Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

FlexComb: A Facial Landmark-Based Model
for Expression Combination Generation

Bogdan Pikula, Steve Engels

Department of Computer Science, University of Toronto
pikula@cs.toronto.edu, sengels @cs.toronto.edu

Abstract

Facial expressions are a crucial but challenging aspect of
animating in-game characters. They provide vital nonverbal
communication cues, but given the high complexity and vari-
ability of human faces, the task of capturing the natural diver-
sity and affective complexity of human faces can be a labour-
intensive process for animators. This motivates the need for
more accurate, realistic and lightweight methods for gener-
ating emotional expressions for in-game characters. In this
work, we introduce FlexComb, a Facial Landmark-based Ex-
pression Combination model, designed to generate a real-
time space of realistic facial expression combinations. Flex-
Comb leverages the highly varied CelebV-HQ dataset con-
taining emotions in the wild, and a transformer-based archi-
tecture. The central component of the FlexComb system is
an emotion recognition model that is trained on the facial
dataset, and used to generate a larger dataset of tagged faces.
The resulting system generates in-game facial expressions by
sampling from this tagged dataset, including expressions that
combine emotions in specified amounts. This allows in-game
characters to take on variety of realistic facial expressions for
a single emotion, which addresses this primary challenge of
facial emotion modeling. FlexComb shows potential for ex-
pressive facial emotion simulation with applications that in-
clude animation, video game development, virtual reality, and
human-computer interaction.

Introduction

In animation and video games, facial expressions play an
important role in conveying nonverbal information (Feld-
man and Rimé 1991) about a character’s emotional state.
While animators are experienced with modeling facial ex-
pressions for film and TV, it is more difficult to have video
game characters dynamically change their facial expressions
in-game, unless these expressions are modeled and pro-
grammed ahead of time. In cases where the character is feel-
ing a combination of emotions, it isn’t feasible to program
these in advance, especially if the game is meant to support
any combination of multiple emotions. If game characters
intend to emulate the range of emotional facial expressions
of which humans are capable, there is a pressing need to cre-
ate more diverse and realistic techniques for generating such
expressions.
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Historically, facial expressions were created through a
combination of manual work and software tools, usually re-
ferred to as Facial Rigs (Orvalho et al. 2012), allowing a
user to manipulate a set of sliders, which in turn change
corresponding facial attributes. This describes the so-called
’blend-shape rigging” or “morph animation” pipeline. An-
other way to perform this task is by using the “skeletal rig-
ging” approach, where the facial mesh representing the skin
is 7’stretched” over a group of virtual “bones” and “mus-
cles”. Handling the positioning of these features simulates
the movement of facial features. This tends to generate a
more physically accurate facial expression as it attempts to
replicate the underlying facial structure. Despite having a
lot of control over many intricate parameters, the process
of using these approaches involves a great deal of trial and
error with different permutations of these features. As a re-
sult, it leads to extensive iterative work. While it can express
the space of facial expressions that humans can produce,
there are also a higher number of permutations that result
in anatomically incorrect faces.

Inspired by the concept of emotion combination and the
incorporation of a large amount of facial expression data
in the wild, we introduce FlexComb, a Facial Landmark-
based (Wu and Ji 2019) Model for generating realistic fa-
cial expressions representing a variety of emotion mixes.
The proposed approach leverages a vast CelebV-HQ (Zhu
et al. 2022) dataset and an emotion-detection neural net-
work, which has the training video clips trimmed to only
contain emotional transitions, achieving a higher emotion
detection accuracy during testing. The results show that
we can build an emotional manifold (Chang, Hu, and Turk
2003), which can be sampled to yield a facial representation
closest to the nearest emotion probability distribution.

Related Work

The related work can be described with regard to the follow-
ing.

