
Reconstructing Existing Levels through Level Inpainting

Johor Jara Gonzalez, Mathew Guzdial
Computing Science Department, Alberta Machine Intelligence Institute

University of Alberta
jaragonz@ualberta.ca, guzdial@ualberta.ca

Abstract

Procedural Content Generation (PCG) and Procedural
Content Generation via Machine Learning (PCGML)
have been used in prior work for generating levels in
various games. This paper introduces Content Aug-
mentation and focuses on the subproblem of level in-
painting, which involves reconstructing and extending
video game levels. Drawing inspiration from image in-
painting, we adapt two techniques from this domain
to address our specific use case. We present two ap-
proaches for level inpainting: an Autoencoder and a U-
net. Through a comprehensive case study, we demon-
strate their superior performance compared to a base-
line method and discuss their relative merits. Further-
more, we provide a practical demonstration of both ap-
proaches for the level inpainting task and offer insights
into potential directions for future research.

Introduction
Procedural Content Generation (PCG) (Hendrikx et al.
2013) and Procedural Content Generation via Machine
Learning (PCGML) (Summerville et al. 2018), cover tech-
niques used to generate different types of content, such as
“levels, maps, game rules, textures, stories, items, quests,
music, weapons, vehicles, characters, etc” (Shaker, Togelius,
and Nelson 2016). While PCG requires hand-authored
knowledge from a developer, PCGML instead extracts
this knowledge from existing content. One problem with
PCGML is the question of where it slots into the game devel-
opment process. Early in a game’s development there won’t
be sufficient content to train a model. However, if we wait
until the end of the development process then there’s no
point in applying PCGML, as all the content has already
been produced. But if we consider instead not helping with
the initial development of the game, but applying PCGML
to extend or augment an already completed game, we might
sidestep this issue.

We establish a novel PCG problem called Content Aug-
mentation (CA), the main characteristic of CA is that it ex-
tends original content. CA might, for example, be used in
the generation of DLC, mods, or updates in the case of a
live service game. We’ll discuss CA applications further in

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the future work section at the end of the paper. The differ-
ence between CA and other applications of PCG is that they
tend to focus on generating content from scratch, based on
user input or hand authored rules. In comparison, CA must
take into account the existing work that it seeks to extend or
augment.

Many branches of PCG have some overlap with CA. Clas-
sical PCG approaches like search or grammars could be ap-
plied to CA. But these approaches do not traditionally fo-
cus on creating content based on some designer’s prior work
(Shaker, Togelius, and Nelson 2016). PCGML techniques
have attempted to learn to emulate a particular designer,
however this has thus far been focused on generating whole
new pieces of content with that same style, rather than ex-
tending existing content (Summerville et al. 2018).

Some co-creative systems (Deterding et al. 2017), where
a human works with a PCG system to produce content, do
attempt to extend or modify output from a human, but typ-
ically as part of an initial design process. In comparison,
CA focuses on taking complete, output content and extend-
ing it after it has been published or released. PCGML tech-
niques have been proposed to try to generate whole new
games, a problem sometimes called automated game genera-
tion (Snodgrass and Sarkar 2020a; Guzdial and Riedl 2018).
This is related to CA, in terms of taking as input existing
games, but we focus on augmenting or extending game con-
tent instead of generating whole new games from scratch.

Rather than attempting to solve CA as a single problem,
we identify and attempt to solve an initial CA subproblem
that we call level inpainting. In level inpainting we focus
on reconstructing the existing structures in a game. Level
inpainting is directly inspired by image inpainting (Zeng
et al. 2020), a computer vision problem domain focused
on reconstructing missing or damaged structures in images.
Similarly, we aim to train a model to reconstruct damaged
or missing structures in levels. While prior work has in-
cluded models capable of repairing levels (Jain et al. 2016),
it has focused on making changes to the levels to make them
playable. Instead, we focus on learning the style of a set of
game levels and then filling in missing, “masked out” sec-
tions of other levels. Our future goal is to use these models
to expand levels or to create new level structure that can con-
nect disparate areas as part of a larger CA system.

