
Navigation in Adversarial Environments Guided by PRA* and a Local RL Planner

Debraj Ray1, Nathan R. Sturtevant1, 2

1 Department of Computing Science, University of Alberta, Canada
2 Alberta Machine Intelligence Institute (Amii)

debraj1@ualberta.ca, nathanst@ualberta.ca

Abstract

Real-time strategy games require players to respond to short-
term challenges (micromanagement) and long-term objec-
tives (macromanagement) simultaneously to win. However,
many players excel at one of these skills but not both. This
research is motivated by the question of whether the bur-
den of micromanagement can be reduced on human players
through delegation of responsibility to autonomous agents.
In particular, this research proposes an adversarial naviga-
tion architecture that enables units to autonomously navigate
through places densely populated with enemies by learning
to micromanage itself. Our approach models the adversarial
pathfinding problem as a Markov Decision Process (MDP)
and trains an agent with reinforcement learning on this MDP.
We observed that our approach resulted in the agent taking
less damage from adversaries while travelling shorter paths,
compared to previous approaches for adversarial navigation.
Our approach is also efficient in memory use and compu-
tation time. Interestingly, the agent using the proposed ap-
proach also outperformed baseline approaches while navigat-
ing through environments that are significantly different from
the training environments. Furthermore, when the game de-
sign is modified, the agent discovers effective alternate strate-
gies considering the updated design without any changes in
the learning framework. This property is particularly useful
because in game development the design of a game is often
updated iteratively.

Introduction
In real-time strategy (RTS) games, one common metric pre-
dictive of player performance is actions per minute (APM)
(Avontuur, Spronck, and Van Zaanen 2013). This often
means the player is micromanaging the behaviour of all the
units under their control to get the best possible behavior.
While expert players do not necessarily want games to re-
duce their burden of micromanagement, since it gives them
an advantage, one could imagine many scenarios where
players could find increased enjoyment when their units
have better default behaviors. In particular, game units may
want to trade off path-length optimality for other objectives.
For example, offensive RTS units might collaborate to encir-
cle the enemy, while defensive units may prefer safer escape

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

routes (Ontañón et al. 2013). Other strategies for safe navi-
gation include keeping distance from enemies, avoiding en-
emy vantage points and areas commonly patrolled by enemy
scouts to avoid detection (Critch and Churchill 2020).

In previous research, Levy et al. (2020) used deep rein-
forcement learning to generate safe routes in urban envi-
ronments while optimizing path lengths. However, this work
learns features from the entire map, which does not general-
ize well to unseen maps or scale to maps of arbitrary sizes.
Other works on adversarial navigation uses influence maps
(Critch and Churchill 2020) and potential fields (Hagelbäck
2016). PRA* (Sturtevant and Buro 2005; Sturtevant et al.
2019) is an incremental pathfinding and navigation tech-
nique well-suited for dynamic environments, including hos-
tile ones. In dynamic environments, computed paths get out-
dated quickly. Since PRA* works by cheaply computing ab-
stract paths with only partial refinement of the real path, it
can afford to replan repeatedly to avoid local enemies. These
approaches however require manual tuning of parameters
that determine the magnitude of agent’s attraction and re-
pulsion from objects in the environment.

With the broader goal of better micromanagement in
mind, this paper studies the specific problem of adversarial
pathfinding, proposing a reinforcement-learning (RL) based
approach combined with PRA* for hierarchical pathfinding.
Reinforcement learning (RL) is used for learning a policy to
counter adversaries during local movement while that also
optimizes path suboptimality. The agent then uses PRA*
for long-distance pathfinding, considering only static obsta-
cles, using local strategies learned through RL for reaching
nearby goals. While PRA* has been shown to be a better
alternative to A* for pathfinding in dynamic environments,
RL reduces the burden of refinement on PRA* at the low-
est levels of abstraction (that considers dynamic obstacles
and adversaries), thus resulting in a mutually beneficial re-
lationship. Furthermore, our use of environmental abstrac-
tions enables the agent to execute adversarial navigation ef-
fectively on maps that are significantly different from the
maps used to train the agent. It is also observed that the pro-
posed approach is generalizable such that the agent can learn
different strategies when the game design is updated without
requiring any code changes. This is a desirable property be-
cause game designing is usually an iterative process (Mack-
lin and Sharp 2016).

