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Abstract 
Deck-building games, like Dominion, present an unsolved 
challenge for game AI research. The complexity arising from 
card interactions and the relative strength of strategies de-
pending on the game configuration result in computer agents 
being limited to simple strategies. This paper describes the 
first application of recent advances in Geometric Deep Learn-
ing to deck-building games. We utilize a comprehensive mul-
tiset-based game representation and train the policy using a 
Soft Actor-Critic algorithm adapted to support variable-size 
sets of actions. The proposed model is the first successful 
learning-based agent that makes all decisions without relying 
on heuristics and supports a broader set of game configura-
tions. It exceeds the performance of all previous learning-
based approaches and is only outperformed by search-based 
approaches in certain game configurations. In addition, the 
paper presents modifications that induce agents to exhibit 
novel human-like play strategies. Finally, we show that learn-
ing strong strategies based on card combinations requires a 
reinforcement learning algorithm capable of discovering and 
executing a precise strategy while ignoring simpler subopti-
mal policies with higher immediate rewards. 

 Introduction    
Reinforcement learning has been successfully applied to 
both classical board games, such as checkers (Samuel 1967), 
backgammon (Tesauro et al. 1995), Chess and Go (Silver et 
al. 2018), and complex video games, from early Atari games 
(Mnih et al. 2015) to modern games such as Dota 2 (OpenAI 
et al. 2019). Less attention has been given to more modern 
tabletop games including Eurogames with rule sets which 
allow for far more complex and diverse strategies than those 
found in classical games. For these games, most computer 
agents rely on a mixture of heuristics and search algorithms, 
which do not capitalize on the breadth of strategies these 
games offer and often fail to provide a challenge to experi-
enced players. 

For classical board games, the game state can often be 
represented as either a vector or as a grid, and for video 
games, the rendered image is a natural model input. Modern 
tabletop games do not allow for such a simple representation 
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as they often contain many parts including multiple card 
piles, counters, and complicated maps in addition to a large 
variety of different cards. The field of Geometric Deep 
Learning deals with such non-Euclidean data, including 
graphs and sets, and allows more natural representations of 
such game states (Bronstein et al. 2017).  

A subgenre of Eurogames is deck-building games, which 
require players to build and manage a deck of cards with the 
goal to score the most points. So far, no human-level com-
puter agent has been developed for such games. Dominion1 
is the first game defined by its use of a deck-building me-
chanic (Furino 2019). Individual games of Dominion differ 
significantly, with ten cards randomly chosen from the hun-
dreds of available kingdom cards. Together with the seven 
basic supply cards, they make up the set of all cards used for 
that game, called the kingdom. Cards generally belong to 
one of three categories: Treasure Cards, which provide coins 
to buy new cards; Action Cards, which can be played for a 
variety of effects; and Victory Cards, which give Victory 
Points. The basic supply cards include three Treasure (Cop-
per, Silver, Gold) and three Victory (Estate, Duchy, Prov-
ince) cards, where the latter cards in each group cost more 
to buy and have a disproportionately stronger effect. All 
cards in the supply are available in limited quantities. When 
all Provinces have been bought, or any three card piles are 
depleted, the player with the most Victory Points wins.  

Players start with a weak deck of cards and must improve 
it before focusing on buying Victory Cards. Winning strate-
gies can roughly be classified into three categories: Big 
Money, Rush and Engine. Big Money strategies focus on 
buying Treasure Cards until the player can afford Provinces. 
Rush strategies aim to accumulate cheap Victory Cards as 
fast as possible, often resulting in large, inefficient decks. 
They are competitive only in a subset of kingdoms, for in-
stance, when the Gardens Card is available. Engine strate-
gies take the opposite approach. They are often the strongest 
strategy but require skillfully chaining together Action 
Cards with various effects, aiming to draw the entire deck 
each turn, thus using the owned Treasure Cards to maximum 
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effect. We consider any strategy an Engine strategy if it buys 
and plays a significant amount of Action Cards. 

Up to now agent development for Dominion has largely 
focused on refining Big Money strategies, while ignoring al-
ternative strategies due to their higher complexity and tun-
ing requirements. The configuration of cards included in the 
kingdom can result in any of the three strategies being opti-
mal, and the players must decide which strategy to select. 
Mastering individual mechanics such as trashing is often a 
challenge, with new players failing to understand the im-
portance of deck-control, which includes trashing sub-par 
cards to remove them from the deck, thus increasing its 
overall quality. Developing computer agents capable of 
playing these strategies is necessary if they are to be com-
petitive with human players and is the focus of this work.  