As we mentioned above, for level inpainting we take in-

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

276



spiration from image inpainting (Elharrouss et al. 2020).
“Image inpainting is a task of reconstructing missing regions
in an image” (Zeng et al. 2020). We adapted two existing im-
age inpainting techniques to our level inpainting task, chang-
ing them to model level structure instead of pixels. While
there has been a great deal of prior image inpainting work
(Zeng et al. 2020), it is not the case that we can just adapt
them to game content naively due to a number of factors.
For example, unlike images, game content must have certain
characteristics to be valid (e.g. playable for levels).

In this paper, we introduce level inpainting: the process of
fixing or restoring missing parts of a level. We consider this
to be an initial exploration of Content Augmentation (CA).
We validate our approach on existing game levels, by com-
paring the output (inpainted level) and the original level. As
an initial exploration, we adapt two existing image inpaint-
ing approaches to level inpainting.

This paper includes the following contributions:

• We propose Content Augmentation (CA) as a PCG prob-
lem.

• We propose level inpainting as a CA subproblem.

• We present an approach to process an existing dataset for
level inpainting.

• We present two modifications of image inpainting archi-
tectures adapted to level inpainting.

• We present our results in comparison to a traditional
PCGML baseline.

Related Work
We imagine that classical PCG approaches like search-based
and constructive PCG could be applied to Content Augmen-
tation (CA) (Shaker, Togelius, and Nelson 2016). However,
in this paper we focus on Procedural Content Generation
via Machine Learning (PCGML) (Summerville et al. 2018),
as we argue that CA can serve as a natural way to include
PCGML in the game development process.

Super Mario Bros. has been one of the most common
problem domains in PCGML. From generating levels (Sum-
merville and Mateas 2016), blending levels (Sarkar and
Cooper 2021), reinforcement learning (Shu, Liu, and Yan-
nakakis 2021), or to studying new representations for level
generation (Jadhav and Guzdial 2021). There are different
factors that make Super Mario levels useful to test different
approaches. One factor is that it is a finished product, for this
reason the outputs of the models are easy to compare with
the original content. Another factor is the popularity of the
game, Mario is well recognized and the majority of people
know how it is played. Because of these reasons, we de-
cided to employ Mario as the problem domain for this initial
experiment into level inpainting. The fact that we have the
original levels for comparison will allow us to evaluate our
approach quantitatively. Further, we hope that Mario’s well-
known design style will help clarify the problem of level
inpainting to readers.

Wave Function Collapse (WFC)(Kim et al. 2019) is one
particular PCGML algorithm. WFC focuses on extracting

local patterns and then using the extracted patterns to in-
crementally generate an output that, in our opinion, is sur-
prisingly consistent with the original author’s style. Re-
searchers have previously explored the generation of level
designs using WFC. Some of those works include Sandhu
et. al. (Sandhu, Chen, and McCoy 2019) who add design
constraints to WFC in order to use them at runtime to de-
sign levels. Similarly Kim et. al. (Kim et al. 2019) add more
constraints to the original WFC approach in order to cre-
ate multi-layer levels. In order to use WFC some works like
Cheng et. al. (Cheng, Han, and Fei 2020) use a graph-based
input to generate more content. Due to it being based on
an incremental improvement of an initially random piece of
content, one might consider WFC to be a natural fit for level
inpainting. We do not draw on WFC in this work, as it is the
initial exploration of level inpainting and so we instead focus
on adapting image inpainting models. However, we hope to
explore WFC for level inpainting in future work.

Recently, diffusion-based approaches have achieved great
success in generating images (Nichol et al. 2021). Diffusion
works by essentially learning to reverse a function that con-
verts structured data (such as images) into noise (Song and
Ermon 2019). Recently, Siper et al. (Siper, Khalifa, and To-
gelius 2022) introduced a similar idea, but applied it to level
generation. Similar to WFC, this style of approach itera-
tively converts an apparently random initial state into struc-
tured output, making it a good fit for level inpainting. To
our knowledge, there are no existing PCGML implemen-
tations for Content Augmentation. The closest prior work
has attempted to generate new content for new games with
PCGML (Sarkar and Cooper 2018; Guzdial and Riedl 2018;
Snodgrass and Sarkar 2020b). For this work, in comparison
to this prior work, we aim to train a model on only one do-
main. In addition, we are not trying to create new content
from scratch, instead we are focusing on reconstructing ar-
eas of the same levels using observed similarities with the
rest of the map. We use this level inpainting as a proxy for
extending existing levels, which we also demonstrate below
as an example.