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

343



Experimental results show that agents using the proposed
approach take about four times less damage than base-
line approaches based on either potential fields or PRA*
alone, while not requiring significantly more computation
resources (memory and CPU time). Furthermore, the pro-
posed approach is shown to generalize to different kinds of
environments and to scale to those of varying sizes.

Related Work
Real-time strategy games usually take place in dynamic
and hostile environments where players have to make high-
level and low-level decisions under extreme time con-
straints (Lara-Cabrera, Cotta, and Fernández-Leiva 2013).
Hagelbäck (2016), proposed a hybrid navigation system for
the RTS game StarCraft combining potential fields with
A*. Their paper states that A* alone is not well-suited to
dynamic worlds because the environment can change as
the unit navigates, and the path computed by A* could
quickly become obsolete. An alternate approach called
PRA* (Sturtevant and Buro 2005) involves constructing hi-
erarchical abstractions on top of a given map and then partial
pathfinding through refinement. Unlike A*, PRA* is suited
for dynamic environments because it interleaves partial path
planning and path execution, which makes it more robust to
changes in the environment. This is because the last stage of
partial pathfinding does not need to happen until an agent is
nearby, meaning that the local environment is known with
higher certainty. Desipite this flexibility, paths generated by
PRA* can still be within 1% of the optimal path length, de-
pending on the parameters used in practice.

In the field of adversarial pathfinding, stealth games like
Tom Clancy’s Splinter Cell (Ubisoft, 2002), Mark of the
Ninja (Microsoft Studios, 2012), and Metal Gear Solid V
(Konami, 2015) encourage players to follow covert paths
and utilize light and sound to avoid enemy detection dur-
ing navigation. Mendonça, Bernardino, and Neto (2015),
proposed a method to construct such covert paths in real-
time using navigation meshes. Other researchers have at-
tempted to strike a balance between path suboptimality and
path safety in adversarial navigation. Jong et al. (2015) used
influence maps (IMs) to compute a safety score for each
grid cell of the map and then used it in the heuristic func-
tion of A* to find safe paths. The paper observed that the
search space of A* increases significantly due to this ad-
ditional dimension. The paper then used PRA* to improve
search performance. A similar idea based on influence maps
and flocking was implemented by Danielsiek et al. (2008)
for group navigation of units in the RTS game Glest. How-
ever, influence maps are computationally expensive without
parallelization, since they must be updated frequently when
the position of units in the world changes (Mark 2019). With
parallelization, the implementation complexity of the algo-
rithm increases considerably.

The game of capture-the-flag (CTF) is interesting in the
context of adversarial pathfinding as it requires complex
strategic navigation. Players need to defend their own flag
while trying to steal their opponent’s flag. Huang et al.
(2011) calculated the winning regions of both the attacker
and the defender using the Hamilton-Jacobi reachability.

Like CTF, the game of cops and robbers requires adversar-
ial navigation. Moldenhauer and Sturtevant (2009) explored
different algorithms for the robber to evade capture by the
cop for as long as possible. Besides video games, tactical
adversarial navigation has applications in the real world too.
For example, a wildlife security group (PAWS) optimized its
use of human resources for patrolling large conservation ar-
eas while effectively combating poaching (Fang et al. 2016).

Wang et al. (2020) proposed a framework to execute nav-
igation of mobile-robots in a dynamic environment. The
method uses reinforcement learning to avoid collisions with
static and dynamic obstacles while following a global guid-
ance path computed using the A* algorithm. Our work ex-
tends these ideas to adversarial environments and explores
PRA* for global guidance.

Defining Adversarial Navigation
The adversarial pathfinding problem is defined on a graph
G = (V,E) where V is the set of nodes and E is the set
of valid edges between the nodes. Edges are represented as
E = {(v, v′) : (v & v′ ∈ V )}. Each edge has an asso-
ciated positive cost represented by c(v, v′) ∈ R+. A path
ν is a sequence of nodes ν = v0, v1, v2, v3 . . . vk such that
(vi, vi+1) ∈ E for every i ∈ 0, 1, 2, . . . k − 1. The i-th node
on the path is represented using νi. The cost of traversing a
path is calculated by summing all the edges in ν:

cost(ν) =

k−1∑
i=0

c(νi, νi+1)

An enemy (ξ) is defined as a unit whose objective is to
inflict damage on the agent. The adversarial path planning
problem is modelled by considering enemies as part of the
environment. Enemies have a defined set of actions, which
in this research are: move to an adjacent vertex, stay at the
same location, and attack the agent. An enemy ξi can cause
damage of magnitude Âi to the agent. Graph G is an ad-
versarial environment with N enemies located at vertices:
v̂1, v̂2, v̂3, . . . v̂N . The behaviour policy of ξ is not provided
explicitly, but is assumed to be static.