In this paper, we develop a novel, more expressive, mul-
tiset-based representation of the game state of Dominion uti-
lizing advancements in Geometric Deep Learning. Together 
with the Soft Actor-Critic (SAC) (Haarnoja et al. 2018) re-
inforcement learning algorithm, this is the foundation for 
building agents capable of learning the three main strategies 
for Dominion. Without relying on domain-specific modifi-
cations, the model learns a competitive Big Money strategy 
that utilizes Action Cards. Through modifications to the re-
ward function, the training setup, and usage of a heuristic, 
we train agents to utilize the trashing mechanic and to play 
Rush or Engine strategies. We highlight how these results 
require a reinforcement learning approach and discuss the 
difficulties of learning Engine strategies. 

Related Work 
A range of techniques have been used to develop computer 
agents for Dominion. Generic heuristics for simple Big 
Money strategies have been known to the community since 
the game’s publishing (DominionStrategy Wiki 2021). As 
part of “Geronimoo's challenges - First Game” (Geronimoo 
2012), players hand-crafted heuristics for a specific king-
dom which were able to play Engine strategies and win 89% 
of the time against the Smithy Bot, which augments a Big 
Money strategy by using the Smithy Action Card to draw 
additional cards. Scaling these heuristics to support multiple 
kingdoms while maintaining the same strength of play is 
considered unfeasible.  

Fisher (2014) developed Provincial AI which uses an evo-
lution algorithm to learn the optimal card buying heuristic 
for an individual kingdom while relying on hand-designed 
general heuristics and a simple look-ahead model for all 
other decisions, including the playing of Action Cards. Pro-
vincial AI is claimed to be challenging for experienced play-
ers, but no formal evaluation has been made.  

 
2 https://dominion.games/ 

Jansen and Tollisen (2014) proposed a Monte Carlo Tree 
Search (MCTS) based approach using either Upper Confi-
dence Bounds (UCB) or UCB applied to trees, and a novel 
method for dealing with stochastic card drawing and player 
interaction. The algorithms were strong enough to achieve a 
win rate of 68.5% against augmented Big Money heuristics 
using the Witch Card, which draws cards and makes oppo-
nents gain Curses, but were unable to use Action Card com-
binations even after adding heuristics.  

Angelopoulos and Metafas (2021) apply Q-Learning and 
achieve a win rate of 57.44% against three bot opponents. 
They only consider Chapel and Smithy Action Cards and 
limit the agent to buy only the latter. The complexity of 
playing Chapels and the necessity of a smaller state space 
for Q-Learning are the cause for this simplification.  

Techniques combining reinforcement learning with neu-
ral networks have had limited success and have only resulted 
in agents playing Big Money strategies. Winder (2014) 
trains neural networks to make all decisions in a game for 
one kingdom using temporal-difference learning and back-
propagation, hill-climbing, or a genetic algorithm. A genetic 
algorithm using two separate neural networks for the early 
and late parts of the game achieves the best performance and 
wins 74.7% of the games against a Big Money bot. The 
model plays an augmented Big Money strategy but never 
uses the trashing mechanic. Fynbo and Nellemann (2010) 
combine competitive co-evolution and Neuro Evolution of 
Augmented Topologies to develop three models with com-
bine to form an agent. The first is tasked with predicting how 
far the game has progressed, the second learns to evaluate 
the value of different cards, and the third determines in 
which order Action Cards should be played using MCTS. 
The model input is a designed feature vector. They success-
fully train the model for card evaluation but find that a heu-
ristic can outperform the third network. Playing against 
three Big Money Bots in a four-player game, the learned 
agent has a win rate of 54.33%.  

The two commercial Dominion clients offer the oppor-
tunity to play against a computer agent. The agent provided 
by Shuffle IT2 is based on heuristics and is generally re-
garded as weaker than the one developed by Temple Gates 
Games (Duringer 2022). It is based on the techniques intro-
duced by AlphaZero. Their key innovation is that rather than 
representing the cards as one-hot encoded variables, they 
learn card embeddings allowing the agent to play with a 
large variety of Action cards. No rigorous evaluation of the 
play strength has been performed. 

The only formal description of Dominion and deck-build-
ing games, in general, was made by Heijden (2014) who de-
fines the game as a tuple containing the set of cards used, 
functions for determining the end of the game and various 
properties of cards, and multisets to track cards in starting 
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deck, current deck, and the hand cards of a player. This for-
mulation ignores the finite number of cards available to buy 
and the existence of Action Cards, which limits its relevance 
to Dominion. Heijden (2014) develops heuristic, MCTS, 
and dynamic programming-based agents for the simplified 
game and shows that, in this case, a Big Money heuristic 
strategy is close to optimal.  