Level repair is a related PCG problem that focuses on al-
tering levels such that the level matches some mechanical
(e.g. playable) or aesthetic requirements (Jain et al. 2016;
Cooper and Sarkar 2020; Zhang et al. 2020). Jain et al.
demonstrated level repair by mapping some unplayable sec-
tion of a game level to the closest playable level section (Jain
et al. 2016). In comparison, Cooper and Sarkar employed an
agent-based approach, which attempted to pathfind across a
level and could alter the level to make it playable (Cooper
and Sarkar 2020). In another approach, Zhang et al. used
generative adversarial networks to “generate-then-repair”
using hand-author maps to train the model, then generate
new maps that may be unplayable and repair them (Zhang
et al. 2020). These approaches were altering content, but for
the purpose of level playability, not to match a style or re-
place an undefined section.

Image inpainting (Elharrouss et al. 2020) uses different
image processing techniques to reconstruct damaged areas
of an image, a variety of approaches have been explored
including Encoder-decoders (Liu et al. 2019), CNNs (Liu

277



et al. 2019), and GANs (Demir and Unal 2018). The prin-
cipal characteristic of image inpainting is that in order to
reconstruct a damaged image it uses nearby pixels to the
corrupted part to achieve coherence with the reconstructed
image. In our research we modify two image inpainting ar-
chitectures, so that instead of working with pixels they work
with tiles. The goal of level inpainting then is to fill in dam-
aged or missing tiles in order to achieve coherence with the
entire level.

System Overview
To reach our goal of level inpainting, we cannot directly use
the architectures of image inpainting models because they
are made to reconstruct pixels in an image. Given that we
want to capture the same style of the original game, we need
to adapt an image inpainting architecture to our needs. In or-
der to get a functional system first we need a level inpainting
dataset we can use to train our models. To get a level inpaint-
ing dataset, we make use of an existing tile-based represen-
tation (Summerville et al. 2016), but post-process the data to
fit the requirements of our level inpainting problem. Finally,
we train two models adapted from image inpainting to level
inpainting: an autoencoder and a U-net.

Dataset
For image inpainting, the datasets consist of images. How-
ever in our approach, using only images of the level will be
impossible, as if we use pixels we cannot load the results
into a game engine. Alternatively, we could post-process the
output of our model to convert from pixels to tiles, but this
would create undue complexity.

For our dataset we make use of the Video Game Level
Corpus (VGLC) (Summerville et al. 2016). The VGLC con-
tains a tile representation of levels that can be easily adapted
for our purpose of level inpainting. Our goal for level in-
painting is to extend an author’s design with the same style.
We wanted to use a set of levels with a clear design vi-
sion. With this in mind, we chose to use the tile represen-
tation from Super Mario Bros. and Super Mario Bros. 2 (the
Japanese version), given that both games were made by the
same designer. We split the dataset into 26 levels for training
and 6 levels for testing, selecting the longest levels across
the dataset for the test set (From Super Mario: 3-1, 6-2, 8-1,
and from Super Mario 2: 1-1, 5-2). We chose to use whole
levels for our test set as this will let us investigate whether
our models have learned the level design style, not just repli-
cating a particular level’s geometry. If we did not use whole
levels but had the same level spread across our train and test
sets, then the model would see the same patterns across both
sets. With this mind, the selection of the longest levels gave
us the most opportunities to test how our models performed
on different structures.

Data Processing
For our data processing first we represent each level as a ma-
trix of the same size as the level. The information inside of
the matrix is based on a one-hot encoding representing the
tile at that position. The one-hot encoding used is of length

Figure 1: Size of the mask in one example. We note that not
all parts of the pipe are fully covered, which requires the
model to reconstruct the missing tiles.

