concurrency. Allowing multiple agents to perform ac-
tions at the same time could lead to conflicts, since the ef-
fects of two parallel actions could have inconsistent effects
on the world state. For this reason, we restricted the execu-
tion of parallel actions to only allow those whose effects on
the world state remain invariant with respect to the order in
which the actions are performed. To do so, we compute the
possible permutations of a given set of actions and compute
their cumulative effect on the simulation by applying each
action to the current world state in each permutation’s order.
If the application of every permutation results in the same
state, the actions can be performed in parallel. Note that they
are not run by different threads – they are applied to the state
in the same time step.

Synchronization. Another issue to consider when dealing
with joint actions is their effect during the refinement pro-
cess. In particular, when joint actions are refined, their re-
fined actions might need to be synchronized. For example,
consider an action give which, to simplify computation at
LoD2, does not require the involved entities to be at the same
location. If the give action at LoD3 requires the agents to
share the same location, then the refined plans would need

to take this requirement into account by making the agents
meet. If the two agents will take different amounts of time
(as executed in the game) to reach the meeting point, the
first one to arrive will need to wait. We solve this issue by
finding synchronization points if needed, and scheduling the
execution of actions in such a way that every time constraint
is satisfied. In certain cases (such as the given example), this
involves the introduction of idle actions.

4.4 Level of Detail Switcher

In addition to knowing how to switch between different lev-
els of detail, it is important to understand when each change
should occur. We devised a function that outputs an estimate
of a simulation region’s observability based on two indica-
tors of the player’s ability to perceive the environment:
• Proximity measures the inverse of the distance between

the player and the region.
• Visibility estimates whether the player’s vision of the re-

gion is occluded by some obstacle.
The function computes a weighted average between these

indicators (where n = 2):
∑∏n

i←0 φiwi∑n
i←0 wi

φi : indicator measure
wi : indicator

′s weight

We chose to employ a weighted average function because it
is both versatile and easy to tune. Each domain is related to
a specific observability threshold, and the LoD of the simu-
lation is adjusted accordingly.

5 Testbed and Demonstration
To demonstrate and evaluate our approach, we created a
testbed that models the behaviour of two AI agents in a sim-
ulated environment. The agents do not have a precisely de-
fined goal, which allows their behaviour to be simulated by
applying the transition model of a given domain.

The scenario contains two rovers that can perform multi-
ple actions: moving between waypoints, taking samples of
the soil, dropping the sample on a specific dock, and snap-
ping pictures of objectives. We modelled this environment in
our PDDL framework as follows. First, we split the general
problem into a multi-level domain with three levels, where
each LoD’s domain varied from the others (e.g., with differ-
ent actions, predicates, or preconditions on actions).

First Level of Detail: The rovers are free to move among
9 existing waypoints as long as the source and target desti-
nation are connected. If a rover happens to be at a waypoint
that contains a sample, it can collect it. Analogously, if an
objective is visible from a waypoint, the rover can take a
picture of it. One of the waypoints is marked as a dropping
dock, where the rover can drop the collected sample. The
two rovers both start at the same location.

Second Level of Detail: To the elements in the first LoD,
we added a new predicate that indicates the presence of ob-
stacles between waypoints. The resulting relation has a di-
rectional meaning: if there is an obstacle between waypoints
x and y, the rover cannot go from x to y, but it can still go
from y to x (e.g., rolling down a hill). There are 4 obstacles.

21

Third Level of Detail: To the second LoD, we added
predicates to represent a battery on each rover, and we im-
plemented a transition model that regulates the charge level
of the batteries. We modified the available actions so that
they cause the battery to transition correctly between charge
levels. We added a new action that lets a rover charge its
battery.

Suppose that the player starts in a setting of low observ-
ability, such that the observability estimate leads the system
to run the simulation at LoD1. As three time steps pass, rover
one visits waypoints 2, 6, and 8, while rover two visits way-
points 3, 5, and 4. At this point, if the player’s observability
increases past a given threshold, the LoD Switcher will tran-
sition to LoD2 and begin a refinement process:

• The system rolls back the simulation until it hits the root
node. From there, it uses a planner to compute, for every
set of parallel actions, an equivalent sequence that also
accounts for the details at the new, more detailed level.

