
Playing Various Strategies in Dominion with Deep Reinforcement Learning

Jasper Gerigk, Steve Engels

University of Toronto
jasper.gerigk@mail.utoronto.ca, sengels@cs.utoronto.ca

Abstract
Deck-building games, like Dominion, present an unsolved
challenge for game AI research. The complexity arising from
card interactions and the relative strength of strategies de-
pending on the game configuration result in computer agents
being limited to simple strategies. This paper describes the
first application of recent advances in Geometric Deep Learn-
ing to deck-building games. We utilize a comprehensive mul-
tiset-based game representation and train the policy using a
Soft Actor-Critic algorithm adapted to support variable-size
sets of actions. The proposed model is the first successful
learning-based agent that makes all decisions without relying
on heuristics and supports a broader set of game configura-
tions. It exceeds the performance of all previous learning-
based approaches and is only outperformed by search-based
approaches in certain game configurations. In addition, the
paper presents modifications that induce agents to exhibit
novel human-like play strategies. Finally, we show that learn-
ing strong strategies based on card combinations requires a
reinforcement learning algorithm capable of discovering and
executing a precise strategy while ignoring simpler subopti-
mal policies with higher immediate rewards.

 Introduction
Reinforcement learning has been successfully applied to
both classical board games, such as checkers (Samuel 1967),
backgammon (Tesauro et al. 1995), Chess and Go (Silver et
al. 2018), and complex video games, from early Atari games
(Mnih et al. 2015) to modern games such as Dota 2 (OpenAI
et al. 2019). Less attention has been given to more modern
tabletop games including Eurogames with rule sets which
allow for far more complex and diverse strategies than those
found in classical games. For these games, most computer
agents rely on a mixture of heuristics and search algorithms,
which do not capitalize on the breadth of strategies these
games offer and often fail to provide a challenge to experi-
enced players.

For classical board games, the game state can often be
represented as either a vector or as a grid, and for video
games, the rendered image is a natural model input. Modern
tabletop games do not allow for such a simple representation

Copyright © 2023, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

as they often contain many parts including multiple card
piles, counters, and complicated maps in addition to a large
variety of different cards. The field of Geometric Deep
Learning deals with such non-Euclidean data, including
graphs and sets, and allows more natural representations of
such game states (Bronstein et al. 2017).

A subgenre of Eurogames is deck-building games, which
require players to build and manage a deck of cards with the
goal to score the most points. So far, no human-level com-
puter agent has been developed for such games. Dominion1
is the first game defined by its use of a deck-building me-
chanic (Furino 2019). Individual games of Dominion differ
significantly, with ten cards randomly chosen from the hun-
dreds of available kingdom cards. Together with the seven
basic supply cards, they make up the set of all cards used for
that game, called the kingdom. Cards generally belong to
one of three categories: Treasure Cards, which provide coins
to buy new cards; Action Cards, which can be played for a
variety of effects; and Victory Cards, which give Victory
Points. The basic supply cards include three Treasure (Cop-
per, Silver, Gold) and three Victory (Estate, Duchy, Prov-
ince) cards, where the latter cards in each group cost more
to buy and have a disproportionately stronger effect. All
cards in the supply are available in limited quantities. When
all Provinces have been bought, or any three card piles are
depleted, the player with the most Victory Points wins.

Players start with a weak deck of cards and must improve
it before focusing on buying Victory Cards. Winning strate-
gies can roughly be classified into three categories: Big
Money, Rush and Engine. Big Money strategies focus on
buying Treasure Cards until the player can afford Provinces.
Rush strategies aim to accumulate cheap Victory Cards as
fast as possible, often resulting in large, inefficient decks.
They are competitive only in a subset of kingdoms, for in-
stance, when the Gardens Card is available. Engine strate-
gies take the opposite approach. They are often the strongest
strategy but require skillfully chaining together Action
Cards with various effects, aiming to draw the entire deck
each turn, thus using the owned Treasure Cards to maximum

1 https://www.riograndegames.com/games/dominion/

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

224

effect. We consider any strategy an Engine strategy if it buys
and plays a significant amount of Action Cards.

Up to now agent development for Dominion has largely
focused on refining Big Money strategies, while ignoring al-
ternative strategies due to their higher complexity and tun-
ing requirements. The configuration of cards included in the
kingdom can result in any of the three strategies being opti-
mal, and the players must decide which strategy to select.
Mastering individual mechanics such as trashing is often a
challenge, with new players failing to understand the im-
portance of deck-control, which includes trashing sub-par
cards to remove them from the deck, thus increasing its
overall quality. Developing computer agents capable of
playing these strategies is necessary if they are to be com-
petitive with human players and is the focus of this work.

