Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

Level Building Sidekick: An AI-Assisted
Level Editor Package for Unity

Camila Aliaga, Cristian Vidal, Gabriel K. Sepulveda,
Nicolas Romero, Fernanda Gonzalez, Nicolas A. Barriga®

Faculty of Engineering, Universidad de Talca, Talca, Chile
camila.aliaga@utalca.cl, cvidal@utalca.cl, gsepulvedal7@alumnos.utalca.cl,
nromerol7 @alumnos.utalca.cl, feravila.fga@ gmail.com, nbarriga@utalca.cl’

Abstract

Developing an original video game requires high invest-
ment levels, market research, cost-effective solutions, and a
quick development process. Game developers usually reach
for commercial off-the-shelf components often available in
the engine’s marketplace to reduce costs. Mixed-initiative au-
thoring tools allow us to combine the thoughtful work of hu-
man designers with the productivity gains of automated tech-
niques. However, most commercial Al-assisted Procedural
Content Generation tools focus on generating small indepen-
dent components, and standalone research tools available for
generating full game levels with state-of-the-art algorithms
usually lack integration with commercial game engines. This
article aims to fill this gap between industry and academia.

The Level Building Sidekick (LBS) is a mixed-initiative pro-
cedural content generation tool built by our research lab in
association with four small independent game studios. It has
a modular software architecture that enables developers to
extend it for their particular projects. The current version
has two working modules for building game maps, an early
version of a module for populating the level with NPCs or
items, and the first stages of a quest editor module. An au-
tomated testing module is planned. LBS is distributed as an
Al-Assisted videogame-level editor Unity package.

Usability testing performed using the “Think-Aloud”
methodology indicates LBS has the potential to improve
game development processes convincingly. However, at this
stage, the user interface and the Al recommendations could
improve their intuitiveness. As a general comment, the tool
is perceived as a substantial contribution to facilitating and
shortening development times, compared to only using the
base game engine.

There is an untapped market for mixed-initiative tools that as-
sist the game designer in creating complete game levels. We
expect to fill that market for our partner development studios
and provide the community with an open research and devel-
opment platform in a standard game engine.

Introduction

Original game development requires high levels of invest-
ment, market research, cost-effective solutions, and short
development cycles to catch market trends and effectively

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

392

bring a differentiated product to the consumer. Software en-
gineering emphasizes using and reusing modular compo-
nents, which is a tendency in software solutions in the mar-
ket. For example, web development projects usually share
open-source servers and tools. Many companies have the
edge over their competitors by being highly proficient in us-
ing specific tools, having access to proprietary custom tools
built on top of this configuration, or both.

The videogame development ecosystem also follows a
modular approach: a base game engine, standard graphic
design tools, and modular components on top of the game
engine, such as art assets, small functional features, and de-
velopment tools to modify and extend fully-fledged games.
Established companies have many systems and tools from
previous games to get shorter development cycles while still
improving the quality of their products, effectively differen-
tiating from other companies in the market.

Several tools implement state-of-the-art procedural con-
tent generation. However, most of these a) are standalone
tools, not integrated into modern game engines; b) are not
mixed-initiative, they provide an automated generation with
little user control; and c) they don’t assist with the generation
of full game levels, only specific items, such as vegetation.

Standalone tools are excellent for research projects. They
allow for quick iteration and easy user testing because the
users do not need to familiarize themselves with extensive
pre-existing tools. However, this makes them rather limited
in their real-world usage as most development companies
have an established software pipeline they use to develop
their projects.

Fully automatic procedural content generation, or PCG,
is a widespread technique used in many genres of video
games. Nevertheless, most video games benefit from care-
fully crafted levels. Mixed-initiative or Al-assisted author-
ing tools enable users to combine the thoughtful work of
human designers with the productivity gains of automated
techniques. Most commercial Al-assisted or mixed-initiative
PCG tools focus on generating game bits (small indepen-
dent components in games). There is an untapped market
for mixed-initiative tools that assist the game designer in
creating complete game levels. Mixed-initiative techniques
that produce high-quality content have been proposed and
validated in laboratory settings. Automated techniques have
been successfully integrated into game engines and develop-

ment workflows. We are at the right time to integrate both
features and create a competitive advantage for our asso-
ciates.