• The constraints of the new level of detail prevent rover
one from going directly between waypoints 6 and 8 –
there is an obstacle in between. The planner will thus re-
turn a detour, passing through waypoints 3 and 4 to reach
the destination. The path for rover two remains clear.

• Since a single abstract action for rover one was refined
into three detailed actions while rover two’s parallel ac-
tion was refined into one, rover two will idle for two steps
before performing its action.

After the refinement process is complete, sufficient details
will have been computed to maintain simulation consistency.
We employed the same process to go from level of detail 2
to 3 and account for the battery charge of the rovers.

Now, suppose that a large object appears in front of the
player while the simulation is running at LoD3. This oc-
cludes the view of the player, causing the observability func-
tion to drop below the threshold of LoD2. The LoD Switcher
triggers the abstraction process, and all of the relations re-
lated to the battery system are dropped from the current
state. The system then continues at LoD2, saving resources
without the player noticing the drop in LoD. Similarly, a
transition from LoD2 to LoD1 would relieve the system of
accounting for obstacles whenever the rovers move.

6 Evaluation and Discussion

To evaluate our approach, we computed the theoretical size
of the state space for each of the LoDs by combining the
various relations used to describe the instance of the prob-
lem with the actual entities that are part of the world. We
also computed how many actions our planner considered at
each step of its planning process (one value for each LoD),
along with the amount of time that it took to do so. We per-
formed all computations on a system with an Intel core i7-
4700mq cpu @ 2.40GHZ, an NVIDIA GeForce GT 750M
with GDDR5 2GB VRAM and 8GB DDR3 RAM. Times
were averaged over a few subsequent runs.

Interestingly, Table 1 shows that we expanded more ac-
tions at LoD1 compared to LoD2, even if it should have
more detail and thus more complexity. The reason is that the

LoD Entities Relations
State
Space

Actions
Time
(ms)

1 25 280 1.9E84 524 30
2 25 361 4.7E108 522 30
3 31 409 1.3E123 16770 1100

Table 1: Size of the state space at each level of detail. Ex-
panded actions and related computational time.

complexity is only represented by additional constraints: no
new types or entities are added – only the preconditions of
moving are changed to account for obstacles. Still, the num-
ber of actions increases greatly at the third level of detail,
by a factor of 32. These results show that our system offers
a clear performance advantage even when applied to simple
environments such as the one in our demonstration, which
fails to run at interactive frame rates at its highest LoD.

6.1 Limitations and Future Work

Our system has a few limitations. One is related to the lim-
itations of modelling an environment with PDDL, as repre-
senting a large environment could require a large amount of
effort. It is also difficult to make agents behave rationally,
since we currently do not use PDDL’s notion of goals. An-
other limitation is related to performance: while substantial
resources can be saved at lower LoDs, the highest LoD used
in our demonstration is still prohibitively expensive to run.
Finally, the system could produce impossible plans: commit-
ting a refined set of actions could lead to a world state from
which the abstract target could not be reached.

There are many ways in which we can improve the sys-
tem. To expand beyond the limitations of PDDL and bet-
ter represent agent actions, one might adopt a probabilis-
tic model. One could also use more complex estimates of
observability to switch between different LoDs, or con-
sider other metrics such as those discussed by Sunshine-
Hill (2013), Flores and Thue (2017), or Robertson and
Young (2019). One might improve the overall performance
of the refinement algorithm through caching systems or
heuristics, toward expanding fewer states and reducing time
and memory costs. To prove that the transition between
LoDs is unnoticeable, we could conduct a user study.

Conclusion

We proposed a system that adjusts a simulation’s level of
detail in a narrative planning context. The system is based
on a method that can translate between abstract and detailed
world states using a multi-level planning domain, which is
formalized using a language that is common in narrative
planning (PDDL). Our approach leverages the idea that sys-
tem resources can be saved by delaying or avoiding the com-
putation of details that the user cannot perceive. The result-
ing system met our criteria for success: it saved resources
while maintaining consistency thanks to its processes of
abstraction and refinement, and it used an estimate of the
player’s perception to dynamically adjust the level of detail.