In this paper, we develop a novel, more expressive, mul-
tiset-based representation of the game state of Dominion uti-
lizing advancements in Geometric Deep Learning. Together
with the Soft Actor-Critic (SAC) (Haarnoja et al. 2018) re-
inforcement learning algorithm, this is the foundation for
building agents capable of learning the three main strategies
for Dominion. Without relying on domain-specific modifi-
cations, the model learns a competitive Big Money strategy
that utilizes Action Cards. Through modifications to the re-
ward function, the training setup, and usage of a heuristic,
we train agents to utilize the trashing mechanic and to play
Rush or Engine strategies. We highlight how these results
require a reinforcement learning approach and discuss the
difficulties of learning Engine strategies.

Related Work
A range of techniques have been used to develop computer
agents for Dominion. Generic heuristics for simple Big
Money strategies have been known to the community since
the game’s publishing (DominionStrategy Wiki 2021). As
part of “Geronimoo's challenges - First Game” (Geronimoo
2012), players hand-crafted heuristics for a specific king-
dom which were able to play Engine strategies and win 89%
of the time against the Smithy Bot, which augments a Big
Money strategy by using the Smithy Action Card to draw
additional cards. Scaling these heuristics to support multiple
kingdoms while maintaining the same strength of play is
considered unfeasible.

Fisher (2014) developed Provincial AI which uses an evo-
lution algorithm to learn the optimal card buying heuristic
for an individual kingdom while relying on hand-designed
general heuristics and a simple look-ahead model for all
other decisions, including the playing of Action Cards. Pro-
vincial AI is claimed to be challenging for experienced play-
ers, but no formal evaluation has been made.

2 https://dominion.games/

Jansen and Tollisen (2014) proposed a Monte Carlo Tree
Search (MCTS) based approach using either Upper Confi-
dence Bounds (UCB) or UCB applied to trees, and a novel
method for dealing with stochastic card drawing and player
interaction. The algorithms were strong enough to achieve a
win rate of 68.5% against augmented Big Money heuristics
using the Witch Card, which draws cards and makes oppo-
nents gain Curses, but were unable to use Action Card com-
binations even after adding heuristics.

Angelopoulos and Metafas (2021) apply Q-Learning and
achieve a win rate of 57.44% against three bot opponents.
They only consider Chapel and Smithy Action Cards and
limit the agent to buy only the latter. The complexity of
playing Chapels and the necessity of a smaller state space
for Q-Learning are the cause for this simplification.

Techniques combining reinforcement learning with neu-
ral networks have had limited success and have only resulted
in agents playing Big Money strategies. Winder (2014)
trains neural networks to make all decisions in a game for
one kingdom using temporal-difference learning and back-
propagation, hill-climbing, or a genetic algorithm. A genetic
algorithm using two separate neural networks for the early
and late parts of the game achieves the best performance and
wins 74.7% of the games against a Big Money bot. The
model plays an augmented Big Money strategy but never
uses the trashing mechanic. Fynbo and Nellemann (2010)
combine competitive co-evolution and Neuro Evolution of
Augmented Topologies to develop three models with com-
bine to form an agent. The first is tasked with predicting how
far the game has progressed, the second learns to evaluate
the value of different cards, and the third determines in
which order Action Cards should be played using MCTS.
The model input is a designed feature vector. They success-
fully train the model for card evaluation but find that a heu-
ristic can outperform the third network. Playing against
three Big Money Bots in a four-player game, the learned
agent has a win rate of 54.33%.

The two commercial Dominion clients offer the oppor-
tunity to play against a computer agent. The agent provided
by Shuffle IT2 is based on heuristics and is generally re-
garded as weaker than the one developed by Temple Gates
Games (Duringer 2022). It is based on the techniques intro-
duced by AlphaZero. Their key innovation is that rather than
representing the cards as one-hot encoded variables, they
learn card embeddings allowing the agent to play with a
large variety of Action cards. No rigorous evaluation of the
play strength has been performed.

The only formal description of Dominion and deck-build-
ing games, in general, was made by Heijden (2014) who de-
fines the game as a tuple containing the set of cards used,
functions for determining the end of the game and various
properties of cards, and multisets to track cards in starting

225

deck, current deck, and the hand cards of a player. This for-
mulation ignores the finite number of cards available to buy
and the existence of Action Cards, which limits its relevance
to Dominion. Heijden (2014) develops heuristic, MCTS,
and dynamic programming-based agents for the simplified
game and shows that, in this case, a Big Money heuristic
strategy is close to optimal.

Methodology
Dominion can be described as an episodic Markov-Decision
Process (𝑆, 𝐴, p, r), where 𝑆 is the state space, 𝐴 the discrete
action space, p(𝑠’|𝑠, 𝑎) the transition probability and r(𝑠, 𝑎)
the reward.

Each state is made up of the common supply, containing
the cards which can be gained, the shared trash pile, which
stores trashed cards, and the status of each player’s deck.
The deck consists of the cards in the players’ draw and dis-
card pile, their hand, and the Action Cards the player has
played this turn. Since the draw pile is hidden and the order
of the cards in the other locations does not matter, we can
model all of them as multisets, which we call piles. The state
also contains the current player’s number of Action Points,
Buys, and Coins.