13 given the tiles representation for Super Mario Bros. in
the VGLC (e.g. brick, emptyBlock, enemy,topLeftPipe, left-
Pipe, etc.). The level can thus be represented as a matrix with
a height of 16, a length of the size of the level, and a depth
of 13 for the one-hot encoded representation. Then, in or-
der to get our final training data we split each matrix into
submatrices of size 16x16x13. With this step we get around
the varying width of the levels. The representation for the
sub matrices 16x16xD where D is the dimension of a one-
hot encoding is a common representation in PCGML (Yang,
Sarkar, and Cooper 2020).

Once we have all the submatrices processed, we introduce
a mask area for each submatrix. We inherit the concept of a
mask from image inpainting (Zeng et al. 2020). In the area
of the mask, we delete the information of the tiles and re-
place it with all zeros. The mask has a size of 5x4 and we
produced 11 masked inputs for every submatrix, by placing
the 5x4 mask along each possible position at the bottom of
the submatrix. We chose this setup for our mask for several
reasons. First, it has a reasonable size that allows it to at
least partially cover common structures like pipes and stairs.
Second, we place the mask along the bottom of the level to
be able to cover these structures. Third, in the game Super
Mario Bros. the majority of structures and movement are
located along the bottom of the level. In Figure 1 we can
demonstrate an example of the mask, and the area that the
model will predict. We note that finding useful shapes and
positions for masks is an open resource problem for image
inpainting (Zeng et al. 2020), and so the same will likely be
true for level inpainting.

Model Architecture
In this section we discuss how we adapted two image in-
painting architectures for level inpainting. The first architec-
ture is based on a convolutional autoencoder (Zhang 2018),
as it is a basic architectures for image processing, including
image inpainting. Autoencoders have been commonly ap-
plied in PCGML (Thakkar et al. 2019; Snodgrass and Sarkar
2020a; Sarkar and Cooper 2021), as they tend to be less data-
hungry than other models. The second architecture proposed

278



a) Convolutional autoencoder architecture

b) U-net architecture

Figure 2: Our Two proposed models. a): the con-
volutional autoencoder. b): the U-net. Layers of
([16x16x13],[16x16x16],[8x8x32],[8x8x64]).

is a U-net (Ronneberger, Fischer, and Brox 2015) architec-
ture, which was designed explicitly for image inpainting.
To have a fair comparison between our alternative models
we used the same number of convolutional layers for both
models. However, the U-net architecture was specifically de-
signed to use small amounts of data, which is often the case
for PCGML applications (Summerville et al. 2018).

Our architectures are illustrated in Figure 2, both contain
two paths: an encoder path with layers shown in that figure
and a decoder path with the same layers but mirrored. Fig-
ure 2a is a relatively simple convolutional autoencoder, but
this is appropriate for the problem and amount of training
data, as supported by prior PCGML approaches using au-
toencoders. Figure 2b demonstrates the U-net with the same
layers, which supplements the encoding and decoding paths
by propagating context to higher resolution layers.

In order to improve our architectures, we opted to use
transpose convolution layers. We found they outperformed
the up-conv layers typically used in image inpainting ac-
cording to our experiments. We anticipate that this is be-
cause the extra convolution made by the transpose gave us
clearer results, which may be due to the differences in level
and tile inpainting. In image inpainting, being a single pixel
off won’t have a large impact in comparison to being a sin-
gle tile off in level inpainting. We used binary cross entropy
as a loss function for both models. We used the Adam opti-
mizer with a learning rate of 0.0001, with a batch size of 10
(using as reference the quantity of submatrices generated in

our dataset), and trained both models until convergence.

Evaluation
Since our final goal is to apply level inpainting to Content
Augmentation (CA), for our evaluation we would ideally
want to create augmentations to Mario levels and then see
how players react to these augmentations. But for an initial
exploration of this task, we’re instead focused on an approx-
imation of this problem where we know the ground truth.
We have our models attempt to recreate existing Mario level
structure and then compare their performance to a baseline.
A good result would be to perfectly reproduce the area of
the mask. In our evaluation we only focus on the interior
of the mask, because we are not concerned with representa-
tional ability generally. We only care about a level inapinting
model’s ability to do the required level inpainting task.