The agent starts with an initial health H at location vs.
The agent’s destination is vd. The agent has a legal set of
actions, which in this research are moves to adjacent ver-
tices. If ξi is successful in its attack on the agent, then the
health of the agent after the attack is: H − Âi. The agent
is killed if its health falls to 0 or below. The input to the
adversarial navigation problem can be defined with the tu-
ple 〈G, c, ξ, Â,H, vs, vd〉. The objective when training the
agent is for it to reach the destination by simultaneously re-
ducing the distance travelled and the damage it takes from
the enemies. A trade-off occurs because reducing distance
requires the agent to follow shortest distance paths which
may cause frequent enemy encounters and higher damage.
Reducing enemy encounters could require the agent to plan
longer paths that avoid areas with many enemies.

In our work, G is extracted from 8-connected (octile) grid
maps, but the approach generalizes to other pathfinding ar-
chitectures.

344



Our MDP for Adversarial Navigation
We design a Markov decision process (MDP) that represents
the general adversarial navigation problem. In our game de-
sign, the world is deterministic and consists of fixed obsta-
cles and dynamic enemies. The agent can only observe a
limited area of the map around it, called the agent’s field of
view (FOV) (Figure 1). The agent’s FOV is much smaller
than the area of the entire map. This means that changes
in the map are not completely predictable when the agent
moves, as new obstacles come into the FOV. Similarly, ene-
mies have their own strategies for movement and may appear
or disappear from the FOV. As a result, the agent’s view of
the dynamics of the game are modeled by an MDP.

States in the MDP are defined by the agent’s field of view.
The image of the FOV defines half of the MDP state. An ad-
ditional set of features are computed using information from
the agent’s FOV as the other half of the MDP state. These de-
rived features contain the locations of nearby enemies, and
will be discussed in the Q-Network architecture section.

In this work our enemies are identical and have fixed
strategies for chasing and attacking the agent. Similar to the
agent, the enemies have visibility of the portion of the map
that is within their FOV. An enemy will chase and attack
the agent if the agent is in their FOV. To execute a chase,
the enemies predict the agent’s next location by tracking the
agent’s previous location, and planning a path towards the
agent’s predicted next location. Enemies attack the agent by
collision. Further details of the game design are provided in
the section on experimental setup.

Actions in the MDP are defined relative to the direction
of the global PRA* path at its point closest to the agent.
The legal actions include going straight and turning 45 or 90
degrees in either direction relative to the global path.

The agent is trained on the MDP using reinforcement
learning, so the learned policy depends on the rewards in
the MDP. We have two objectives for agents in the game: (1)
they should take short paths from the source to the destina-
tion and (2) they should avoid taking damage from enemies
on the way. The rewards in the MDP are used to balance
these objectives during learning.

Encoding Objectives in the Reward Function
The states of the MDP are split into two sets with two differ-
ent reward structures. The first set of rewards applies when
the agent is safe with no enemies in the vicinity, and the sec-
ond set when the agent is unsafe due to presence of enemies.

An agent’s state at time t is represented using λUt if the
agent is in an unsafe state and λSt if the agent’s state is safe.
In safe states the rewards are designed such that the agent
learns to follow the global path. If the agent is at node νi
on the global path then any action that moves the agent to
node νj : j > i receives a positive reward RewardAdvance
(all reward values are provided in Table 1). Safe states on
the global path are terminal states of the MDP. That is, an
episode ends when the agent reaches a location on the global
path that is ahead of its previous location on the global path.
Thus the agent’s trajectory during gameplay from vs to vd
consists of, from a learning perspective, many, potentially

short, episodes. This simplifies the learning process and al-
lows agents to start learning quickly.