The action space includes all possible decisions required
during a game of Dominion and will be elaborated upon in
the Decision and Model Structure section. Each action is
modeled as choosing one card from a variable-size set of
possible cards.

The transition probability generally follows the rules of
the game. While some actions have a deterministic effect,
such as trashing a card, others, like drawing a card, are sto-
chastic since the order of cards in the draw pile is unknown.
As stated previously, the game terminates, when any three
supply card piles are empty or all Provinces have been
bought. The only addition we make is to terminate the game
after 40 moves to limit game lengths when the agents are
playing badly. For stronger agents, this limit has no effect
on the strategy, as games usually end within 15-30 turns.

A terminal reward was used, consisting of the difference
between the player’s and the opponent’s scored victory
points. A simpler reward, which would only depend on if
the player won, was not used, as it gives the model no feed-
back on important marginal improvements during training.

Each player starts with a deck of 7 Copper Treasure Cards
and 3 Estate Victory Cards, which are shuffled.

Using this formulation, we can apply a standard model-
free reinforcement learning algorithm to Dominion. Soft
Actor-Critic (SAC) was chosen due to its good performance
on many control tasks and the inclusion of a temperature
term, which encourages more exploration (Haarnoja et al.
2018). While SAC was originally developed for continuous
actions, Christodoulou (2019) introduced a discrete formu-
lation. SAC consists of an actor and a critic. The actor, given
a set of actions, returns the probability with which each ac-
tion should be played. The critic, given a set of actions, de-
termines the expected time-discounted reward for choosing
each action. The terminal reward was scaled by a factor of
20 to balance it with the entropy loss introduced by SAC.

In our agents, the actor and critic models use the same
backbone and head structure to process the game state, alt-
hough the heads make different predictions. The backbone
is responsible for converting the game state into a vector
representation, which the head then uses to evaluate the op-
tions. Both models are trained end-to-end with their own
backbone. Figure 1 shows the structure of our model struc-
ture.

The Dominion base game contains 32 unique kingdom
cards, and 15 expansions have added over 400 more. We
consider 26 of the base game cards, as they are enough to
allow Big Money, Rush and Engine strategies, and to pre-
vent the agent from overfitting on one kingdom.
Game State
We augment the state by providing the model with each
player’s current number of Victory Points. As a simplifica-
tion, we do not include the opponent’s total deck composi-
tion in the state representation since the information can be
derived from the remaining cards in the supply and the cards
in the player’s own deck. For this paper, we focus on the

Figure 1: Overview of the model structure. Dashed rectangles represent embedding layers, solid rectangles represent Multi-
Layer Perceptron (MLP) layers and curly parenthesis elementwise max aggregations.

226

two-player case, but the representation can easily be ex-
tended to include information for each opposing player.
Backbone
The large number of different cards in Dominion makes it
unrealistic and inefficient to treat each card as a unique class
(Duringer 2022). Cards often share variations of the same
basic effects. Therefore, we represent each card as a learna-
ble 16-dimensional embedding. This allows the model to
learn about multiple cards at the same time.

To convert any pile, which is made up of a multiset of
cards, to a vector representation, we first map each card type
to its embedding and apply a pile specific Multi-Layer Per-
ceptron (MLP). Next, we concatenate the multiplicity of the
card, and then use another MLP to get a new vector repre-
sentation. Note that this transformation can be done in par-
allel to all cards in the pile, as the operations are permutation
equivariant, which means permuting the order of cards in
the input is equivalent to permuting the output (Zaheer et al.
2018). To aggregate this set of representations into a single
vector representation of the entire pile, we follow Zaheer et
al. (2018) and use an element-wise maximum as a permuta-
tion invariant aggregation function, which means that a per-
mutation of the input has no effect on the output. This is fol-
lowed by a final MLP. To allow aggregation with hidden
layers, we concatenate the set representation to each indi-
vidual element representation in the set and repeat the steps.

This process, without any hidden layers, is applied to each
of the piles, and the results are concatenated along with the
status variables. We then apply a final MLP to get a 32-di-
mensional representation of the game state.
Decision and Model Structure
While prior work has focused primarily on optimizing what
the agent should buy, Dominion requires the player to make
a diverse set of decisions. Besides choosing which Action
Card to play, some Action Cards require the player to make
further decisions when played. While other decision types
exist in the game, the cards considered in this paper only
require choosing one or more cards from a multiset of pos-
sible cards. To simplify the decision-making process, we
model decisions in which more than one card must be cho-
sen as iterated single card decisions, where the set of options
decreases as decisions are made. While this may make these
decisions more difficult to learn, almost all decisions the
agent must make involve only choosing a single card.

Since this set of actions is unordered but not limited in
size, we use a set-based representation. This means that both
the actor and critic models must be permutation equivariant
with regard to the actions available and deal with sets as both
an input and an output. As described for the backbone, we
use the same Set-Aggregation structure with two hidden lay-
ers but do not aggregate the final layer since both actor and
critic networks require a result per option.