Methodology 
Dominion can be described as an episodic Markov-Decision 
Process (𝑆, 𝐴, p, r), where 𝑆 is the state space, 𝐴 the discrete 
action space, p(𝑠’|𝑠, 𝑎) the transition probability and r(𝑠, 𝑎) 
the reward.  

Each state is made up of the common supply, containing 
the cards which can be gained, the shared trash pile, which 
stores trashed cards, and the status of each player’s deck. 
The deck consists of the cards in the players’ draw and dis-
card pile, their hand, and the Action Cards the player has 
played this turn. Since the draw pile is hidden and the order 
of the cards in the other locations does not matter, we can 
model all of them as multisets, which we call piles. The state 
also contains the current player’s number of Action Points, 
Buys, and Coins.  

The action space includes all possible decisions required 
during a game of Dominion and will be elaborated upon in 
the Decision and Model Structure section. Each action is 
modeled as choosing one card from a variable-size set of 
possible cards.  

The transition probability generally follows the rules of 
the game. While some actions have a deterministic effect, 
such as trashing a card, others, like drawing a card, are sto-
chastic since the order of cards in the draw pile is unknown. 
As stated previously, the game terminates, when any three 
supply card piles are empty or all Provinces have been 
bought. The only addition we make is to terminate the game 
after 40 moves to limit game lengths when the agents are 
playing badly. For stronger agents, this limit has no effect 
on the strategy, as games usually end within 15-30 turns.  

A terminal reward was used, consisting of the difference 
between the player’s and the opponent’s scored victory 
points. A simpler reward, which would only depend on if 
the player won, was not used, as it gives the model no feed-
back on important marginal improvements during training.  

Each player starts with a deck of 7 Copper Treasure Cards 
and 3 Estate Victory Cards, which are shuffled.  

Using this formulation, we can apply a standard model-
free reinforcement learning algorithm to Dominion. Soft 
Actor-Critic (SAC) was chosen due to its good performance 
on many control tasks and the inclusion of a temperature 
term, which encourages more exploration (Haarnoja et al. 
2018). While SAC was originally developed for continuous 
actions, Christodoulou (2019) introduced a discrete formu-
lation. SAC consists of an actor and a critic. The actor, given 
a set of actions, returns the probability with which each ac-
tion should be played. The critic, given a set of actions, de-
termines the expected time-discounted reward for choosing 
each action. The terminal reward was scaled by a factor of 
20 to balance it with the entropy loss introduced by SAC.  

In our agents, the actor and critic models use the same 
backbone and head structure to process the game state, alt-
hough the heads make different predictions. The backbone 
is responsible for converting the game state into a vector 
representation, which the head then uses to evaluate the op-
tions. Both models are trained end-to-end with their own 
backbone. Figure 1 shows the structure of our model struc-
ture. 

The Dominion base game contains 32 unique kingdom 
cards, and 15 expansions have added over 400 more. We 
consider 26 of the base game cards, as they are enough to 
allow Big Money, Rush and Engine strategies, and to pre-
vent the agent from overfitting on one kingdom. 
Game State 
We augment the state by providing the model with each 
player’s current number of Victory Points. As a simplifica-
tion, we do not include the opponent’s total deck composi-
tion in the state representation since the information can be 
derived from the remaining cards in the supply and the cards 
in the player’s own deck. For this paper, we focus on the 

Figure 1: Overview of the model structure. Dashed rectangles represent embedding layers, solid rectangles represent Multi-
Layer Perceptron (MLP) layers and curly parenthesis elementwise max aggregations. 
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two-player case, but the representation can easily be ex-
tended to include information for each opposing player.  
Backbone 
The large number of different cards in Dominion makes it 
unrealistic and inefficient to treat each card as a unique class 
(Duringer 2022). Cards often share variations of the same 
basic effects. Therefore, we represent each card as a learna-
ble 16-dimensional embedding. This allows the model to 
learn about multiple cards at the same time.  