Other safe states that are not on the global path, but have
the global path in the agent’s field of view, are non-terminal
states of the MDP. If an agent’s action transitions the agent to
a non-terminal state at unit distance from the global path, the
agent receives a reward RewardNonTerminal 1 Safe. Sim-
ilarly, if the agent’s action results in transition to a non-
terminal state located 2 units from the global path, the re-
ward is RewardNonTerminal 2 Safe. In the same manner,
we have defined rewards (RewardNonTerminal 3 Safe) for
actions that transition the agent to states that are at 3 or more
units away from the global.

Safe states that do not have the global path in the agent’s
field of view are terminal states and represent the case that
the agent is unrecoverable or lost. An action that transitions
the agent to a lost state is rewarded negatively with Reward-
Lost. This is also a terminal state. The agent starts a new
episode by resuming at the same location with a new global
path from PRA*.

In unsafe states the rewards are designed such that the
agent learns to reduce damage and reach a safe state. Con-
sider three possible sequences of states (ψ1, ψ2, and ψ3)
the agent may encounter while moving from vs to vd. The
hyphens in the sequences are used indicate when separate
episodes begin. A safe state on the global path is a terminal
state and therefore the agent’s trajectory can contain many
episodes.

ψ1 = λS0 − λS1 λS2 λU3 λU4 λU5 λU6 λS7 − λS8

ψ2 = λS0 − λS1 λS2 λU3 λU4 λS5 − λS6 − λS7 λS8
ψ3 = λS0 λ

S
1 − λS2 λS3 λS4 − λS5 λS6 λS7 λS8

The adversarial navigation trajectory represented by ψ3

is simpler because it only requires making progress on the
global path through safe states. Since ψ1 has more unsafe
states than ψ2, we consider ψ1 to be further from the solu-
tion to the problem of adversarial navigation than ψ2. There-
fore we designed our rewards such that the agent learns to
avoid damage in the unsafe states while looking to move to
a safe state on the global path. This reduces both path cost
and damage from enemies. In practice, once the agent has
learnt to navigate within safe states, it will learn to navi-
gate unsafe states with strategies that neutralize enemies the
fastest. For example, in a certain unsafe state, the agent can
decide whether an escape strategy (defensive) is better than
an attacking (offensive) strategy based on which strategy can
defeat enemies more quickly.

We hypothesize (H) that the design of our rewards will
be able to solve the problem of adversarial navigation. The
hypothesis H is validated if the proposed approach re-
sults in reduced damage and shorter paths than the base-
line approaches. We will validate the hypothesis empirically
through experiments.

The agent is provided a negative reward RewardNonTer-
minalUnsafe when its current state is an unsafe state, and
its next action leads to another unsafe state. If an agent-
action results in damage to the agent due to an attack from

345



Figure 1: The neural network for learning navigation in adversarial environments

a nearby enemy, then it receives a large negative reward Re-
wardInjury. Furthermore, an agent action that transitions the
agent to a lost state also receives a negative reward Reward-
Lost. Both agent states where the agent is either damaged or
lost are terminal states. The agent starts a new episode by
resuming at the same location where the previous episode
terminated. The learning follows the reward structure of safe
state to safe state transitions when the agent’s action transi-
tions it from an unsafe to a safe state.

Q-Network Architecture
This section describes the architecture of the learning frame-
work, including the inputs and outputs of each module (Fig-
ure 1).

Features are extracted from the agent’s field of view
(FOV) through a combination of 2D convolution layers and
environmental abstractions. Environmental abstractions are
computed features that generalize well across different en-
vironments. For example, the agent scans outward to detect
the position of obstacles around it, abstracting actual shapes
and sizes of the obstacles. Furthermore, instead of tracking
the entire section of the path inside the FOV, the agent ab-
stracts the path by finding the nearest point on the path and
the direction of the path at that point. The agent evaluates
linear and angular distances to enemies in the FOV relative
to its current direction of motion. These measures are invari-
ant to FOV rotations which happen when the agent’s direc-
tion changes as it navigates. Based on the linear and angular
distances to an enemy, a risk score is assigned to it. Risk
scores are higher for enemies located close to the agent or
having a forward placement, while risk scores are lower for
enemies further away or placed in the rear of the agent. The
enemies are then sorted by their risk scores. This helps the
agent prioritize threats and also reduces variance in the train-
ing data. Environmental abstractions are designed to reduce
the size and variance of the feature space through extraction
and processing of key information while abstracting unnec-
essary details. It also helps generalize the learning to unseen
environments that are significantly different from the train-
ing environment.