In this article, we introduce the Level Building
Sidekick (LBS), an Artificial Intelligence (AI) assisted
videogame design tool that aims to increase the productivity
of development teams and the quality of their products. LBS
includes Al modules to design game maps, populate them
and define quests. It executes seamlessly integrated into the
Unity game engine. This integration implies adding special
menu options and custom windows to avoid using external
tools. Future plans include an automated testing module.

This article is structured as follows. The following section
provides some background regarding Mixed-Initiative Pro-
cedural Content Generation (MI-PCG). The Software De-
scription section describes the main features and design of
LBS, as well as the algorithms it uses. Then, we summarize
preliminary usability test results. We finalize the article with
our conclusions and planned future work. Appendix A has
full usability test results.

Background

PCG (Shaker, Togelius, and Nelson 2016; Hendrikx et al.
2013; Barriga 2019) has uncovered an exciting realm of pos-
sibilities for the future of videogames. A potential advan-
tage of PCG is the ability to reduce the costs of follow-up
products significantly. This is especially evident with mobile
games that employ the technique of reskinning, where mul-
tiple games share mechanics but differ in visual components
such as textures or maps. By generating these visual ele-
ments automatically, the cost of reskinning becomes nearly
non-existent.

PCG has the potential to generate virtually unlimited
content, as demonstrated in games like No Man’s Sky or
those that create new environments every time the game
is restarted, like Sim City and Civilization (Volkmar et al.
2022). One of the most exciting potentials of PCG is its abil-
ity to create personalized content tailored to individual play-
ers (Khoshkangini et al. 2021). While this feat is impossible
for human game designers, algorithms that learn and act on
implicit feedback from players could transform the gaming
industry, making for an even more immersive and enjoyable
gaming experience.

Over the last few years, research on mixed-initiative con-
tent generation tools has surged. Proof-of-concept tools
have been successfully built for Real-Time Strategy (RTS)
games (Liapis, Yannakakis, and Togelius 2014), puzzle
games (Charity, Khalifa, and Togelius 2020), dungeons (Al-
varez et al. 2018), narrative (Kybartas, Verbrugge, and
Lessard 2020) and mechanics (Saini and Guzdial 2020),
among others. However, most projects never move past ba-
sic research into applied and industrial applications. One no-
table example is Speedtree!, the industry-standard vegeta-
tion modeling tool for videogames and cinema. The LBS
project aims to bridge the academia-industry gap by devel-
oping a mixed-initiative design tool with industry partners,
who will develop and use it for their projects.

"https://store.speedtree.com/

393

Basic research in mixed-initiative design and generation
for several video game genres and content types is fairly
mature. The most common approach is Evolutionary Al-
gorithms, used in Sentient Sketchbook (Liapis, Yannakakis,
and Togelius 2014), Baba is y’all (Charity, Khalifa, and To-
gelius 2020), and Evolutionary Dungeon Designer (Alvarez
et al. 2018). Due to their incremental optimization architec-
ture, they provide a natural endpoint for inserting human in-
teraction between evolutionary generations. Machine learn-
ing approaches have been gaining popularity, as in Mechanic
Maker (Saini and Guzdial 2020). This project will use evo-
Iutionary algorithms, which have been more thoroughly ex-
plored in mixed-initiative generation and are closer to being
ready for application in an industrial setting. Finally, other
tools, such as Procedural Generation Grid? are integrated
into modern game engines but use elementary rule-based
generation methods and are not easily extensible.

Software Description

LBS represents the outcome of an academia-industry col-
laboration project for constructing an authoring tool to im-
prove product quality, development time, and developer and
players’ experience through Al assistants for defining game
maps, scenarios, quests, and visual design. LBS lets soft-
ware developers define restrictions and graphic elements to
build a proposed level. Game designers and artists can col-
laborate and iterate on the design, with the tool offering sug-
gestions and automating some parts of the process. Those
features allow developers to deliver a higher-quality user ex-
perience without losing design details.

LBS is designed with a modular, extensible approach. The
current version (diagram shown in Figure 1) has two work-
ing modules for building game maps, an early version of a
module for populating the level with NPCs or items, and the
first stages of a quest editor module. An automated testing
module is planned.