The output of the actor is a probability distribution over
the possible actions. Using softmax as the final activation
function prevented training due to vanishing gradients. We
therefore linearly rescaled the values to the range [0,1].
When sampling to choose the action from this categorial dis-
tribution, the values were treated as the relative probability
of sampling that class. Further, we use the Tanh activation
function for all layers in the actor, while we are using ReLU
in the critic due to the different ranges of outputs.

To allow a single neural network to make choices for all
decisions, the actor and critic models of the SAC algorithm
are passed a decision type, along with the state representa-
tion and the set of options. Similar to the card embedding
layer, we use a decision embedding layer to get a learnable
representation of the decision rather than using a one-hot en-
coded vector. The rationale for this choice is that many de-
cisions are very similar. For instance, playing either Mine,
Chapel, or Remodel all requires choosing card/s to remove
from the deck. In the case of Mine and Remodel, the deci-
sion is followed by a gain decision, whose options are de-
pendent on the previous trash decision.
Soft Actor-Critic
Temperature is a hyperparameter of the original SAC algo-
rithm, which controls how relevant the uncertainty of the ac-
tor’s output is to the loss. In their follow-up work, Haarnoja
et al. (2019) propose automatically optimizing temperature
by using the target entropy as the constraint. While the pro-
posed value, −  log(dim(Action Space)), works well with
continuous action spaces, it does not work in practice with
the discrete formulation, and considerable effort was spent
tuning the target entropy.

Using a variable-size set of options rather than a fixed-
size action space further complicates the tuning since it is
unclear how the entropy should depend on the number of
options available. Additionally, decisions are of varying dif-
ficulty and, therefore, should be associated with differing
levels of certainty. For example, choosing which Action
Card to play is often easier than determining which card to
buy. We ignore the difference in entropy for different deci-
sions and use − c log(dim(Available Actions) − 1) for the
target entropy to address the changing dimension, where c
is a tunable hyperparameter, which we set to 0.5. This means
that the agent should become more uncertain when more ac-
tions are available and decisions with only one or two ac-
tions can be made with very high certainty.

To further stabilize the temperature during training, we
used regularization as introduced by Zhou et al. (2022), with
a scaling value of 0.7. Additionally, we clamped the alpha
value between 0 and 4. For additional exploration, we take
a random action 10% of the time. All other hyperparameters
are listed in the Appendix.

227

Training
This paper aims to develop agents capable of playing the
various strategies used by humans, rather than achieving op-
timal performance in a specific kingdom. The agent struc-
ture described above is versatile enough to support this, and
none of the four distinct agents we trained required any
changes to this structure, besides increasing the size of the
hidden dimensions for the Engine Strategy. The difference
in strategy was achieved primarily through changing the
training setup and interface of the model with the game, thus
allowing us to keep the model structure the same.

Like Angelopoulos and Metafas (2020), training was
done by playing against bots and for some agents by self-
play, which consisted of playing against a second version of
the agent, like in Winder (2014). We trained all agents on
kingdoms generated from the 19 kingdom cards listed in the
Appendix. In the following subsections, we will describe the
agent and training setup required for each of the strategies.
Big Money Strategy
We used a learning curriculum composed of two bots with
different strengths to ensure that the agent was able to learn
from the opponent and did not get stuck (Pang et al. 2019).
The two bots implemented are the Random Bot, which uses
a uniform distribution to choose the action, and the Big
Money Bot (DominionStrategy Wiki 2021), which follows
a big money strategy and is competitive with inexperienced
human players. The first 100 games were played against the
Random Bot. Afterwards, we randomly chose which bot to
play against. For each bot, we tracked the win rate of the
agent over the last 20 games. After clipping the win rate be-
tween 0.1 and 0.8, the probability of playing against a cer-
tain bot was proportional to the entropy of treating the
clipped win rate as a Bernoulli distribution.
Rush Strategy
The only viable rush strategy, given our selection of cards,
requires the Gardens card, as it gives Victory Points propor-
tional to the size of the deck. To bias the agent from learning
a Big Money strategy to learning a Rush strategy, we re-
quired the kingdom to always include the Gardens card.
Training Using Self-Play
Developing agents which utilize trashing required adjusting
the terminal reward function and introducing a term that
does not depend on the agents score. During training, this
should prevent agents from focusing only on improving
their immediate score. However, when training against the
Big Money Bot, the agents lost consistently and badly,
which led them to neglect the second objective and only fo-
cus on the score, thus resulting in Big Money strategies.
Switching to primarily self-play for the remaining agents,
allowed the agents to play against an opponent, who was
also pursuing this non-score related goal and followed the
same development, resulting in a similar performance level.