To convert any pile, which is made up of a multiset of 
cards, to a vector representation, we first map each card type 
to its embedding and apply a pile specific Multi-Layer Per-
ceptron (MLP). Next, we concatenate the multiplicity of the 
card, and then use another MLP to get a new vector repre-
sentation. Note that this transformation can be done in par-
allel to all cards in the pile, as the operations are permutation 
equivariant, which means permuting the order of cards in 
the input is equivalent to permuting the output (Zaheer et al. 
2018). To aggregate this set of representations into a single 
vector representation of the entire pile, we follow Zaheer et 
al. (2018) and use an element-wise maximum as a permuta-
tion invariant aggregation function, which means that a per-
mutation of the input has no effect on the output. This is fol-
lowed by a final MLP. To allow aggregation with hidden 
layers, we concatenate the set representation to each indi-
vidual element representation in the set and repeat the steps.  

This process, without any hidden layers, is applied to each 
of the piles, and the results are concatenated along with the 
status variables. We then apply a final MLP to get a 32-di-
mensional representation of the game state.  
Decision and Model Structure 
While prior work has focused primarily on optimizing what 
the agent should buy, Dominion requires the player to make 
a diverse set of decisions. Besides choosing which Action 
Card to play, some Action Cards require the player to make 
further decisions when played. While other decision types 
exist in the game, the cards considered in this paper only 
require choosing one or more cards from a multiset of pos-
sible cards. To simplify the decision-making process, we 
model decisions in which more than one card must be cho-
sen as iterated single card decisions, where the set of options 
decreases as decisions are made. While this may make these 
decisions more difficult to learn, almost all decisions the 
agent must make involve only choosing a single card. 

Since this set of actions is unordered but not limited in 
size, we use a set-based representation. This means that both 
the actor and critic models must be permutation equivariant 
with regard to the actions available and deal with sets as both 
an input and an output. As described for the backbone, we 
use the same Set-Aggregation structure with two hidden lay-
ers but do not aggregate the final layer since both actor and 
critic networks require a result per option.  

The output of the actor is a probability distribution over 
the possible actions. Using softmax as the final activation 
function prevented training due to vanishing gradients. We 
therefore linearly rescaled the values to the range [0,1]. 
When sampling to choose the action from this categorial dis-
tribution, the values were treated as the relative probability 
of sampling that class. Further, we use the Tanh activation 
function for all layers in the actor, while we are using ReLU 
in the critic due to the different ranges of outputs.  

To allow a single neural network to make choices for all 
decisions, the actor and critic models of the SAC algorithm 
are passed a decision type, along with the state representa-
tion and the set of options. Similar to the card embedding 
layer, we use a decision embedding layer to get a learnable 
representation of the decision rather than using a one-hot en-
coded vector. The rationale for this choice is that many de-
cisions are very similar. For instance, playing either Mine, 
Chapel, or Remodel all requires choosing card/s to remove 
from the deck. In the case of Mine and Remodel, the deci-
sion is followed by a gain decision, whose options are de-
pendent on the previous trash decision.  
Soft Actor-Critic 
Temperature is a hyperparameter of the original SAC algo-
rithm, which controls how relevant the uncertainty of the ac-
tor’s output is to the loss. In their follow-up work, Haarnoja 
et al. (2019) propose automatically optimizing temperature 
by using the target entropy as the constraint. While the pro-
posed value, −  log(dim(Action Space)), works well with 
continuous action spaces, it does not work in practice with 
the discrete formulation, and considerable effort was spent 
tuning the target entropy.  

Using a variable-size set of options rather than a fixed-
size action space further complicates the tuning since it is 
unclear how the entropy should depend on the number of 
options available. Additionally, decisions are of varying dif-
ficulty and, therefore, should be associated with differing 
levels of certainty. For example, choosing which Action 
Card to play is often easier than determining which card to 
buy. We ignore the difference in entropy for different deci-
sions and use − c log(dim(Available Actions ) − 1) for the 
target entropy to address the changing dimension, where c 
is a tunable hyperparameter, which we set to 0.5. This means 
that the agent should become more uncertain when more ac-
tions are available and decisions with only one or two ac-
tions can be made with very high certainty. 

To further stabilize the temperature during training, we 
used regularization as introduced by Zhou et al. (2022), with 
a scaling value of 0.7. Additionally, we clamped the alpha 
value between 0 and 4. For additional exploration, we take 
a random action 10% of the time. All other hyperparameters 
are listed in the Appendix. 
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Training 
This paper aims to develop agents capable of playing the 
various strategies used by humans, rather than achieving op-
timal performance in a specific kingdom. The agent struc-
ture described above is versatile enough to support this, and 
none of the four distinct agents we trained required any 
changes to this structure, besides increasing the size of the 
hidden dimensions for the Engine Strategy. The difference 
in strategy was achieved primarily through changing the 
training setup and interface of the model with the game, thus 
allowing us to keep the model structure the same.  