Module 1: This module generates the space where all items
in the game level reside. Most games would call this the
game map.

Module 1A: Assists with the design of level interiors.
The system automatically translates a graph the user
enters into a schematic plan using a local search algo-
rithm for constraint satisfaction and optimization. This
plan can be edited by the user and automatically ex-
ported to a 3D environment.

Module 1B: Assists with the design of level exteriors.
The system generates tile-based maps using a con-
straint satisfaction algorithm. The user can edit or re-
generate parts of the map.

Module 2: The system allows the user to populate the gen-
erated level with different configurable elements, such as
items, characters, and enemies. The tool provides sug-
gestions through a quality diversity (Gravina et al. 2019)
algorithm.

“https://assetstore.unity.com/packages/tools/utilities/
procedural-generation-grid-beta- 195535

LEVEL BUILDING SIDEKICK

MODULE 1: Physical Space

C)

MODULE 3: Quests

Figure 1: Current and in-development LBS modules.

Module 3: The Quests, or Missions, module is currently in
development. The tool will have a fully configurable mis-
sion editor based on free context grammars. The editor
allows you to expand expressions manually or automat-
ically. Currently, the UI for this module is working, but
no assistance is provided, and nothing is exported to the
Unity scene.

Module 4: A future fourth module will semi-automatically
test the generated levels. This testing can range from ba-
sic connectivity checks via Flood-fill or A* to gameplay
checks using behavior trees, utility systems, or agents
trained by reinforcement learning.

The current LBS version integrates seamlessly into Unity
Game Engine, adding special menu options and custom win-
dows to use the tools without needing external executables
or installing special GUIs. Figure 2 shows a sample work-
flow for creating a game level that includes indoor and out-
door zones and some enemies.

Extending LBS

To add a new module to the LBS tool, the programmer must
create a new class extending from LBSModule. The new
class must contain the data to be modified and the methods
to do so. To connect the new module with the LBS interface,
the programmer must create a new drawing class extend-
ing from Drawer. The drawing class must specify the Vi-
sualElement representation of each element in the data and
add them to the MainView. Additionally, the programmer
has to extend the LBSManipulator class to modify the data.
Finally, to use the module in the tool, the user has to go to
the class LayerTemplateEditor and add a new method that
creates a new Layer and adds the module to the layer, then
create a new Tool for each manipulator to use and add them
to a new Mode together with the layer and the corresponding
drawing class and add this new Mode to a new LayerTem-
plate. Then on the method called OnInspectorGUI, the pro-
grammer needs to create a new button to set the current tar-
get of the editor to the new layer template. Once these steps
are done, the user can create a layer template and set it as the
layer with the user’s new module to use in the LBSTool.

394

Figure 2: Sample LBS workflow: a) user configures assets
(floor tiles, enemy 3D models, etc.); b) user designs an ab-
stract connectivity graph for a building; c) tool creates a
blueprint from the connectivity graph, which the user can
customize; d) user defines constraints for the exterior en-
vironment and tool provides suggestions; e) user populates
level, possibly incorporating suggestions from LBS; f) inter-
nal level representation is exported to a Unity scene.

Algorithms

The Level Building Sidekick uses several search-based pro-
cedural content generation (Togelius et al. 2011) algorithms.
In module 1A, the user-defined connectivity graph (or bub-
ble diagram) is translated into a dungeon blueprint. Inspired
by work on generating residential building layouts (Merrell,

GRASS

ROAD
avod

GRASS

Figure 3: WFC sample tile. Each one is tagged on the four
sides. Tags are used to check for legal neighbors.

Schkufza, and Koltun 2010), our algorithm generates dis-
connected rooms with the sizes and locations specified in
the graph. Then it runs an optimization algorithm to mini-
mize unsatisfied constraints defined by the user (room con-
nections and sizes), implicit constraints (rooms cannot over-
lap), and some predefined aesthetic criteria (empty space be-
tween rooms). Currently, we are using a simple steepest as-
cent hill-climbing algorithm, but it can be easily swapped if
testing shows it is not performing as needed.