Self-play consists of two copies of the agent being trained
simultaneously and playing against each other. Whenever
the running score between the agents differs by more than
40, a copy of the stronger agent replaces the weaker one. To
encourage the agents to also develop a competitive strategy,
20% of the games were played by one of the agents against
a Big Money Bot.
Big Money with Trashing Strategy
Trashing can help any non-Rush strategy by removing weak
cards from the deck. Before developing a complete Engine
strategy, we trained an agent capable of playing Big Money
while trashing. We introduced a heuristic to make the trash-
ing decision for the Chapel Action Card by trashing all
Curses, Estates and Coppers in that order. Additionally, we
adjusted the terminal reward to include -60 points per Estate,
Copper or Curse in the deck. Finally, we required the Chapel
to be part of any kingdom played.
Engine Strategy
The key part of any Engine Strategy is the usage of Action
Cards to draw many cards per turn. This requires the agent
to buy and play Action Cards, either allowing it to play fur-
ther Action Cards or draw additional cards. Trashing can
support this goal by removing unwanted cards from the
deck. Preliminary experiments showed that the agent was
able to correctly utilize Action Cards once it had them in its
deck but failed to buy them in sufficient quantities.
To motivate the agent to play an Engine strategy, we
changed the starting composition of each player’s deck. We
defined a deck of 12 cards that can be played as a strong
Engine capable of consistently buying a Province per turn.
See the Appendix for the deck composition. The cards were
set to always be part of the kingdom. For any individual
game, we sample a random probability 𝑝𝑒𝑛𝑔𝑖𝑛𝑒 and iterate
12 times, each time taking a card from the standard starting
card list or the engine card list whenever a new random num-
ber is larger than 𝑝𝑒𝑛𝑔𝑖𝑛𝑒 . 75% of the games starting config-
urations were generated this way, while 25% used the stand-
ard setup. We combined this with the modification with the
changes made to encourage trashing.
Training Configuration
Hyperparameters were tuned manually while learning a Big
Money strategy and were not changed for other agents. All
agents were trained for 300,000 steps. Training was com-
pleted on a single NVIDIA RTX A4000 and took approxi-
mately one day per agent.

Results
Agents successfully learning their respective target strate-
gies is reflected in a different deck composition, which can
be seen in Figure 2 and is discussed in more detail in the
sections below. For all evaluations in the section, we as-
sessed the best model we trained. Further, we evaluated the

228

consistency of the training setups by running each training
five times on different seeds. As shown in the Training sec-
tion of the Appendix, besides the Engine agent training, all
trainings were very stable.

To evaluate the performance of our agents, we compared
them to the Big Money Bot, which was used during training,
and Big Money variants, which were modified to utilize ei-
ther the Chapel or the Witch card (Winder 2014; Jansen and
Tollisen 2014). The Big Money Bot, we used, follows the
algorithm described on the DominionStrategy Wiki (2021),
rather than from prior work (Winder 2014; Angelopoulos
and Metafas 2020; Jansen and Tollisen 2014), as it outper-
forms these implementations. The Witch Action Card is
bought and played by the Witch and the Double Witch Bot.
Big Money Strategy
Trained on kingdoms using any of the nineteen kingdom
cards, our agent won 73% of its games against the Big
Money Bot, drawing an additional 8.5% of the games. Com-
pared to the pure Big Money heuristic, the learned strategy
used various Action Cards when available. It primarily used
the Witch and Militia Cards, two cards that decrease the
quality of the opponent’s current hand or deck. On average,
the agent’s deck contained 15% Action Cards and 62%
Treasure Cards at the end of the game. Games take 25.4
turns, and agents score 30.3 points.

While our agent was trained for two-player games, it can
play against more opponents without modification. When
playing against three Big Money Bots, it achieved a win rate
of 63.5% and outperforms Fynbo and Nellemann (2010) and
Angelopoulos and Metafas (2020), although they used
slightly different sets of kingdoms.

When the pure Big Money Bot is augmented to use the
Witch Card, it performs considerably better, but adding the
Chapel did not significantly improve the strength with the
current heuristic. This is reflected in the same agent only
winning 54% (4% drawn) of the games against the Single
Witch Bot, 42% (7.5%) against the Double Witch Bot, and
76.5% (8.5%) against the Chapel Bot. While performance
against the Big Money strategy is comparable to Winder’s
(2014), our agent performs significantly better against the
augmented Chapel Bot. The main difference between the
Big Money strategies used by the agent and the Witch Bots
is that the agent buys too many Action Cards, often never
drawing the ones bought late into the game or drawing more
Action Cards per turn than it can play.

If the relevant Witch Bot was included in training, the win
rates increased to 59.5% (3.5%) and 57% (5%). Jansen and
Tollisen (2014) achieve a performance of 68.5% against the
two Witch bots using MCTS on a single kingdom. To train
against these bots, the kingdom always included the Witch
Action Card. This causes the agent to see these cards signif-
icantly more often, and its strategy changed to only using

Figure 2: Average deck composition by card type of each
of the four agents developed.

the Witch Card. The fundamental issue of overbuying Ac-
tion Cards remained.
Rush Strategy
The agent converged on a strategy of playing the Woodcut-
ter, Workshop, or Bandit Cards, when available, to gain an
additional card per turn and the Militia Cards to slow down
the opponent. It relied on emptying one Action Card, the
Gardens, and the Estates piles to finish the game as soon as
possible. This results in the agent’s deck containing 18%
Action Cards and 49% Treasure Cards at the end. When
playing against itself, games on average took 28.76 turns
and agents scored 38.0 points.