Besides environmental abstractions, we observed that
adding a single 2D convolution layer improves model ac-
curacy without compromising on generalizability or speed
of training. The dimensions of the agent’s FOV is 9×9. The
CNN has 3 input channels that capture the position of ob-
stacles, enemies, and the global path in the FOV. The kernel
size is 3 and there are 16 output channels of the CNN. The
output of the CNN is then passed through a ReLU activa-
tion function before being flattened into a one dimensional
tensor.

The agent computes a number of abstract features through
the environmental abstraction module and populates a sin-
gle dimensional tensor with those features. The two tensors
are concatenated into a tensor of size 834, which represents
the agent’s complete state tensor (Figure 1). The state ten-
sor forms the input layer of a fully-connected neural net-
work with 2 hidden layers and 1 output layer. The first hid-
den layer contains 520 neurons and the second hidden layer
contains 400 neurons. The output of the hidden layers pass
through a ReLU activation before entering the next layer.
The output layer contains the same number of neurons as
the agent’s action space. The agent’s action space consists
of 5 actions determined relative to the agent’s current direc-
tion: move straight, move left, move right, move diagonal
left, move diagonal right.

Given an agent state, the output layer produces Q-values
associated with every action from that state. The neural
network (also called the Q-network and represented with
Q(s, a; θ)) is trained by minimizing a sequence of loss func-
tions δi(θi) that are updated at every iteration i of the train-
ing (Mnih et al. 2013).

δi(θi) = Es,a∼ρ(.)[(yi −Q(s, a; θi))
2]

where,

yi = E[r + γmax
a′

Q(s′, a′; θi−1|s, a)]

The target for the next iteration is represented as yi.
ρ(s, a) is the behavior distribution that follows an ε-greedy
strategy - choosing the action having highest Q-value with

346



Figure 2: Warcraft III maps used to test the agent. From left to right: blastlands, divideandconquer, duskwood, gardenofwar,
and thecrucible

a probability of 1 − ε and a random action otherwise. The
value of ε is initially set to 1 to encourage exploration over
exploitation and then decayed gradually until the value of
0.25 is reached after which no more decay is allowed. The
loss function is optimized with stochastic gradient descent
using the Adam optimizer (Kingma and Ba 2017) and gra-
dient clipping. A replay buffer of capacity 15000 is used to
store past experiences, from which a batch of 4000 is ran-
domly sampled in every epoch of training. Training is run
for 300,000 epochs.

Experimental Setup
This section verifies the claim that adversarial navigation
can be solved approximately with the proposed MDP de-
sign. Furthermore, we test whether the proposed approach
can generalize to different types of game-environments and
scale to large game-maps. A comparison with baseline ap-
proaches is provided in terms of the amount of damage the
agent takes, path length suboptimality, the amount of mem-
ory used, and execution time across different path lengths.

The first experiment involves the design of an adversarial
game. The objective of the agent, represented as the boy at
the center of the map in Figure 3, is to navigate from the start

Figure 3: A generated map used to train the agent

position (marked with a circle) to the goal position (marked
with a flag). The map is populated with enemies - the fire
monsters. If the agent is in the field of view (of size 7×7) of
the fire monsters, they will chase the agent. A collision with
a monster causes 10 points of damage to the agent. Each fire
monster is territorial and stays within a radius of 6 units from
its starting location. All other objects, such as rocks, water,
trees, etc., are considered obstacles in this experiment. The
fire monsters have one weakness: If two or more monsters
collide with each other, they are both destroyed and removed
from the game. The agent is unaware of this weakness. How-
ever, we expect the agent to eventually discover this enemy
weakness and learn to exploit it.

The agent is trained on 10 maps of size 27×27 with ob-
stacles placed uniformly as shown in Figure 3. These maps
differ in the initial position of the fire monsters, which are
calculated by random selection from a uniform distribution.
At each iteration of training, the agent’s start and goal lo-
cation are decided randomly. The agent’s trajectory from
the start to the goal is split into many training episodes. An
episode ends if the agent can reach a location on the global
path that is safe and ahead of agent’s last location on the
global path. Additionally, an episode ends when the agent
is killed by an enemy or has lost the global path from its
FOV. When an episode ends, the agent starts a new episode
by resuming at the location the previous episode ended. This
process continues until the agent reaches the destination or
a timeout occurs. A timeout will occur if the agent has trav-
elled 5 times the optimal path length and yet not reached
the destination. If the agent has reached the destination or a
timeout occurred, the agent will start a new episode of ad-
versarial navigation with new start and goal location on the
same game map or a different one. The agent is trained with
reinforcement learning using the reward structure shown in
Table 1.