Module 1B uses Wave Function Collapse (Gumin 2016;
Karth and Smith 2017) to assign tiles from a predefined set
to cells in a grid. The tiles have tags on each of the four sides,
as seen in Figure 3. Tags are used to match tiles to legal
neighbors. The user can manually assign tags to cells in the
grid, lock tiles suggested by WFC, or erase and re-generate
them. Finally, the system can have multiple tiles with the
same four tags, and the user can assign a weight to each of
them, allowing the system to generate varied environments
while maintaining functional coherence.

Module 2 uses a MAP-Elites quality diversity algorithm
inspired by the Evolutionary Dungeon Designer (EDD) (Al-
varez et al. 2018) and Sentient Sketchbook (Liapis, Yan-
nakakis, and Togelius 2014). It is a classification algorithm
that works along an optimization algorithm to present di-
verse options rather than a single result. We implemented a
lightweight, “simple, default version” MAP-Elites (Mouret
and Clune 2015). Instead of running an optimization proce-
dure on each MAP-Elite cell, as is usually done, we run a
single genetic algorithm and use MAP-Elites as a visualiza-
tion layer on top of it. This was needed due to the large size
of the chromosomes and the need for quick response times.
Our implementation uses a 2-dimensional map, with X and
Y axes, as shown in Figure 4. Each axis is divided into N par-
titions, and an evaluation function is assigned to it. In each
iteration of the optimization algorithm, the results are placed
in the map partition corresponding to the score obtained by
the evaluation function of the respective axes. The level of

395

o pEliteW|

Suggestion

Calculate

GroupCount

CONNECT_4

Figure 4: MAP-Elites window. In this example, the user se-
lected GroupCount as the function to optimize and SampleP-
resence as the function for the X-axis of the MAP-Elites.
The Y-axis is fixed to the same function as the optimized
one, as per user feedback, who found dealing with three
functions to be too cumbersome. We plan to have an “ex-
pert” mode that enables the user to select the Y-axis func-
tion.

granularity depends on the number of partitions chosen.

Module 3 is inspired by EDD’s Questgram (Alvarez et al.
2021). Though currently just a UL, it will allow users to de-
fine a grammar for their quests (Doran and Parberry 2011;
Machado, Santos, and Dias 2017), help with quest creation
by filtering actions, targets, and rules to what is applicable
in the current context, and automatically expand rules if the
user chooses to do so.

We are in the process of defining the capabilities that
Module 4 will offer. We expect to have at least simple auto-
matic reachability checks and quest legality checks. We are
exploring the possibility of adding automated players based
on Behavior Trees.

Software Validation

“Think-Aloud” is a testing methodology in which the partic-
ipants are asked to use a system while continuously thinking
aloud, verbalizing their thoughts as they move through the
user interface (Nielsen 1994). It has been used in several ar-
eas of qualitative research to understand cognitive processes
that cannot be directly observed. The objective of the test

is to gather information regarding the interpretations of the
elements present in the developed interface and the transfor-
mation of this information into improvement proposals for a
possible redesign. This test allows us to discover why users
make mistakes and which parts are easy for them to use.

The number of participants involved in the study was 9,
all males between 22 and 36 years old, corresponding to the
target user profile of the project. The selection criterion was
that they had advanced experience using the Unity game
engine and did not have previous experience with the tool
being evaluated. Participants were given two specific tasks
to perform related to the construction of rooms, exteriors,
and positioning of population elements. This covers mod-
ules 1A, 1B, and 2.

The test was carried out at the project development of-
fices and through virtual videoconferencing platforms. An
exhibitor explained the software’s general operation to the
participant before the examiner started the test procedure.
Each participant signed an informed consent form accepting
voluntary participation in the procedure. The tasks assigned
were:

Task 1: Create a 3D dungeon containing:

* 5 rooms
* 3 types of enemies
* 2 prizes
e 2 weapons
Task 2: Create an outdoor environment containing:

* 3 groups of enemies
* 2 points of interest

While working on the tasks, participants were asked to ex-
press their thoughts, feelings, and opinions aloud while in-
teracting with the tool. They were not given a time limit for
completing both tasks. Still, if they could not complete either
task or needed to resolve any concerns regarding the test,
they were urged to contact the examiner in charge. For eval-
uation purposes, the software screen and the participants’
facial reactions while they were performing the task were
recorded so that this information could be analyzed and con-
trasted with the verbalization of the process. The duration of
the procedure averaged 40 minutes for each evaluation. For
detailed results, see Appendix A, Table 2.