Motion Capture (MoCap) Systems

Motion Capture systems have always been a standard tool
for capturing and reproducing human facial expressions.
These systems employ actors to act out various emotions
from given cues. The collected data is then used to ani-
mate digital characters, mimicking actors’ original perfor-



mance with a high degree of replication (Huang et al. 2011).
This approach requires careful planning and usually has to
be done well in advance before any animation work be-
gins. MoCap provides a good solution but often faces the
challenge of creating unusual and complicated emotions,
since they are limited by the actors ability to express them
on-demand. Furthermore, these systems are usually costly,
since they require specialized equipment.

Emotion Recognition

Deep Learning techniques are a popular way to tackle emo-
tion recognition tasks (Canal et al. 2022). The neural net-
work models are primarily trained on various labeled emo-
tional dataset, and leverage state-of-the-art Computer Vi-
sion techniques (Jain, Shamsolmoali, and Sehdev 2019), (Ko
2018). A few approaches rely on recognizing and embed-
ding facial information into a low-dimensional space, such
as FACS (Lien et al. 1998). These approaches can learn com-
plex patterns of emerging emotions from relative positioning
of facial attributes. We complement this approach by intro-
ducing a novel approach to preprocessing the training data
by trimming the video sequences which contain strongly ex-
pressed emotions.

Al-based methods

Generative Al has been on the rise recently, with many de-
velopments in Generative Adversarial Networks (Siddiqui
2022a), (Siddiqui 2022b) and Diffusion Models (Zou et al.
2023) being used for facial expression generation. These can
be quite robust, able to learn complex facial characteristics,
although they run into the risk of creating unrealistic fa-
cial expressions, that wouldn’t exist in nature. Another ap-
proach utilizes Manifold Learning (Abdrashitov, Chevalier,
and Singh 2020), which guarantees that the generated facial
expression stays inside the space of realistic facial expres-
sions.

Method

This section elaborates on the pipeline for FlexComb and its
components. We break down the emotional detection part of
the problem, and discuss the application for utilizing it in a
diverse dataset. Finally, we explore techniques for the facial
emotion generation process in creative applications.

Problem Formulation

Our pipeline, described in Figurel, works up the problem
into following components:

¢ Facial landmark analysis and corresponding Facial Ac-
tion Coding System units (FACS) (Hjortsjo 1970) in the
video data on a frame-by-frame basis;

* Detection of emotional shifts in the video data by ob-
serving sudden FACS changes correlating with devia-
tions from facial expression baselines;

* Training an emotion detection model that can accurately
detect emotions outlined in the training dataset.

* Running the emotion Detection Model over the CelebV-
HQ (Zhu et al. 2022) dataset to produce an space of emo-
tion likelihoods.
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Figure 1: The general pipeline of FlexComb. We use a mix-
ture of the following datasets: MMI (Pantic et al. 2005),
OULU-CASIA (Zhao et al. 2011), DDCF (Dalrymple,
Gomez, and Duchaine 2013). The video data is processed
frame-by-frame to extract Facial Action Units (Hjortsjo
1970). We then trim the resulting sequences of FACS by
identifying the baselines and removing everything but the
emotion shifts. This is fed into the emotion detection model
which produces a space of distributions for emotion likeli-
hoods.

Pipeline Architecture

FACS Analysis. We begin by breaking the video data from
MMI (Pantic et al. 2005), OULU-CASIA (Zhao et al. 2011),
DDCF (Dalrymple, Gomez, and Duchaine 2013) datasets
into frames, which get processed individually. A series of
models are employed to analyze the frames, locate the
faces, find corresponding landmarks and extract Facial Ac-
tivation Units for each. RetinaFace (Deng et al. 2019) is
used for face localization, isolating the faces in each frame.
Img2pose (Albiero et al. 2021) is used for facial pose es-
timation. It detects the faces and outputs a 3D head pose
estimation with account for head rotations. MobileFaceNet
(Chen et al. 2018) is used for detecting Facial Landmarks.
These are 68 pairs of points (x,y) for the unique location
on the face. The relative positioning and alignment of these
points help with identification of Action Units. For this task,
we utilize an XGBoost Classifier model, resulting in a vec-
tor of AU values representing facial muscle activations or
“movements”. These values serve as a facial representation
for emotions, as they can be used to manipulate blended
shapes to reconstruct an underlying emotion.