We use three different metrics in our evaluation:

1. Tile-by-Tile (TbyT): First, we compare tile-by-tile ac-
curacy. This is a standard accuracy measure used in prior
PCGML work (Summerville et al. 2018). Essentially, we
are measuring how close the output of the approach is to
the original considering all tiles.

2. No Sky (NoSky): The second metric is again a tile-by-
tile comparison but we exclude the sky tiles. Since the
majority of the samples contains sky tiles a simple strat-
egy would be to always predict sky tiles. So here we mea-
sure the non-sky accuracy.

3. Structures (Struct.): The third metric, is based on the
tile accuracy for the pipe and stair tiles only. This is due
to the fact that these structures are some of the more
complicated parts of Super Mario Bros. levels to recon-
struct, and because they are used to test the mechanics of
the game (e.g. jumping, running, etc.). Further, check-
ing for “broken” pipes is a common PCGML metric
(Summerville and Mateas 2016; Snodgrass and Ontañón
2014), which this approximates.

Baseline
In order to better understand the results for the convolutional
autoencoder and the U-net, we implement a Markov chain
baseline. We chose a Markov baseline because it is one of
the most common and oldest PCGML approaches for Super
Mario Bros. levels (Snodgrass and Ontanón 2016). In addi-
tion, given that a Markov chain was the first PCGML ap-
proach for level generation (Snodgrass and Ontanón 2013)
it make sense to apply it on this new task of level inpainting.
We use the original formulation of the Markov Chain from
(Snodgrass and Ontanón 2013) trained on the same levels
that make up the training set for our two models. During
testing, we query the model to fill in only the masked sec-
tion of the input.

Results
We include the average and standard deviation values of our
three metrics in Table 1 for the convolutional autoencoder
(AE), the U-net (UNet), and the Markov approach (Markov).
Each row represents a particular model’s results for one of

279



Figure 3: A visualization of our three metrics: the Tile-by-Tile (Left), No Sky (Middle), and Structures (Right).

Metrics SM1-Level 3-1 SM1-Level 4-2 SM1-Level 6-2 SM1-Level 8-1 SM2-Level 1-1 SM2-Level 5-2 Avg
AE-TbyT 91.86 ± 0.42 84.07 ± 0.94 88.65 ± 0.71 92.02 ± 0.23 91.82 ± 0.25 79.49 ± 0.90 88.03

UNet-TbyT 88.44 ± 1.12 78.75 ± 1.12 87.13 ± 0.67 91.04 ± 0.21 91.20 ± 0.30 75.80 ± 0.80 85.39
Markov-TbyT 75.44 ± 5.45 67.58 ± 4.58 71.21 ± 2.56 80.23 ± 2.56 79.88 ± 2.57 47.36 ± 9.40 58.24

AE-NoSky 84.75 ± 0.88 74.32 ± 2.52 77.68 ± 2.52 84.24 ± 0.792 84.36 ± 0.73 63.98 ± 2.87 78.10
UNet-NoSky 87.20 ± 0.93 66.36 ± 1.40 75.97 ± 1.40 85.73 ± 0.66 83.93 ± 1.00 54.76 ± 1.42 75.65

Markov-NoSky 53.17 ± 3.10 41.76 ± 4.77 48.29 ± 2.67 60.89 ± 0.93 57.73 ± 10.42 35.14 ± 2.86 49.49
AE-Struct 82.98 ± 2.87 79.24 ± 2.61 56.43 ± 2.07 83.44 ± 2.65 79.60 ± 1.31 57.30 ± 6.05 73.16

UNet-Struct 88.31 ± 0.57 80.54 ± 1.54 59.76 ± 1.30 87.70 ± 1.42 76.76 ± 1.89 48.19 ± 3.37 73.54
Markov-Struct 0 1.53 ± 0.10 2.74 ± 0.22 0 0 0 0.71

Table 1: This table contains the the average and standard deviation values for our three different metrics across our two ap-
proaches and baseline. All three of the metrics are based on a per-tile accuracy, but focus on increasingly particular tile types.

our three different metrics. For each column we have each
test level, and then a final column giving the average over
these values.