The agent achieved a win rate of 74% (0.5%) against the
Big Money Bot. There are no prior results published on
Rush strategies, so we developed our own baseline based on
the DominionStrategy Wiki (2022), as included in the Ap-
pendix. If the model only encountered Big Money strategies
in training and did not encounter a Rush strategy, the agent
was unable to respond to an opponent who also plays a Rush
strategy, winning only 16.5% (2%) of the games against the
Gardens Bot. If additionally trained against the Gardens Bot,
the agent achieved a win rate of 80.5% (12.5%) against the
Garden Bot, while still winning 49.5% (1.5%) against the
Big Money Bot.
Big Money with Trashing Strategy
The trained agent was able to use the Chapel to reduce the
number of Coppers and Estates in its deck. Similar to human
players, the agent bought a single Chapel at the beginning
of the game. The agent then removed all Coppers and Es-
tates from its deck and used this as a basis to play a Big
Money Strategy. The agent learned to use Militia, Bandit,
Witch, Merchant and Market Action Cards. At the end of
the game, the deck contains 19% Action Cards and 46%
Treasure Cards, with an average of 0.84 Coppers, 0.34 Es-
tates, and 0.36 Curses cards remaining. This resulted in an
average game length of 21.0 turns with 31.0 points. Against
the Big Money Bot, it won 78% (6.0%) of games, and even
with trashing to counter the Curses, it was only able to win

229

39% (2.5%) against Single Witch and 32% (3.5%) against
Double Witch bots. This performance is comparable to that
of the Big Money agent, and in a match between the two it
achieved a 60% (4.0%) win rate.
Engine Strategy
The agent developed an Engine strategy that used a combi-
nation of Laboratory and Smithy Cards to draw cards, Vil-
lage, Throne Room and Festival Cards to play additional
Action Cards, and Chapels to trash Copper and Curses. For
coins, it used a combination of Festival, Silver, and Gold,
where some of the Gold was gained via the Bandit Action
Card. At the end of the game, the deck consisted of, on av-
erage, 60% Action Cards and 22% Treasure Cards. The
agent trashed somewhat successfully and ended the game
with 2.57 Coppers, 1.05 Estates and 0.05 Curses. Game fin-
ished on average in 21.8 turns with 24.7 points.

When playing against the Gardens Bot, the agent
achieved a win rate of 52% (0.5%), showing that even a
weak Engine strategy can compete with suboptimal strate-
gies. While the current agent was weaker than the much sim-
pler Big Money Bot, winning only 14% (2%) of the games,
it is the first agent capable of playing such a strategy.

The agent sometimes trashed too aggressively, resulting
in it not having enough money to buy strong cards. As it was
unwilling to gain Coppers, the agent ended the game with 0
points. Therefore, the agent will currently lose about 6% of
games against the Random Bot. Illustrating that while the
trashing heuristic was required to achieve the current level
of play, it limits the agent’s control and may hinder the final
performance.

Discussion
Similar to previous work, developing an agent for Dominion
using reinforcement learning to optimize the win rate leads
to it learning a Big Money strategy. Due to using a more
complex neural network, unlike Winder (2014), we did not
need two separate models for the game stages to outperform
the baselines. While this required no Dominion specific
modifications, making an agent learn use trashing or how to
play an Engine strategy required significant modifications,
as the complexity of these strategies makes them far more
difficult to discover and thus learn. For example, for trash-
ing to be a net positive for the agent, it must buy the Chapel
very early in the game, play it when there are cards on the
hand that should be trashed and then choose the right cards
to trash. Discovering this sequence by chance is highly un-
likely. The agent requires samples to learn how to trash but
initially, playing Chapel causes random cards to be trashed
which is detrimental to the performance. Therefore, the
agent will learn not to play or buy Chapels. On the other
hand, Big Money strategies only require the agent to learn

to buy cards and any error in the sequence will only slow
down the agent by a turn or two.

This rise in complexity and the required precision ex-
plains why search-based approaches, like Jansen and Tol-
lisen (2014), also find Big Money strategies rather than En-
gines. There are significantly more sequences of decisions
that lead to a strong Big Money solution, and these se-
quences are also considerably shorter than Engine strategies.
Accordingly, they conclude influencing MCTS to discover
Engines is difficult since its position evaluation depends en-
tirely on the outcome of the game. Influencing the learned
policy to be an Engine strategy, on the other hand, is con-
siderably easier when using a reinforcement learning ap-
proach as it requires an easily adjustable reward function.