Sequence Trim. Next, we take the resulting FACS se-
quences and perform a trimming procedure. We look at
the changes of FACS values from frame to frame, iden-
tifying points where a shift in emotion occurs. By elimi-
nating long and unchanging segments from each video, we
place the focus exclusively on the emotional shifts. This cre-
ates a more concise dataset, which is focused on emotional
transitions. Let n be the number of frames, for which we
have a sequence of FACS vectors for a given video clip:
V = (v1,v2,...,v,). We define an emotional shift as a sub-
stantial change in the FACS representation. The difference
of FACS values between two consecutive frames is denoted
as Av; = v;_1—v;. We set a threshold parameter ¢, such that
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Figure 2: Distribution of emotions in the training dataset.
This diagram illustrates the proportion of each of the seven
unique emotions - anger, disgust, fear, happiness, sadness,
surprise and neutral.

if the absolute value of Av; exceeds it, the change is labeled
as substantial, and the frame ¢ depicts an emotional shift. We
denote the index of frames where the emotional shift is de-
tected as s; € S. We then slice the sequence into segments,
bound by [s; : s;41]. Given the nature of the data, we re-
move the first segment, while defining a constant variable d,
serving as a buffer size for capturing the approximate start
and end of the transition. The slicing process is illustrated in
1.

Seq={Vi[s; —d:sj41—d],s; € S,7#0} (1)

Emotion Detection. In this step, we introduce an emo-
tion detection model, trained on the previously acquired data
comprised of FACS sequences. This approach allows the
model to learn the temporal dynamics of facial expressions,
providing more context for emotion recognition. The model
is trained to classify a FACS sequence into seven unique
emotions, shown on Figure 2. The model is capable of de-
tecting the emergence of these emotional states over time as
it captures patterns in the sequences of FACS. The trim data
was split into training/test data using an 80/20 ratio. When
assessing the performance of our sequence neural network
model on the test set, it achieved an accuracy of 90%, indi-
cating a high level of overall precision. For a more detailed
look, we show the confusion matrix in Figure 3.

Method

In this section, we elaborate on the structure of FlexComb
and its components. We start with the dataset, which in-
cludes the processing of the video clips from the dataset to
extract AU sequences. We then break down the idea of the
emotion space, and explore ways of interracting with it to
generate facial expressions for emotion combinations. Addi-
tionally, we investigate different practices using this method
in creative applications.

Dataset

The centerpiece of our approach revolves around the
CelebV-HQ (Zhu et al. 2022) dataset. Being one of the most
extensive facial expression dataset available, it encompasses
a great variety of emotions found “in the wild” captured
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Figure 3: Confusion Matrix for the Emotion Detection
Model. The matrix provides a detailed breakdown of the
model’s performance for classifying each of the seven emo-
tions: neutral, anger, disgust, fear, happiness, sadness, sur-
prise (from left to right).

from YouTube video clips. Thanks to this, the data provides
valuable insight into the complex, diverse and often subtle
nature of human facial expressions, which occur naturally,
without any acting involved.

The randomness of these expressions, paired with a com-
bination of various environmental conditions, makes for a
more organic dataset when compared to actor-based ones.
To aid with diversity and complexity, CelebV-HQ (Zhu et al.
2022) also has the longest combined duration of video clips,
along with manually labeled sets of facial attributes, and cor-
responding actions.

Data Preprocessing

In order to use the data, we extract the corresponding AU’s
from all the video clips found in the dataset. Upon gathering
the sequences 20-valued vectors, we conduct a preminary
exploratory analysis of the data. As the FACS extraction pro-
vides a high-dimensional understanding of the facial data,
we are provided with a interpretable representation, which
can be used to understand the relationships for different fa-
cial actions. The correlation of AU’s found in the dataset is
depicted on Figure 4. This visualization shows that despite a
few exceptions, most facial activations occur independently,
which further reinforces the complexity of human emotional
expression.