In the first three rows, we can see the results of our differ-
ent implementations evaluated using the Tile-by-Tile (TbyT)
metric. Of these three implementations we can see that the
convolutional autoencoder and the U-net achieve similar re-
sults compared to the Markov implementation. In addition,
the convolutional autoencoder consistently outperforms the
U-net. We anticipate this was due to the convolutional au-
toencoder being a simpler model than the U-net, and so it
did a slightly better job generalizing over the same data.

In the middle three rows of Table 1 we can see the results
using the No Sky metric (NoSky), in which we exclude the
sky tiles. All models did slightly worse in this case, indicat-
ing an over-reliance on predicting sky tiles. In these results
we can see that the autoencoder again had a slight advantage
in the reconstruction accuracy.

For our last three rows, we used the Structures (Struct.)
metric. With this metric we check the tile accuracy only in
terms of pipes and stairs. As we can see the U-net ended up
with a small advantage compared to the autoencoder. We
anticipate this is because the U-net is better at reproduc-
ing less common structure (Ronneberger, Fischer, and Brox
2015). In comparison, the Markov chain had the worst re-
sults, unable to produce any pipes or stairs for most levels.
It consistently performed worse compared to the other mod-
els, suggesting that even techniques that work well for level
generation may not be suitable for content augmentation or
specifically level inpainting.

In Figure 4 we include some of the output generated by

the autoencoder and the U-net in comparison to the origi-
nal VGLC dataset. All of these examples were taken from
the test set. The performance is close, which matches the
quantitative results in the table. However, the U-net seems
to have done a slightly better job at capturing the location
of the more unique tiles, such as the stairs in the first two
examples and the question mark block in the third example.

Case Study

In the last section we demonstrated that a convolutional au-
toencoder outperforms a U-net for almost all the metrics
and both models consistently outperform a baseline Markov
chain. We take this to indicate that both of these approaches
can successfully be applied for level inpainting. However,
we did not show it applied to our high-level task of Content
Augmentation (CA) due to the lack of an ability to quantita-
tively evaluate any output.

As an illustrative example of this initial approach, we
demonstrate what one version of augmenting a level might
look like in Figure 5. In this figure we present the origi-
nal map of the classic Super Mario Bros. 5-1 and an up-
dated version where the content has been augmented. We
did this manually by selecting areas with low structural con-
tent (just sky and ground) and applying a mask size where
new structures were placed by using the U-net model. One
could imagine this as the output of a co-creative level in-
painting tool or a “version 2.0” of the level output by a more
autonomous tool.

280



Figure 4: In this image, we include original level sections, one of the masks added to the level section, and the output of the
autoencoder and the U-net. These examples were selected randomly from the test dataset.

Limitations

We acknowledge that our approach taken in this paper has a
number of limitations. For example, the VGLC dataset does
not contain all the underground levels or the castle levels
from the original games. Consequently, it is impossible to re-
construct these types of structures for our model. Other lim-
itations to consider are the position and shape of the mask.
Given that there are levels where the structures are not only
along the bottom of the level, it is not possible to evaluate the
reconstruction of some structures. One way to address this
issue could be to have the mask follow the player’s path.
With this, we might end up with a model that can better re-
produce structures important to players, similar to the find-
ing from Summerville and Mateas (Summerville and Mateas
2016). Despite these limitations, we consider that our results
are still valid for the following reasons. First, the mask that
we implemented covered the majority of the structures at the
bottom of the levels. Second, most of the levels had content
along the bottom. Finally, our models showed a reasonable
reconstruction of the level structures.

For this initial exploration of level inpainting we adapted

two models previously used for image inpainting. While
both models outperformed a PCGML baseline, their quanti-
tative performance and qualitative performance (as demon-
strated in Figure 5 could both be improved. Though we feel
this is appropriate for an initial exploration, there are defi-
nitely avenues to address this limitation through future work.