The agent is tested on five randomly selected maps of the
RTS game Warcraft III, developed and published by Bliz-
zard Entertainment. These maps are shown in Figure 2. The
test maps are scaled versions of the original maps and have
dimensions 512×512 (Sturtevant 2012). It is important to
note that none of the test maps have been used for training.
Moreover, the test maps have significantly different features
compared to the training maps. The test data is created by
generating 2000 random paths per test map, evenly binned
by path lengths with a bin size of 50.

347



State Name Value

Safe RewardAdvance 15.0
Safe RewardNonTerminal 1 Safe −1.0
Safe RewardNonTerminal 2 Safe −2.0
Safe RewardNonTerminal 3 Safe −3.5
Unsafe RewardInjury −45.0
Unsafe RewardNonTerminal Unsafe −3.5
Both RewardLost −45.0

Table 1: Rewards used to train the agent

There are two baseline agents for comparison. The first
one is based on PRA* - it computes an abstract path from
the source to the destination and then refines up to 8 abstract
nodes in the real world. When pathfinding in the real world
the agent considers enemies as virtual obstacles. It is pos-
sible to prevent this baseline agent from going close to the
enemies by using virtual obstacles larger than the enemies.
The second baseline is based on static potential fields. The
goal is given a low potential, and the enemies and obstacles
are assigned high potential values. The agent moves in the
direction of the steepest drop in potential.

This experiment compares the proposed approach against
the baseline approaches on the following measures: 1)
Amount of damage the agent takes, 2) Path length subop-
timality, 3) Execution time of episodes, and 4) Maximum
memory used for pathfinding. For the purpose of measur-
ing the amount of damage and comparing the approaches,
the agent is given infinite life. At the end of an episode

Figure 4: Amount of damage the agents take, plotted against
the optimal path length

Figure 5: Path length suboptimality for different types of
agents.

of adversarial navigation, the total damage incurred by the
agent is recorded. Path length sub-optimality is calculated as
ActualPathLength
OptimalPathLength . Since PRA* is based on the A* (Hart,
Nilsson, and Raphael 1968) algorithm, it requires an open
and a closed list for path finding. The maximum size of
the open list is a measure of the maximum memory used.
The execution time represents the total time to complete an
episode in milliseconds.

A second experiment updated the design of the game. The
vulnerability of the fire monsters is eliminated. Now, the fire
monsters fuse on collision to become a single stronger en-
emy with greater attack points and starting location at the
fusion site. In this experiment, we observed that the agent
based on the proposed approach was able to learn new strate-
gies different from the previously learnt strategies, without
any change to the agent’s code or learning framework. The
new strategies worked well on the updated game design.
This means our proposed approach can generalize across
game designs and types of adversaries. Unfortunately, due
to limited space in this paper, we are excluding the results of
the second experiment. However, the results are similar to
the first experiment (in relative trends), with the key differ-
ence being in the magnitude of values (damage, path length
suboptimality, memory use, and execution time). The values
are larger in the second experiment than the first because
of stronger enemies in the second. Full results are available
elsewhere (Ray 2023).

Experimental Results
We describe our observations from the first experiment in
this section and compare different approaches - the proposed
approach and the two baseline approaches. For convenience,
we call the agent using the proposed approach: RL agent; the
baseline agent using PRA*: PRA* agent; and the baseline
agent using potential field: PF agent.

The baseline approaches require hand-tuning of parame-
ters for the different test maps used in the experiment. This
process is often tedious and challenging. In the case of PRA*

348



Figure 6: The maximum memory used for path finding (mea-
sured by the size of the open list), plotted against the optimal
path length.

baseline, there is a need to set the size of the virtual obsta-
cles. For the potential field based baseline the attraction and
repulsion values need to be tuned. We plotted all the figures
in this section with our best possible configuration for PRA*
and potential fields.