Emotion Space

The sequences from the preprocessing are passed through
the emotion detection model, effectively processing and
generating 1290000 samples of emotional probability vec-
tors. As aresult, each processed sample yielded a probability
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Figure 4: Correlation matrix of Action Units (AUs) in the
CelebV-HQ (Zhu et al. 2022) dataset. Each cell represents
the correlation coefficient between pairs of AUs, providing a
generatlized visual depiction of their co-occurence patterns.
Red colors indicate higher correlation, while blue - the op-
posite.

vector indicative of any emotions identified, and their corre-
sponding intensity. To visualize and understand the structure
of this high-dimensional emotional space, we utilize Princi-
pal Component Analysis (Abdi and Williams 2010). The re-
sulting plot, taking the shape of a triangle, indicates of there
being three principal emotions: disgust, sadness and anger.
Other emotions fall along edges of the triangle, except for
fear and surprise which intersect towards the middle, sug-
gesting there exists a strong correlation between them and
indicating that they can co-occur or be confused.

Evaluation

To evaluate the performance of FlexComb, we created dif-
ferent configurations for combinations of emotions, incre-
menting by 25%. We sampled the space for the closest
probability vectors and determined the corresponding FACS
values. For visualization, iClone8 FaceRigging software
was employed, displaying muscle activations per an AU-to-
FaceKey mapping derived from the Action Unit reference
descriptions. In essence, any emotion probability combina-
tion is feasible, given that the generated emotion space al-
lows for an infinite array of configurations, supporting lim-
itless combinations and variations.

One significant advantage of FlexComb over traditional
blendshapes is its ability to generate facial expressions with-
out the need for manual modeling of key emotions. Tradi-
tional blendshapes require a dedicated facial model for each
emotion. In contrast, FlexComb dynamically creates diverse
facial expressions by leveraging an extensive dataset and by-
passing manual emotion modeling. Additionally, the compu-
tational efficiency of FlexComb ensures faster generation of
facial expressions without compromising on quality.
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Figure 5: PCA Decomposition of Emotion Probability Vec-
tors clustered by the emotion label.

Figure 6: An example of five generated by FlexComb facial
expressions, representing different ratios of combining Neu-
tral and Angry emotions, as visualized on a FaceRig.

Generation Examples

Figure 6 showcases the spectrum of neutral to angry expres-
sions. It highlights progressive blending, with anger’s inten-
sity gradually amplifying, juxtaposed with a baseline state
with no activated action units for reference.

Figure 7 offers an insight into the blending of happiness
and disgust. This serves as evidence of FlexComb’s ability
in managing intricate emotional combinations, emphasizing
its ability to seamlessly blend contrasting emotions.

To show that the model is capable of combining more than
two emotions, we generate a combination of equal parts fear,
sadness and surprise, shown in Figure 8. The resulting fa-
cial expression convincingly conveys a subtle combination
of these emotions.

Expression Realism and Coherence

One of the big strengths of FlexComb is in the ability to con-
sistently create realistic facial expressions, which are inher-
ently coherent and natural. This is thanks to the CelebV-HQ
(Zhu et al. 2022) dataset being fundamentally rooted in the
methodology. All of the facial expressions sampled, exist in
the dataset one way or another. By analyzing the different
emotion each combination of facial activation depicts, we
are able to create a large space of emotional combinations.
We use FACS (Hjortsjo 1970) to provide a simple and light
facial representation, that can be utilized to animate facial
meshes in Facial Rigs (Orvalho et al. 2012).



Figure 7: An example of facial expressions generated by
FlexComb, representing different rations of combining Hap-
piness and Disgust emotions, as visualized on a FaceRig.

Figure 8: An example of facial expressions generated by
FlexComb, representing equal parts Fear, Sadness and Sur-
prise, as visualized on a FaceRig.

Discussion

Model Performance Analysis

The model is able to generate a facial expression, ran-
domly sampled from an emotional space, for one of spec-
ified emotion(neutral, anger, disgust, fear, happiness, sad-
ness, surprise), as well as arrangement of any of them using
a user-defined combination ratio, representing the intensity
for each. The emotional distributions for each expression
have a high degree of confidence due to the emotion detec-
tion model’s test accuracy of 90% on a dataset of video clips
containing sequences of video clips.