Due to the simplicity of the Big Money strategy an agent
will naturally learn such a strategy first. In most cases buy-
ing and playing any individual Action Card on its own will
not improve the performance of the Big Money strategy and
will therefore be judged as a mistake by the reinforcement
learning algorithm. The only way to learn an Engine strategy
is to avoid ever learning a Big Money strategy, as SAC’s
exploration efforts fail to break away from the local maxi-
mum.

As shown in this paper, we can nonetheless “trick” the
agent into learning an Engine strategy. This is achieved
when the algorithm starts playing from a range of starting
positions: having all necessary cards for an Engine to having
none. Since playing the Engine is optimal and quicker than
Big Money in many of these positions, the agent will learn
such a strategy for those positions and then apply it to the
others.

SAC also faces exploration issues when trying to finetune
its policy, as it fails to explore enough details to find the op-
timal solution. For example, when learning to play a Big
Money strategy, it consistently runs into issues of overbuy-
ing Action Cards and does not learn to correct this during
training. It is most likely caused by a combination of the
small impact of decisions on the overall result and a lack of
targeted exploration by the agent, as the stochastic explora-
tion used by SAC is not temporally dependent. Even when
the agent does not overbuy an Action Card due to a random
exploration decision, it will do so at the next opportunity, as
the random action is unlikely to repeat. So, the randomness
of any exploration action is usually smoothed over.

However, the ineffectiveness of the exploration can be ex-
ploited, to make the agent learn a Rush strategy. Once the
agent discovers the cheap Gardens cards and is then re-
warded for getting a large deck, it fails to explore alternative
strategies like Big Money. Note that this only works if Gar-
dens is always available in all kingdoms the agent plays.

230

Future Work
While this paper shows that playing more complicated strat-
egies with higher potential in Dominion is possible, the cur-
rent agents’ performances does not yet reach human levels.
Moving from an approach that considers only a single action
to one which operates on sequences of actions promises to
improve the precision of play. Alternatively, algorithms that
use search, such as AlphaZero (Silver et al. 2018), should be
explored. Further, new exploration methods should be de-
veloped which allow the agent to learn trashing in any setup
as a foundation for playing strong Engine strategies.

Conclusion
In this paper, we develop a new model structure to broaden
the strategies supported by computer agents in Dominion
beyond Big Money with the goal of playing more human-
like. The model utilizes a multiset-based representation of
the game state in Dominion, which, compared to prior ap-
proaches allows for better learning of various kingdom cards
effects and interactions. We adapt the SAC algorithm to
choose actions from sets of options with variable sizes. This
allows the agent to make all decisions in Dominion using a
single model, giving it more flexibility and removing the
need to rely on heuristics.

Without any Dominion-specific modifications, our model
learns to play a Big Money strategy. It is able to beat stand-
ard heuristics on a wide variety of kingdoms but falls short
of Big Money strategies augmented to use the Witch Action
Card. We introduce modifications to the agent and training
process to develop the first agents which use trashing and
play Rush or Engine strategies.
Engine strategies are the most difficult to learn due to their
reliance on the interaction between various Action Cards
with limited payoff until fully mastered. Current agents are
limited by having to discover strategies through learning in-
dividual decisions independently. The next level of perfor-
mance will be achieved by agents aware of the sequence in
which decisions are made.

Hyperparameters
Actor, Critic, Alpha Learning Rate = 0.003
Discount rate = 0.99
Gradient clipping = 5 Replay Buffer Size = 100000
Batch Size = 256
Decision embedding dimension = 4
The replay buffer was initially filled with 1000 random ac-
tions.
All hidden dimensions are 32 except for the Engine Agent
which uses 64 hidden dimensions and a 128-dimensional

game state representation. This means the Engine Agent had
117,489 parameters with the other agents having 32,273 pa-
rameters. All weights were initialised using the standard
PyTorch initialisation.

Kingdom Cards Used
Village, Throne Room, Militia, Witch, Bandit, Smithy, La-
boratory, Council Room, Festival, Woodcutter, Workshop,
Market, Chapel, Moneylender, Remodel, Merchant, Harem,
Artisan, Gardens

Gardens Bot
The Gardens Bot requires both Workshops and Gardens to
be in the kingdom. The following cards are bought, when
possible, from highest to lowest priority: Workshops, Gar-
dens, Estates, any Action Card with a cost below 4, which
has already been bought, Copper. It will play a Workshop,
whenever it can, to gain a Gardens Victory Card.

Engine Starting Deck
2x Village, 2x Smithy, 1x Festival, 1x Chapel, 3x Labora-
tory, 1x Throne Room, 2x Gold

Training
Figure 3 shows the Victory Points gained by the agent per
round per game, calculated as total points scored divided by
number of turns played. Each agent was trained for five dif-
ferent seeds. The training of the Engine strategy failed to
learn any good strategy in one run, which was excluded from
the figure.