Future Work
For future work, we plan to focus on different aspects of
Content Augmentation (CA). There are a number of dif-
ferent options, with one being to improve the quality of
level inpainting. One possible way to improve level in-
painting would be to continue trying to adapt different sys-
tems from image inpainting. Image inpainting has a signif-
icant amount of prior work focused on finding an optimal
mask shape. Similarly, we could explore the choice of mask
shape in more detail. As an alternative to focusing on adapt-
ing image inpainting models to level inpainting, we could
adapt additional PCGML models for level generation to this
task. For example, WaveFunctionCollapse (WFC) (Sandhu,
Chen, and McCoy 2019), which could be adapted to level

281



Figure 5: Example based on Super Mario Bros. 5-1, at the top we include the original level from VGLC. At the bottom,
we present a new version produced with Content Augmentation in the yellow areas, applying only new structures with level
inpainting.

inpainting given the way it iteratively generates output con-
tent. The key would be to treat the masked out content as
yet-ungenerated content, and the areas around the mask as
content previously generated by WFC. Though it may be
necessary to handle cases where the existing contradicts the
constraints WFC has extracted from existing levels.

Outside of improving level inpainting we hope to explore
other aspects of CA. In particular, aspects related to game
mechanics. The concept would be to use CA to generate ad-
ditional abilities, items, or enemies for an existing game. The
goal would be to get output similar to what one might find
in human-authored DLC, mods, or updates in a live service
game. Other possible options might be to focus on particu-
lar level design applications in CA. For example, merging
different levels via level inpainting, or identifying the best
locations in a map to add new content while keeping a co-
herent game design. In the future, we hope that CA can lead
to systems to automatically extend existing games, produc-
ing DLC, mods, or entirely new kinds of game designs.

Conclusions
We presented a new PCG problem, Content Augmentation
(CA), and how it relates to classical PCG and PCGML. We
introduced a subproblem of CA: level inpainting, where the
main idea is to reconstruct missing information in a level.
Our experiments demonstrate that image inpainting archi-
tectures can be adapted for level inpainting. Despite this,
these adaptations seem to require more modifications to im-
prove their performance for CA. Given these initial positive
results, we plan to continue this line of research towards gen-
eration of novel CA in the future.

Acknowledgements
This work was funded by the Canada CIFAR AI Chairs Pro-
gram, Alberta Machine Intelligence Institute, and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC).

References
Cheng, D.; Han, H.; and Fei, G. 2020. Automatic Genera-
tion of Game Levels Based on Controllable Wave Function

Collapse Algorithm. In International Conference on Enter-
tainment Computing, 37–50. Springer.
Cooper, S.; and Sarkar, A. 2020. Pathfinding Agents for
Platformer Level Repair. In AIIDE Workshops.
Demir, U.; and Unal, G. 2018. Patch-based image inpaint-
ing with generative adversarial networks. arXiv preprint
arXiv:1803.07422.
Deterding, S.; Hook, J.; Fiebrink, R.; Gillies, M.; Gow, J.;
Akten, M.; Smith, G.; Liapis, A.; and Compton, K. 2017.
Mixed-initiative creative interfaces. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human Fac-
tors in Computing Systems, 628–635.
Elharrouss, O.; Almaadeed, N.; Al-Maadeed, S.; and Ak-
bari, Y. 2020. Image inpainting: A review. Neural Process-
ing Letters, 51: 2007–2028.
Guzdial, M.; and Riedl, M. 2018. Automated game design
via conceptual expansion. Proceedings of the 14th AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2018, 31–37.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), 9(1): 1–22.
Jadhav, M.; and Guzdial, M. 2021. Tile embedding: a gen-
eral representation for level generation. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, volume 17, 34–41.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair, and recognition.
In Proceedings of the ICCC workshop on computational cre-
ativity and games, volume 9.
Kim, H.; Lee, S.; Lee, H.; Hahn, T.; and Kang, S. 2019.
Automatic generation of game content using a graph-based
wave function collapse algorithm. In 2019 IEEE Conference
on Games (CoG), 1–4. IEEE.
Liu, H.; Jiang, B.; Xiao, Y.; and Yang, C. 2019. Coherent
semantic attention for image inpainting. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 4170–4179.