22

References

Beacco, A.; Pelechano, N.; and Andújar, C. 2016. A survey
of real-time crowd rendering. Computer Graphics Forum
35(8):32 – 50.
Brom, C.; Šerý, O.; and Poch, T. 2007. Simulation level
of detail for virtual humans. In Pelachaud, C.; Martin, J.-
C.; André, E.; Chollet, G.; Karpouzis, K.; and Pelé, D., eds.,
Intelligent Virtual Agents, 1–14. Springer Berlin Heidelberg.
Chenney, S.; Arikan, O.; and Forsyth, D. A. 2001. Proxy
simulations for efficient dynamics. In Proceedings of Euro-
graphics 2001, 10 pages. Blackwell Publishers Ltd and the
Eurographics Association.
Cournoyer, F., and Fortier, A. 2015. Massive crowd on
Assassin’s Creed Unity: AI recycling. Presentation at the
Game Developer’s Conference (GDC 2015). GDC Vault,
UMB Tech.
Flores, L., and Thue, D. 2017. Level of detail event genera-
tion. In Nunes, N.; Oakley, I.; and Nisi, V., eds., Interactive
Storytelling, 75–86. Springer International Publishing.
Ghallab, M.; Knoblock, C.; Wilkins, D.; Barrett, A.; Chris-
tianson, D.; Friedman, M.; Kwok, C.; Golden, K.; Pen-
berthy, S.; Smith, D.; Sun, Y.; and Weld, D. 1998. Pddl -
the planning domain definition language.
Kistler, F.; Wißner, M.; and André, E. 2010. Level of detail
based behavior control for virtual characters. In Allbeck,
J.; Badler, N.; Bickmore, T.; Pelachaud, C.; and Safonova,
A., eds., Intelligent Virtual Agents, 118–124. Berlin, Hei-
delberg: Springer Berlin Heidelberg.
Li, B.; Thakkar, M.; Wang, Y.; and Riedl, M. O. 2014. Data-
driven alibi story telling for social believability. In Proceed-
ings of the 2014 Foundations of Digital Games Workshop on
Social Behavior in Games, 8 pages.
Bethesda Game Studios. 2011. Skyrim. www.elder
scrolls.com/skyrim.
Blizzard Entertainment. 2010. StarCraft II. starcraft2.com.
The Creative Assembly. 2013. Total War – Rome II.
www.totalwar.com/games/rome-ii.
Ubisoft Montreal. 2015. Assassin’s Creed: Unity.
www.ubisoft.com/en-us/game/assassins-creed-unity.
Niederberger, C., and Gross, M. 2005. Level-of-detail
for cognitive real-time characters. The Visual Computer
21(3):188–202.
Osborne, D.; Dickinson, P.; et al. 2010. Improving games
ai performance using grouped hierarchical level of detail. In
Proceedings of the Third International Symposium on AI &
Games, Daniela M. Romano and David C. Moffat (Eds.), at
the AISB 2010, 19 – 24. SSAISB.
O’Sullivan, C.; Cassell, J.; Vilhjalmsson, H.; Dingliana, J.;
Dobbyn, S.; McNamee, B.; Peters, C.; and Giang, T. 2003.
Levels of detail for crowds and groups. Computer Graphics
Forum 21(4):733–741.
Paris, S.; Gerdelan, A.; and O’Sullivan, C. 2009. Ca-lod:
Collision avoidance level of detail for scalable, controllable
crowds. In Egges, A.; Geraerts, R.; and Overmars, M., eds.,
Motion in Games, 13–28. Springer Berlin Heidelberg.

Riedl, M. O., and Young, R. M. 2005. Open-world planning
for story generation. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’05,
1719–1720. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
Robertson, J., and Young, R. M. 2019. Perceptual experi-
ence management. IEEE Trans. on Games 11(1):15–24.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5(2):115 – 135.
Sunshine-Hill, B. 2013. Managing simulation level-of-detail
with the LOD trader. In Proceedings of Motion on Games,
MIG ’13, 13:13–13:18. New York, NY, USA: ACM.
Thue, D.; Schiffel, S.; Árnason, R. A.; Stefnisson, I. S.; and
Steinarsson, B. 2016. Delayed roles with authorable con-
tinuity in plan-based interactive storytelling. In Nack, F.,
and Gordon, A. S., eds., Interactive Storytelling, 258–269.
Springer International Publishing.
Ware, S. G., and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
Proceedings of the 10th Conference on Artificial Intelligence
and Interactive Digital Entertainment, 80–86. AAAI Press.

23