Although some participants did not complete the tasks
fully, all agreed that the tool contributes to efficiency in de-
velopment time. All participants agree on the phrase, “I like
the tool, I feel it has potential, but there are certain things
that I still find difficult to visualize.” This difficulty in visu-
alizing the elements and their functionalities is expected due
to the learning curve of any tool a user encounters for the
first time. Most of the problems encountered are interface
development errors affecting the tool’s intuitiveness. Table 3
of Appendix A details the most frequent problems encoun-
tered in the test.

As a general comment, the participants say that they like
the tool, that it has great potential to reduce level develop-
ment times, and want to continue using it in the future. Ta-
ble 1 in Appendix A shows some suggestions gathered from

396

verbalizing the process. The limitations of this test are re-
lated to the small sample size and the level of progress of
the tool at the time of applying the method, which is still at
the laboratory validation stage. The most important issues
found in testing have already been fixed.

Conclusions

We have presented the Level Building Sidekick (LBS), a
mixed-initiative procedural content generation tool built by
our research lab in association with four small independent
game studios. It has a modular software architecture that en-
ables developers to extend it for their particular projects. The
current version has two working modules for building game
maps, an early version of a module for populating the level
with NPCs or items, and the first stages of a quest editor
module. An automated testing module is planned. LBS is
distributed as an Al-Assisted videogame-level editor Unity
package.

Usability testing suggests that the tool shows promise in
assisting game-level designers, even though the user expe-
rience still needs work. The strengths found in the tool are
that it is perceived as a contribution to the development flow,
the functionalities implemented are coherent with the work
processes in the development of levels, and it allows to do
the job in a short time, compared to the use of a game en-
gine alone. The functionalities that stand out for their ease
of use are the positioning of elements in the schema, cre-
ating nodes, and optimizing indoor maps. The main points
to improve are the UI’s intuitiveness, the association of the
graphic visualization of nodes and schema with the sizes that
correspond to each one, and the feedback delivered by the
tool regarding the active processes within it.

Future Work
We plan on improving LBS in several ways:

Algorithm change in module 1A: Evaluation of the per-
formance of alternative optimization algorithms, such as
Simulated Annealing or Evolutionary Algorithms, and
implement the best performing one for the final version.

Add support for more room layouts in module 1A:
Multiple height-levels, multiple floors, or other exten-
sions will allow the tool to be helpful on a broader range
of games and applications.

Improve the fitness functions in module 2: Better and
more varied suggestions from the tool will improve the
overall usefulness and user experience.

Add an alternative algorithm to MAP-Elites in module 2:
Algorithms such as novelty search (a quality diversity
algorithm), MOEA/D, or NSGA-II (Multi-Objective
Optimization Algorithms) might make the tool easier to
use for novice users or faster for rapid prototyping.

Add a new module to the tool: Module 4 will semi-
automatically test the generated levels. This testing can
range from basic connectivity checks via Flood-fill or
A* to gameplay checks using behavior trees, utility
systems, or agents trained by reinforcement learning.

Add support for lock&key puzzle generation: This sup-
port includes changes to modules 1, 2, and 3.

Improve the general usability of the tool: Integrate LBS
seamlessly into Unity and each company’s current
toolset. Documentation and training are critical elements
for this aspect.

A Usability Test Results

This appendix contains details about LBS usability tests. Ta-
ble 1 mentions suggestions made spontaneously by test par-
ticipants. Table 2 shows task time and completion levels. Ta-
ble 3 shows problems that were found by more than one par-
ticipant.

“The distributions that Map Elites yields are very similar, I would like a little more variability.”

“I would like the size of the graphs to have a default because I don’t know what size I have to put in.”

“I would like there to be default dimensions of enemies with respect to the rooms I already generated.”

“I would like it specified what each function does in Map Elites.”

“I would like to be able to visualize the tools as a toolbar and have it specified what the function of each tool is.”