Like Angelopoulos and Metafas (2020), training was 
done by playing against bots and for some agents by self-
play, which consisted of playing against a second version of 
the agent, like in Winder (2014). We trained all agents on 
kingdoms generated from the 19 kingdom cards listed in the 
Appendix. In the following subsections, we will describe the 
agent and training setup required for each of the strategies. 
Big Money Strategy 
We used a learning curriculum composed of two bots with 
different strengths to ensure that the agent was able to learn 
from the opponent and did not get stuck (Pang et al. 2019). 
The two bots implemented are the Random Bot, which uses 
a uniform distribution to choose the action, and the Big 
Money Bot (DominionStrategy Wiki 2021), which follows 
a big money strategy and is competitive with inexperienced 
human players. The first 100 games were played against the 
Random Bot. Afterwards, we randomly chose which bot to 
play against. For each bot, we tracked the win rate of the 
agent over the last 20 games. After clipping the win rate be-
tween 0.1 and 0.8, the probability of playing against a cer-
tain bot was proportional to the entropy of treating the 
clipped win rate as a Bernoulli distribution.  
Rush Strategy 
The only viable rush strategy, given our selection of cards, 
requires the Gardens card, as it gives Victory Points propor-
tional to the size of the deck. To bias the agent from learning 
a Big Money strategy to learning a Rush strategy, we re-
quired the kingdom to always include the Gardens card.  
Training Using Self-Play 
Developing agents which utilize trashing required adjusting 
the terminal reward function and introducing a term that 
does not depend on the agents score. During training, this 
should prevent agents from focusing only on improving 
their immediate score. However, when training against the 
Big Money Bot, the agents lost consistently and badly, 
which led them to neglect the second objective and only fo-
cus on the score, thus resulting in Big Money strategies. 
Switching to primarily self-play for the remaining agents, 
allowed the agents to play against an opponent, who was 
also pursuing this non-score related goal and followed the 
same development, resulting in a similar performance level.  

Self-play consists of two copies of the agent being trained 
simultaneously and playing against each other. Whenever 
the running score between the agents differs by more than 
40, a copy of the stronger agent replaces the weaker one. To 
encourage the agents to also develop a competitive strategy, 
20% of the games were played by one of the agents against 
a Big Money Bot.  
Big Money with Trashing Strategy 
Trashing can help any non-Rush strategy by removing weak 
cards from the deck. Before developing a complete Engine 
strategy, we trained an agent capable of playing Big Money 
while trashing. We introduced a heuristic to make the trash-
ing decision for the Chapel Action Card by trashing all 
Curses, Estates and Coppers in that order. Additionally, we 
adjusted the terminal reward to include -60 points per Estate, 
Copper or Curse in the deck. Finally, we required the Chapel 
to be part of any kingdom played.  
Engine Strategy 
The key part of any Engine Strategy is the usage of Action 
Cards to draw many cards per turn. This requires the agent 
to buy and play Action Cards, either allowing it to play fur-
ther Action Cards or draw additional cards. Trashing can 
support this goal by removing unwanted cards from the 
deck. Preliminary experiments showed that the agent was 
able to correctly utilize Action Cards once it had them in its 
deck but failed to buy them in sufficient quantities.  
To motivate the agent to play an Engine strategy, we 
changed the starting composition of each player’s deck. We 
defined a deck of 12 cards that can be played as a strong 
Engine capable of consistently buying a Province per turn. 
See the Appendix for the deck composition. The cards were 
set to always be part of the kingdom. For any individual 
game, we sample a random probability 𝑝𝑒𝑛𝑔𝑖𝑛𝑒  and iterate 
12 times, each time taking a card from the standard starting 
card list or the engine card list whenever a new random num-
ber is larger than 𝑝𝑒𝑛𝑔𝑖𝑛𝑒 . 75% of the games starting config-
urations were generated this way, while 25% used the stand-
ard setup. We combined this with the modification with the 
changes made to encourage trashing. 
Training Configuration 
Hyperparameters were tuned manually while learning a Big 
Money strategy and were not changed for other agents. All 
agents were trained for 300,000 steps. Training was com-
pleted on a single NVIDIA RTX A4000 and took approxi-
mately one day per agent. 