Since both the baseline agents have a similar evasion strat-
egy, which is to stay away from the enemies, they accrue
similar damage points for similar path lengths (Figure 4).
However, the proposed approach (RL) takes significantly
lesser damage, which implies that the learnt strategies are
more effective than the simple enemy evasion strategy the
baseline agents use. For example, the enemy evasion strat-
egy is ineffective when the agent is encircled by adversaries.
We observed that the RL agent is less vulnerable to encir-
clement as its strategies more aggressively exploit enemy
weak points, allowing little time for enemy build-up around
it.

The length of the actual path navigated by the RL agent
and the PRA* agent are often closer to the optimal path than
the PF agent (Figure 5). This is because both the approaches
explicitly minimize path cost. However, the PF agent is not
penalized in any way for taking longer paths. The RL-agent
is less sub-optimal in path length than the PRA* agent be-
cause its strategies exploit enemy vulnerabilities while stay-
ing close to the optimal path, thereby minimizing path length
suboptimality. This and the previous result affirms our hy-
pothesis (H).

Both the RL agent and the PRA* agent use additional
memory for pathfinding. The PRA* paper defines a con-
strained A* search which significantly reduces the search

Figure 7: The amount of time in milliseconds that the agents
take to reach the destination, plotted against the optimal path
length.

space. This results in lower memory footprint and execu-
tion time compared to a regular A* search. However, we ob-
served that in a dynamic environment refining narrow cor-
ridors as part of the constrained A* search can be unsuc-
cessful when enemies accumulate in such corridors blocking
the path completely. One solution to this problem is to ex-
pand the size of the corridors. However, since this amounts
to relaxing the constraint of the constrained A* search it
will increase memory use and execution time compared to
the unrelaxed constrained A* search. In our experiment, we
dropped constrained A* search from the PRA* baseline to
resolve the problem of unsuccessful refinement due to en-
emy congestion. This resulted in higher memory usage of
the PRA* agent (Figure 6). The RL agent does not suffer
from the enemy-congestion problem despite using PRA* be-
cause it does not consider enemies (and dynamic obstacles)
during the pathfinding step. It tackles enemies and dynamic
obstacles locally with strategies during navigation. There-
fore, RL and PRA* together in the proposed approach is a
symbiosis that results in effective navigation in hostile envi-
ronments.

The potential field approach does not use any additional
memory except when it is stuck in local optima (Hagelbäck
and Johansson 2021). We implemented repulsive trails to
minimize the problem but still needed PRA* to recover the
agent in the few instances the agent got stuck. Thus, we see
the PF-agent using some additional memory in Figure 6.

The execution time of PRA* is the highest (Figure 7) be-
cause: 1) its heuristic function does not account for environ-
ment dynamics and is therefore less accurate, 2) it does not

349



benefit from the constrained A* search due to the problem
of enemy congestion. Note, PRA*-agent can benefit from
constrained-A* search partially if the size of the corridors
are expanded. The RL-agent fully benefits from the con-
strained A* search and is therefore significantly faster in
computing paths than the PRA*-agent. Moreover, in the case
of the RL agent, inference from neural networks is a con-
stant time operation with respect to the path length. How-
ever, the PRA* agent repeatedly searches for new paths to
avoid adversaries, which has an exponential worst case time
complexity in path length (Korf and Reid 1998). Therefore
we find execution time growing faster for the PRA* agent
compared to RL agent as the path length increases.

The Time complexity of the potential field calculations
is linear in the branching factor of the map. It involves
checking the potential values of the grid cells adjacent to
the agent’s current cell. Since in our octile grid maps the
branching factor is constant, we can treat potential field cal-
culation as a constant time operation in path length. There-
fore, the execution time growth rate of the PF agent is slower
than the PRA* agent. However, the PF agent is significantly
more suboptimal in path length compared to the RL agent
and therefore requires a longer time to reach the destination.

Conclusion

The topic of adversarial navigation presents multiple objec-
tives that must be simultaneously optimized to achieve the
desired result. We showed that reinforcement learning com-
bined with PRA* can reduce path length and damage from
adversaries simultaneously, without compromising memory
or CPU time. We trained the agent on custom maps of size
27 × 27 and showed that the agent can outperform baseline
approaches on maps of size 512 × 512 of the RTS game
Warcraft III. This demonstrates our approach’s generaliz-
ability, and ability to scale to large maps. In a second experi-
ment, we updated the game dynamics to answer the question
whether our approach can generalize across game designs.
This property is useful since game designing is usually an it-
erative process. We observed that the agent could learn new
strategies which enabled it to outperform the baseline agents
in the updated game.