Since neutral facial expressions are the most common,
they have a higher percentage of occurrence, allowing for
a more detailed emotional combination. Combinations of
other emotions with neutral fundamentally allow the user to
model that particular emotion more accurately, increasing
the intensity by decreasing the ratio for the “neutral” emo-
tion.

Visual Interpretation

The model generates sequences of facial activation units,
which need to be interpreted by another model or a piece of
software, such as any Face Rig. We show that it’s easily pos-
sible to visualize the expression by using an out-of-the-box
Face Rig solution that gives direct control over the textured
blended facial mesh. We show that facial expressions can get
fascinating by tweaking the emotion combination ratio, even
displaying unusual and potentially strange combinations of
polarizing emotion labels.
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Applications

One of the main idea for using FlexComb is in video
game development. Modern video games have a significant
amount of Non-playable characters (NPC’s), each requir-
ing separate input from the animator. This approach could
speed up the development, while also creating a more real-
istic and expressive facial expression for a more immersive
experience. The area of animation and film could also see
benefit from using FlexComb to set the starting point for an
emotional look of a character. Another idea for using Flex-
Comb is in the field of Virtual Reality. Recent developments
of virtual reality environments, such as "Metaverse” (Mys-
takidis 2022), call for animated characters representing the
user wearing the VR headset. These characters mimic the
user in many ways, including facial expressions. This along
with a deeper understanding of emotions could help model
virtual interactions more closely.

Limitations and Future Work

Currently, we only focus on generating static facial expres-
sions. While having them can serve as a good starting point
for an animation, it’s still a major challenge to animate fa-
cial expressions for emotional transitions. Another limita-
tion would be the emotional labels used for emotion detec-
tion. Different interpretation of the affective domain can dic-
tate a different approach for classifying emotions, meaning
that there is a much bigger range of emotions humans can
express. In some cases, it is limiting to reduce that range
to just seven emotions. While being lightweight and natu-
ral, the proposed method only produces the expressions that
exist in the dataset, relying heavily on it. This creates limita-
tions for the space of expressions represented. In the current
state, it cannot generate novel and unseen expressions that
fall outside of the dataset.

In future work, we would like to address these limitation,
and work on the generation of sequences of facial expres-
sion representing facial expressions stemming from one (or
more) static ones.

Conclusion

In this work, we address the need for a lightweight frame-
work for generating natural facial expressions for in-game
characters, ones that reflect the character’s dynamic emo-
tional state. We introduce FlexComb, a Facial Landmark-
based Expression Combination model that leverages a
transformer-based architecture, trained on the extensive la-
belled CelebV-HQ dataset. The result is a system that con-
sistently generates a diverse set of natural facial expressions
for any combination of emotions, instead of being limited to
a set of single (dominant) emotions.

Contrary to traditional blendshapes or other prevalent
methods which produce fixed, often linear, facial move-
ments, FlexComb offers a nuanced approach to facial ani-
mation by creating expressions that can blend multiple emo-
tions. It capitalizes on real-world nuances captured in the
CelebV-HQ dataset, ensuring that facial expressions are not
just a replication of standard, dominant emotions but instead



reflect the complex combinations of emotions humans often
exhibit.

We show that a simple sequence trimming technique for
video clip training data contributes to a better performance
in predicting the emerging emotions, demonstrating its abil-
ity to capture emerging emotional cues. FlexComb is capa-
ble of generating realistic facial expressions for any emo-
tion combination, paving the way for animating more real-
istic in-game characters by drawing from real-world facial
expressions. The result is a natural static expression, which
can be generated in sequence to create a series of facial ex-
pressions. Future work will aim to address these limitations
by developing a model that can generate this continuous se-
quences of facial expressions. In addition, FlexComb will
integrate an interface to help fine-tune the visualization of
the sequences, thereby improving the application potential
in the video game development and animation industries.
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