Results 
Agents successfully learning their respective target strate-
gies is reflected in a different deck composition, which can 
be seen in Figure 2 and is discussed in more detail in the 
sections below. For all evaluations in the section, we as-
sessed the best model we trained.  Further, we evaluated the 
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consistency of the training setups by running each training 
five times on different seeds. As shown in the Training sec-
tion of the Appendix, besides the Engine agent training, all 
trainings were very stable.  

To evaluate the performance of our agents, we compared 
them to the Big Money Bot, which was used during training, 
and Big Money variants, which were modified to utilize ei-
ther the Chapel or the Witch card (Winder 2014; Jansen and 
Tollisen 2014). The Big Money Bot, we used, follows the 
algorithm described on the DominionStrategy Wiki (2021), 
rather than from prior work (Winder 2014; Angelopoulos 
and Metafas 2020; Jansen and Tollisen 2014), as it outper-
forms these implementations. The Witch Action Card is 
bought and played by the Witch and the Double Witch Bot. 
Big Money Strategy 
Trained on kingdoms using any of the nineteen kingdom 
cards, our agent won 73% of its games against the Big 
Money Bot, drawing an additional 8.5% of the games. Com-
pared to the pure Big Money heuristic, the learned strategy 
used various Action Cards when available. It primarily used 
the Witch and Militia Cards, two cards that decrease the 
quality of the opponent’s current hand or deck. On average, 
the agent’s deck contained 15% Action Cards and 62% 
Treasure Cards at the end of the game. Games take 25.4 
turns, and agents score 30.3 points. 

While our agent was trained for two-player games, it can 
play against more opponents without modification. When 
playing against three Big Money Bots, it achieved a win rate 
of 63.5% and outperforms Fynbo and Nellemann (2010) and 
Angelopoulos and Metafas (2020), although they used 
slightly different sets of kingdoms.  

When the pure Big Money Bot is augmented to use the 
Witch Card, it performs considerably better, but adding the 
Chapel did not significantly improve the strength with the 
current heuristic. This is reflected in the same agent only 
winning 54% (4% drawn) of the games against the Single 
Witch Bot, 42% (7.5%) against the Double Witch Bot, and 
76.5% (8.5%) against the Chapel Bot. While performance 
against the Big Money strategy is comparable to Winder’s 
(2014), our agent performs significantly better against the 
augmented Chapel Bot. The main difference between the 
Big Money strategies used by the agent and the Witch Bots 
is that the agent buys too many Action Cards, often never 
drawing the ones bought late into the game or drawing more 
Action Cards per turn than it can play.  

If the relevant Witch Bot was included in training, the win 
rates increased to 59.5% (3.5%) and 57% (5%). Jansen and 
Tollisen (2014) achieve a performance of 68.5% against the 
two Witch bots using MCTS on a single kingdom. To train 
against these bots, the kingdom always included the Witch 
Action Card. This causes the agent to see these cards signif-
icantly more often, and its strategy changed to only using  

Figure 2: Average deck composition by card type of each 
of the four agents developed. 

the Witch Card. The fundamental issue of overbuying Ac-
tion Cards remained.  
Rush Strategy 
The agent converged on a strategy of playing the Woodcut-
ter, Workshop, or Bandit Cards, when available, to gain an 
additional card per turn and the Militia Cards to slow down 
the opponent. It relied on emptying one Action Card, the 
Gardens, and the Estates piles to finish the game as soon as 
possible. This results in the agent’s deck containing 18% 
Action Cards and 49% Treasure Cards at the end. When 
playing against itself, games on average took 28.76 turns 
and agents scored 38.0 points. 