282



Nichol, A.; Dhariwal, P.; Ramesh, A.; Shyam, P.; Mishkin,
P.; McGrew, B.; Sutskever, I.; and Chen, M. 2021. Glide: To-
wards photorealistic image generation and editing with text-
guided diffusion models. arXiv preprint arXiv:2112.10741.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.
Sandhu, A.; Chen, Z.; and McCoy, J. 2019. Enhancing wave
function collapse with design-level constraints. ACM Inter-
national Conference Proceeding Series.
Sarkar, A.; and Cooper, S. 2018. Blending levels from dif-
ferent games using LSTMs. CEUR Workshop Proceedings,
2282.
Sarkar, A.; and Cooper, S. 2021. Generating and blending
game levels via quality-diversity in the latent space of a vari-
ational autoencoder. In The 16th International Conference
on the Foundations of Digital Games (FDG) 2021, 1–11.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.
Shu, T.; Liu, J.; and Yannakakis, G. N. 2021. Experience-
driven PCG via reinforcement learning: A Super Mario Bros
study. In 2021 IEEE Conference on Games (CoG), 1–9.
IEEE.
Siper, M.; Khalifa, A.; and Togelius, J. 2022. Path of De-
struction: Learning an Iterative Level Generator Using a
Small Dataset. arXiv preprint arXiv:2202.10184.
Snodgrass, S.; and Ontanón, S. 2013. Generating maps using
markov chains. In Ninth Artificial Intelligence and Interac-
tive Digital Entertainment Conference.
Snodgrass, S.; and Ontañón, S. 2014. Experiments in map
generation using Markov chains. In FDG.
Snodgrass, S.; and Ontanón, S. 2016. Controllable Procedu-
ral Content Generation via Constrained Multi-Dimensional
Markov Chain Sampling. In IJCAI, 780–786.
Snodgrass, S.; and Sarkar, A. 2020a. Multi-domain level
generation and blending with sketches via example-driven
bsp and variational autoencoders. In International Confer-
ence on the Foundations of Digital Games, 1–11.
Snodgrass, S.; and Sarkar, A. 2020b. Multi-Domain Level
Generation and Blending with Sketches via Example-Driven
BSP and Variational Autoencoders. ACM International
Conference Proceeding Series.
Song, Y.; and Ermon, S. 2019. Generative modeling by esti-
mating gradients of the data distribution. Advances in Neu-
ral Information Processing Systems, 32.
Summerville, A.; and Mateas, M. 2016. Super mario as a
string: Platformer level generation via lstms. arXiv preprint
arXiv:1603.00930.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games, 10(3): 257–270.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tanón, S. 2016. The vglc: The video game level corpus.
arXiv preprint arXiv:1606.07487.

Thakkar, S.; Cao, C.; Wang, L.; Choi, T. J.; and Togelius,
J. 2019. Autoencoder and evolutionary algorithm for level
generation in lode runner. In 2019 IEEE Conference on
Games (CoG), 1–4. IEEE.
Yang, Z.; Sarkar, A.; and Cooper, S. 2020. Game level clus-
tering and generation using Gaussian mixture VAEs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16, 137–143.
Zeng, Y.; Lin, Z.; Yang, J.; Zhang, J.; Shechtman, E.; and
Lu, H. 2020. High-resolution image inpainting with iterative
confidence feedback and guided upsampling. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIX 16, 1–17.
Springer.
Zhang, H.; Fontaine, M.; Hoover, A.; Togelius, J.; Dilkina,
B.; and Nikolaidis, S. 2020. Video game level repair via
mixed integer linear programming. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 16, 151–158.
Zhang, Y. 2018. A better autoencoder for image: Con-
volutional autoencoder. In ICONIP17-DCEC. Available
online: http://users. cecs. anu. edu. au/Tom. Gedeon/con-
f/ABCs2018/paper/ABCs2018 paper 58. pdf (accessed on
23 March 2017).

283