“Artificial Intelligence balancing is important.”

“The Al section is very technical, it lacks some feedback on what to do or what each of the functions does.”

“I think the tool is very good, it is interesting, but I think it is too oriented to games that are open world. I would
like to have more control of where the elements go in games that are more linear.”

“It’s already useful enough to be able to save time, it takes me little time to make a map that takes me a day or a
week. You can already test it and you can have a demo.”

Table 1: Suggestions made by test participants.

Task 1 Task 2 Total
Task
Participant Achievement Time Achievement Time (min) Time (min)
rate (%) (min) rate (%)
nl 100 21:41 100 16:04 37:45
n2 100 22:06 100 09:19 31:25
n3 100 15:50 100 08:23 33:33
n4 80 23:12 20 11:13 24:25
n5 100 11:12 100 14:00 25:12
n6 100 21:42 100 17:15 38:57
n7 100 15:09 0 11:42 27:51
n8 70 27:00 0 14:00 41:00
n9 0 08:37 20 44:20 53:57
Average 83.3 18:42 60 16:15 34:57

Table 2: Task fulfillment percentage for each participant and
time spent.

397

N° Problems 12 4 71819 | total

1 | Lack of use of shortcuts 1 1

5 Node inspector cannot be associated with the direct functionality of 1 1
the tool.

3 Default options were expected in the creation of nodes and Al. 1 2

4 Assignment of tags that do not correspond to the node configura- 1 1
tion.

5 | Cannot locate the map within the window space. 1 1|12

6 It is not clear at first glance the order of the layers or which one is 1 1 111 4
being worked on.
It could not eliminate elements of the outer layer having the inner 1 1
layer on top of it.

8 Could not remove the base layer. 1 1 3

9 Could not save presets after closing the Map elites panel. 1 2

10 When returning to Graph view, it was expected to be able to recon- 1 1 3
figure the nodes to modify the schema, but this was not achieved.

11 | Cannot read or have difficulty identifying tile icons. 1 2

12 | Map Elites functionalities are not understood. 111 1 1r{1 |19

13 | Tiles are expected to be able to rotate. 1 2

14 | Failure to identify which Al tool is in the outer layer. 1 2

15 Z fighting or interference between textures makes the tool feel un- 11 2
finished or unoptimized.

16 | The name of the tool buttons is confusing. 1

17 | Would like to see all graphics at once in Map elites. 1

18 | The creation relationship between graph and schema is not yet clear. 1 11|17

19 | Attempts to leave a separate room and can’t. 1 2

20 | Expects to be able to move schema tiles. 1 3

21 | Tried to select and delete items in a group. 1 2

22 | Did not see the need to use artificial intelligence. 1 2

23 | Didn’t know how to find the tiles corresponding to population. 1 1

24 Un(iity in its light-themed version makes the tool look decontextual- 1
ized.

25 | Wanted to use Z-control 2

26 Expect that pressing Hill climbing more than twice will change the 1111115
results displayed.

27 Ag attempt was made to put a connection from the door to the out- 2
side.

28 | Some feedback was expected at the time of 3D generation. 1 2

29 | Random tree generation is confusing. 3

30 An attempt was made to remove a connection and it could not be 1
removed.

3] Aglattempt was made to assign tags as a group and it was not pos- 1
sible.

3 There are elements that do not correspond to the current function- 1|1 |
ality being worked on that can be modified: Inspector, Tags, Al

33 | Try to connect and delete nodes with left click. {113

34 Try to define the connection type of several tiles at the same time in 111113
the outer layer.

35 Confusion is generated due to the difference in tile size which is not 111113
reflected in the visualization of the generated space.

36 | The brush tool does not save the last selected option. 11|13

37 Attempts are made to use generators that do not correspond to the 1111113
working layer.

38 | The toolbar is lost when a layer is deselected. 1|1(1]|3

Table 3: Main problems detected and their incidence per participant.

398

Acknowledgments

This research is partially funded by the National Agency for
Research and Development (Agencia Nacional de Investi-
gacion y Desarrollo, ANID), Sub-directorate of Applied Re-
search (Subdireccion de Investigacion Aplicada, SIA), grant
number ID21110363.