The agent achieved a win rate of 74% (0.5%) against the 
Big Money Bot. There are no prior results published on 
Rush strategies, so we developed our own baseline based on 
the DominionStrategy Wiki (2022), as included in the Ap-
pendix. If the model only encountered Big Money strategies 
in training and did not encounter a Rush strategy, the agent 
was unable to respond to an opponent who also plays a Rush 
strategy, winning only 16.5% (2%) of the games against the 
Gardens Bot. If additionally trained against the Gardens Bot, 
the agent achieved a win rate of 80.5% (12.5%) against the 
Garden Bot, while still winning 49.5% (1.5%) against the 
Big Money Bot.  
Big Money with Trashing Strategy 
The trained agent was able to use the Chapel to reduce the 
number of Coppers and Estates in its deck. Similar to human 
players, the agent bought a single Chapel at the beginning 
of the game. The agent then removed all Coppers and Es-
tates from its deck and used this as a basis to play a Big 
Money Strategy. The agent learned to use Militia, Bandit, 
Witch, Merchant and Market Action Cards. At the end of 
the game, the deck contains 19% Action Cards and 46% 
Treasure Cards, with an average of 0.84 Coppers, 0.34 Es-
tates, and 0.36 Curses cards remaining. This resulted in an 
average game length of 21.0 turns with 31.0 points. Against 
the Big Money Bot, it won 78% (6.0%) of games, and even 
with trashing to counter the Curses, it was only able to win 
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39% (2.5%) against Single Witch and 32% (3.5%) against 
Double Witch bots. This performance is comparable to that 
of the Big Money agent, and in a match between the two it 
achieved a 60% (4.0%) win rate.  
Engine Strategy 
The agent developed an Engine strategy that used a combi-
nation of Laboratory and Smithy Cards to draw cards, Vil-
lage, Throne Room and Festival Cards to play additional 
Action Cards, and Chapels to trash Copper and Curses. For 
coins, it used a combination of Festival, Silver, and Gold, 
where some of the Gold was gained via the Bandit Action 
Card. At the end of the game, the deck consisted of, on av-
erage, 60% Action Cards and 22% Treasure Cards. The 
agent trashed somewhat successfully and ended the game 
with 2.57 Coppers, 1.05 Estates and 0.05 Curses. Game fin-
ished on average in 21.8 turns with 24.7 points. 

When playing against the Gardens Bot, the agent 
achieved a win rate of 52% (0.5%), showing that even a 
weak Engine strategy can compete with suboptimal strate-
gies. While the current agent was weaker than the much sim-
pler Big Money Bot, winning only 14% (2%) of the games, 
it is the first agent capable of playing such a strategy.  

The agent sometimes trashed too aggressively, resulting 
in it not having enough money to buy strong cards. As it was 
unwilling to gain Coppers, the agent ended the game with 0 
points. Therefore, the agent will currently lose about 6% of 
games against the Random Bot. Illustrating that while the 
trashing heuristic was required to achieve the current level 
of play, it limits the agent’s control and may hinder the final 
performance.  

Discussion 
Similar to previous work, developing an agent for Dominion 
using reinforcement learning to optimize the win rate leads 
to it learning a Big Money strategy. Due to using a more 
complex neural network, unlike Winder (2014), we did not 
need two separate models for the game stages to outperform 
the baselines. While this required no Dominion specific 
modifications, making an agent learn use trashing or how to 
play an Engine strategy required significant modifications, 
as the complexity of these strategies makes them far more 
difficult to discover and thus learn. For example, for trash-
ing to be a net positive for the agent, it must buy the Chapel 
very early in the game, play it when there are cards on the 
hand that should be trashed and then choose the right cards 
to trash. Discovering this sequence by chance is highly un-
likely. The agent requires samples to learn how to trash but 
initially, playing Chapel causes random cards to be trashed 
which is detrimental to the performance. Therefore, the 
agent will learn not to play or buy Chapels. On the other 
hand, Big Money strategies only require the agent to learn 

to buy cards and any error in the sequence will only slow 
down the agent by a turn or two.  

This rise in complexity and the required precision ex-
plains why search-based approaches, like Jansen and Tol-
lisen (2014), also find Big Money strategies rather than En-
gines. There are significantly more sequences of decisions 
that lead to a strong Big Money solution, and these se-
quences are also considerably shorter than Engine strategies. 
Accordingly, they conclude influencing MCTS to discover 
Engines is difficult since its position evaluation depends en-
tirely on the outcome of the game. Influencing the learned 
policy to be an Engine strategy, on the other hand, is con-
siderably easier when using a reinforcement learning ap-
proach as it requires an easily adjustable reward function. 

Due to the simplicity of the Big Money strategy an agent 
will naturally learn such a strategy first. In most cases buy-
ing and playing any individual Action Card on its own will 
not improve the performance of the Big Money strategy and 
will therefore be judged as a mistake by the reinforcement 
learning algorithm. The only way to learn an Engine strategy 
is to avoid ever learning a Big Money strategy, as SAC’s 
exploration efforts fail to break away from the local maxi-
mum.  

As shown in this paper, we can nonetheless “trick” the 
agent into learning an Engine strategy. This is achieved 
when the algorithm starts playing from a range of starting 
positions: having all necessary cards for an Engine to having 
none. Since playing the Engine is optimal and quicker than 
Big Money in many of these positions, the agent will learn 
such a strategy for those positions and then apply it to the 
others. 