Future research in this field can explore how the proposed
approach can be extended to an environment containing ene-
mies having dynamic strategies to attack the agent. Another
interesting research direction is cooperative adversarial nav-
igation where some units are allied while others are adver-
sarial. There is also a need to study the impact of this re-
search on actual game play experience of human players.
Shortcomings observed in the study can then be addressed
in future works.

Acknowledgments

This work was funded by the Canada CIFAR AI Chairs Pro-
gram. We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References
Avontuur, T.; Spronck, P.; and Van Zaanen, M. 2013. Player
skill modeling in Starcraft II. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 9, 2–8.
Critch, L.; and Churchill, D. 2020. Combining Influence
Maps with Heuristic Search for Executing Sneak-Attacks in
RTS Games. In 2020 IEEE Conference on Games (CoG),
740–743.
Danielsiek, H.; Stuer, R.; Thom, A.; Beume, N.; Naujoks,
B.; and Preuss, M. 2008. Intelligent moving of groups in
real-time strategy games. In 2008 IEEE Symposium On
Computational Intelligence and Games, 71–78.
Fang, F.; Nguyen, T.; Pickles, R.; Lam, W.; Clements, G.;
An, B.; Singh, A.; Tambe, M.; and Lemieux, A. 2016. De-
ploying PAWS: Field Optimization of the Protection Assis-
tant for Wildlife Security. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 30(2): 3966–3973.
Hagelbäck, J. 2016. Hybrid Pathfinding in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
Games, 8(4): 319–324.
Hagelbäck, J.; and Johansson, S. 2021. The Rise of Potential
Fields in Real Time Strategy Bots. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 4(1): 42–47.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Huang, H.; Ding, J.; Zhang, W.; and Tomlin, C. J. 2011. A
differential game approach to planning in adversarial scenar-
ios: A case study on capture-the-flag. In 2011 IEEE Interna-
tional Conference on Robotics and Automation, 1451–1456.
Jong, D.; Kwon, I.; Goo, D.; and Lee, D. 2015. Safe
Pathfinding Using Abstract Hierarchical Graph and Influ-
ence Map. In 2015 IEEE 27th International Conference on
Tools with Artificial Intelligence (ICTAI), 860–865.
Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980.
Korf, R. E.; and Reid, M. 1998. Complexity analysis of
admissible heuristic search. In AAAI/IAAI, 305–310.
Lara-Cabrera, R.; Cotta, C.; and Fernández-Leiva, A. J.
2013. A review of computational intelligence in RTS games.
In 2013 IEEE Symposium on Foundations of Computational
Intelligence (FOCI), 114–121.
Levy, S.; Xiong, W.; Belding, E.; and Wang, W. Y. 2020.
SafeRoute: Learning to Navigate Streets Safely in an Urban
Environment. ACM Trans. Intell. Syst. Technol., 11(6).
Macklin, C.; and Sharp, J. 2016. Games, Design and Play: A
detailed approach to iterative game design. Addison-Wesley
Professional.
Mark, D. 2019. Modular tactical influence maps. In Game
AI Pro 360, 103–124. CRC Press.
Mendonça, M. R.; Bernardino, H. S.; and Neto, R. F. 2015.
Stealthy Path Planning Using Navigation Meshes. In 2015

350



Brazilian Conference on Intelligent Systems (BRACIS), 31–
36.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602.
Moldenhauer, C.; and Sturtevant, N. R. 2009. Evaluating
strategies for running from the cops. In Twenty-First Inter-
national Joint Conference on Artificial Intelligence.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game AI Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
Games, 5(4): 293–311.
Ray, D. 2023. Navigation in Adversarial Environments
Guided by PRA* and a Local RL Planner. Forthcoming.
Sturtevant, N.; and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. In AAAI, volume 5, 1392–
1397.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(2): 144–148.
Sturtevant, N. R.; Sigurdson, D.; Taylor, B.; and Gibson, T.
2019. Pathfinding and Abstraction with Dynamic Terrain
Costs. Proceedings of the AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment, 15(1): 80–
86.
Wang, B.; Liu, Z.; Li, Q.; and Prorok, A. 2020. Mobile
Robot Path Planning in Dynamic Environments Through
Globally Guided Reinforcement Learning. IEEE Robotics
and Automation Letters, 5(4): 6932–6939.

351