We want to thank our industry partners: Abstract Digi-
tal’, Cienart Studios®, Altair Films® and Frisson Games®. for
their support throughout this project.

References

Alvarez, A.; Dahlskog, S.; Font, J.; Holmberg, J.; Nolasco,
C.; and Osterman, A. 2018. Fostering Creativity in the
Mixed-Initiative Evolutionary Dungeon Designer. In Pro-
ceedings of the 13th International Conference on the Foun-
dations of Digital Games. New York, NY, USA: ACM.
ISBN 9781450365710.

Alvarez, A.; Grevillius, E.; Olsson, E.; and Font, J. 2021.
Questgram [Qg]: Toward a Mixed-Initiative Quest Genera-
tion Tool. In The 16th International Conference on the Foun-
dations of Digital Games (FDG) 2021. New York, NY, USA:
Association for Computing Machinery.

Barriga, N. A. 2019. A short introduction to procedural con-
tent generation algorithms for videogames. International
Journal on Artificial Intelligence Tools, 28(02): 1930001.

Charity, M.; Khalifa, A.; and Togelius, J. 2020. Baba is
Y’all: Collaborative Mixed-Initiative Level Design. In 2020
IEEE Conference on Games (CoG), 542-549. Osaka, Japan:
IEEE.

Doran, J.; and Parberry, I. 2011. A Prototype Quest Gen-
erator Based on a Structural Analysis of Quests from Four
MMORPGs. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games,
PCGames ’11. New York, NY, USA: Association for Com-
puting Machinery. ISBN 9781450308724.

Gravina, D.; Khalifa, A.; Liapis, A.; Togelius, J.; and Yan-
nakakis, G. N. 2019. Procedural Content Generation through
Quality Diversity. In 2019 IEEE Conference on Games

(CoG), 1-8.
Gumin, M. 2016. Wave Function Collapse Algo-
rithm. https://github.com/mxgmn/WaveFunctionCollapse.

Accessed: 2023-05-26.

Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and losup, A.
2013. Procedural Content Generation for Games: A Survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), 9(1).

Karth, I.; and Smith, A. M. 2017. WaveFunctionCollapse
is Constraint Solving in the Wild. In Proceedings of the
12th International Conference on the Foundations of Digi-
tal Games, FDG °17. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450353199.

3https://abstractdw.com/
*“http://www.cienartstudios.com/
Shttps://www.altairfilms.cl/
Shttps://frissongames.com/

399

Khoshkangini, R.; Valetto, G.; Marconi, A.; and Pistore, M.
2021. Automatic generation and recommendation of per-
sonalized challenges for gamification. User Modeling and
User-Adapted Interaction, 31: 1-34.

Kybartas, B.; Verbrugge, C.; and Lessard, J. 2020. A sketch-
based tool for authoring and analyzing emergent narratives.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 16,
319-321.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. De-
signer modeling for sentient sketchbook. In 2014 IEEE Con-
ference on Computational Intelligence and Games.

Machado, A.; Santos, P.; and Dias, J. 2017. On the struc-
ture of role playing game quests. Revista de Ciéncias da
Computagdo.

Merrell, P.; Schkufza, E.; and Koltun, V. 2010. Computer-
Generated Residential Building Layouts. In ACM SIG-
GRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10. New
York, NY, USA: Association for Computing Machinery.
ISBN 9781450304399.

Mouret, J.-B.; and Clune, J. 2015. Illuminating search
spaces by mapping elites. arXiv preprint arXiv:1504.04909.

Nielsen, J. 1994. Usability Engineering. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN
9780080520292.

Saini, V.; and Guzdial, M. 2020. A Demonstration of Me-
chanic Maker: An Al for Mechanics Co-Creation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment.

Shaker, N.; Togelius, J.; and Nelson, M. 2016. Procedural
Content Generation in Games. Springer.

Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C.2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and Al in Games, 3(3): 172-186.

Volkmar, G.; Alexandrovsky, D.; Eilks, A. E.; Queck, D.;
Herrlich, M.; and Malaka, R. 2022. Effects of PCG on
Creativity in Playful City-Building Environments in VR.
Proceedings of the ACM on Human-Computer Interaction,
6(CHI PLAY): 1-20.