Figure 3: Victory Points gained per turn per agent during
training over 300 thousand steps. The values are not com-
parable between the agents due to different strategies. For
example, the Rush agent focused on buying Gardens while
the opponent was buying Provinces, increasing maximum
points available. Further the Engine agent uses different
starting states, which allow for a lot quicker scoring.

231

References
Angelopoulos, G.; and Metafas, D., 2021, November. Q
Learning applied on the Board Game Dominion. In 24th
Pan-Hellenic Conference on Informatics (pp. 34-37).
Christodoulou, P., 2019. Soft actor-critic for discrete action
settings. arXiv:1910.07207.
DominionStrategy Wiki. 2021. Money Strategies.
https://wiki.dominionstrategy.com/index.php?ti-
tle=Money_strategies&oldid=53660. Accessed: 2023-05-
26.
DominionStrategy Wiki. 2022. Combo: Workshop and
Gardens. https://wiki.dominionstrategy.com/index.php?ti-
tle=Combo:_Workshop_and_Gardens&oldid=67141. Ac-
cessed: 2023-05-26.
Duringer, T. 2022. Dominion AI. Temple Gates. 25 April
2022. https://www.templegatesgames.com/dominion-ai/.
Accessed: 2023-05-26.
Fisher, M. 2014. Provincial: A Kingdom-Adaptive AI for
Dominion. https://graphics.stanford.edu/~mdfisher/Domin-
ionAI.html. Accessed: 2023-05-26.
Furino, G. 2019. Dominion Review - The Game That
Launched A Genre. TechRaptor. 28 March 2019.
https://techraptor.net/tabletop/reviews/dominion-review-
game-that-launched-genre. Accessed: 2023-05-26.
Fynbo, R. B.; and Nellemann, C. S. 2010. Developing an
Agent for Dominion Using Modern Ai-Approaches. M. Sc.
IT, IT University of Copenhagen.
Geronimoo. 2012. Geronimoo’s Challenges - First Game.
http://forum.dominionstrategy.com/in-
dex.php?topic=3779.msg101489#msg101489. Accessed:
2023-05-26.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S., 2018.
Soft actor-critic: Off-policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, 1861–1870. PMLR
Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha,
S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A., Abbeel, P.; and
Levine, S. 2019. Soft Actor-Critic Algorithms and Appli-
cations. arXiv:1812.05905.
Heijden, R. 2014. An Analysis of Dominion. Thesis Bache-
lor Informatica, Leiden Institute of Advanced Computer
Science, Leiden University.
Jansen, J. V.; and Tollisen, R. 2014. An AI for dominion
based on Monte-Carlo methods. Master’s thesis, Univer-
sity of Agder.
Mastrangeli, T. 2014. Top 10 Deck Building Games. Board
Game Quest. www.boardgamequest.com/top-10-deck-
building-games. Accessed: 2023-07-27.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Ve-
ness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.,
Fidjeland, A.K.; Ostrovski, G.; and Petersen, S. 2015. Hu-

man-level control through deep reinforcement learn-
ing. Nature, 518(7540): 529-533. Number: 7540 Publisher:
Nature Publishing Group.
OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme,
S.; Hesse, C.; Józefowicz, R.; Gray, S.; Olsson C.;
Pachocki, J.; Petrov, M.; d. O. Pinto, H. P.; Raiman, J.;
Salismans, T.; Schlatter, J.; Schneider, J.; Sidor, S.;
Sutskever, I.; Tang, J.; Wolski, F.; and Zhang S. 2019.
Dota 2 with Large Scale Deep Reinforcement Learn-
ing. arXiv:1912.06680.
Pang, Z.-J.; Liu, R.-Z.; Meng, Z.-Y.; Zhang, Y.; Yu, Y.;
and Lu, T. 2019. On Reinforcement Learning for Full-
Length Game of Starcraft. In Proceedings of the AAAI
Conference on Artificial Intelligence. volume 33: 4691-
4698. Issue: 01
Samuel, A. L. 1967. Some studies in machine learning
using the game of checkers. II—Recent progress. IBM
Journal of research and development, 11(6): 601–617.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.;
Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.;
Graepel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D.
2018. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Sci-
ence, 362(6419):1140-1144.
Tesauro, G.; et al. 1995. Temporal difference learning
and TD-Gammon. Communications of the ACM, 38(3):
58–68.
Winder, R. K. 2014. Methods for approximating value
functions for the Dominion card game. Evolutionary Intel-
ligence 6 (4): 195–204.
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Sala-
khutdinov, R. R.; and Smola, A. J. 2017. Deep sets. Ad-
vances in neural information processing systems, 30.
Zhou, H.; Zichuan L.; Junyou L.; Deheng Y.; Qiang F.;
and Yang, W. 2022. Revisiting Discrete Soft Actor-Critic.
arXiv:2209.10081.

232

http://www.boardgamequest.com/top-10-deck-building-games
http://www.boardgamequest.com/top-10-deck-building-games