SAC also faces exploration issues when trying to finetune 
its policy, as it fails to explore enough details to find the op-
timal solution. For example, when learning to play a Big 
Money strategy, it consistently runs into issues of overbuy-
ing Action Cards and does not learn to correct this during 
training. It is most likely caused by a combination of the 
small impact of decisions on the overall result and a lack of 
targeted exploration by the agent, as the stochastic explora-
tion used by SAC is not temporally dependent. Even when 
the agent does not overbuy an Action Card due to a random 
exploration decision, it will do so at the next opportunity, as 
the random action is unlikely to repeat. So, the randomness 
of any exploration action is usually smoothed over.  

However, the ineffectiveness of the exploration can be ex-
ploited, to make the agent learn a Rush strategy. Once the 
agent discovers the cheap Gardens cards and is then re-
warded for getting a large deck, it fails to explore alternative 
strategies like Big Money. Note that this only works if Gar-
dens is always available in all kingdoms the agent plays.  
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Future Work 
While this paper shows that playing more complicated strat-
egies with higher potential in Dominion is possible, the cur-
rent agents’ performances does not yet reach human levels. 
Moving from an approach that considers only a single action 
to one which operates on sequences of actions promises to 
improve the precision of play. Alternatively, algorithms that 
use search, such as AlphaZero (Silver et al. 2018), should be 
explored. Further, new exploration methods should be de-
veloped which allow the agent to learn trashing in any setup 
as a foundation for playing strong Engine strategies.  

Conclusion 
In this paper, we develop a new model structure to broaden 
the strategies supported by computer agents in Dominion 
beyond Big Money with the goal of playing more human-
like. The model utilizes a multiset-based representation of 
the game state in Dominion, which, compared to prior ap-
proaches allows for better learning of various kingdom cards 
effects and interactions. We adapt the SAC algorithm to 
choose actions from sets of options with variable sizes. This 
allows the agent to make all decisions in Dominion using a 
single model, giving it more flexibility and removing the 
need to rely on heuristics.  

Without any Dominion-specific modifications, our model 
learns to play a Big Money strategy. It is able to beat stand-
ard heuristics on a wide variety of kingdoms but falls short 
of Big Money strategies augmented to use the Witch Action 
Card. We introduce modifications to the agent and training 
process to develop the first agents which use trashing and 
play Rush or Engine strategies.  
Engine strategies are the most difficult to learn due to their 
reliance on the interaction between various Action Cards 
with limited payoff until fully mastered. Current agents are 
limited by having to discover strategies through learning in-
dividual decisions independently. The next level of perfor-
mance will be achieved by agents aware of the sequence in 
which decisions are made. 

Hyperparameters 
Actor, Critic, Alpha Learning Rate = 0.003 
Discount rate = 0.99 
Gradient clipping = 5 Replay Buffer Size = 100000 
Batch Size = 256 
Decision embedding dimension = 4 
The replay buffer was initially filled with 1000 random ac-
tions. 
All hidden dimensions are 32 except for the Engine Agent 
which uses 64 hidden dimensions and a 128-dimensional 

game state representation. This means the Engine Agent had 
117,489 parameters with the other agents having 32,273 pa-
rameters. All weights were initialised using the standard 
PyTorch initialisation.  

Kingdom Cards Used 
Village, Throne Room, Militia, Witch, Bandit, Smithy, La-
boratory, Council Room, Festival, Woodcutter, Workshop, 
Market, Chapel, Moneylender, Remodel, Merchant, Harem, 
Artisan, Gardens 

Gardens Bot 
The Gardens Bot requires both Workshops and Gardens to 
be in the kingdom. The following cards are bought, when 
possible, from highest to lowest priority: Workshops, Gar-
dens, Estates, any Action Card with a cost below 4, which 
has already been bought, Copper. It will play a Workshop, 
whenever it can, to gain a Gardens Victory Card.  

Engine Starting Deck 
2x Village, 2x Smithy, 1x Festival, 1x Chapel, 3x Labora-
tory, 1x Throne Room, 2x Gold 

Training  
Figure 3 shows the Victory Points gained by the agent per 
round per game, calculated as total points scored divided by 
number of turns played. Each agent was trained for five dif-
ferent seeds. The training of the Engine strategy failed to 
learn any good strategy in one run, which was excluded from 
the figure. 
 

Figure 3: Victory Points gained per turn per agent during 
training over 300 thousand steps. The values are not com-
parable between the agents due to different strategies. For 
example, the Rush agent focused on buying Gardens while 
the opponent was buying Provinces, increasing maximum 
points available. Further the Engine agent uses different 
starting states, which allow for a lot quicker scoring. 
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