Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

Observer Rules for Box-Split Grammars

Nicholas Baron, Markus Eger

Cal Poly Pomona
njbaron @cpp.edu, meger @cpp.edu

Abstract

Grammars are well-suited for the generation of structured
content, such as text. Some specialized grammars, such as
Shape Grammars, can even be used to generate 3D structures
inside a game world like Minecraft. However, the top-down
nature of grammars present limitations when it comes to mod-
eling structures that should be connected to or utilize given
geometry. In this paper, we describe an extension to an exist-
ing grammar model, called Box-Split Grammars, that extends
it with the ability to observe existing geometry during the
generation process, in order to incorporate it propertly into
the generated structures. This modification also requires the
addition of back-tracking in order to handle states in which
certain geometry was (not) observed. We demonstrate the
utility of this extension by showing how it can be used to
place support structures for bridges and tunnels in a way that
fits within an existing landscape.

Introduction

Procedural Content Generation (PCG) is widely used in the
games industry, and extensively studied in academia. The
idea that a computer program can produce variations of
structures is enticing, as it allows greater flexibility when
developing games. There are numerous approaches that are
being used, from logic programming to define constraints on
desirable output (Nelson and Smith 2016), to Neural Net-
works that generate images or text by mimicry (Creswell
et al. 2018). Just as numerous as the approaches are the
potential applications for PCG. More commonly used ar-
tifacts that are generated include plants and trees (Linden-
mayer, Prusinkiewicz et al. 1990), levels (Van Der Linden,
Lopes, and Bidarra 2013), or character- and item-names,
sometimes even including their backstory (Adams 2019).
However, there has also been interest in generating other el-
ements of games, including 3D models, or even entire games
(Cook 2022). Our interest lies with the generation of struc-
tures in the world of Minecraft. This domain is of particular
interest, as a competition to procedurally generate entire set-
tlements has been running for several years now (Salge et al.
2018), and we strive to develop approaches that may be use-
ful within this competition and beyond. The goal of the set-
tlement generation competition is to generate an entire set-

Copyright (©) 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

195

tlement in a given Minecraft world, which is then evaluated
by human judges. One of the evaluation criteria is how well
the generated settlement fits within the given world, requir-
ing incorporating existing features of the geography in the
generation process.

Even within this narrow space, many approaches have
been proposed and used, each with its own benefits and
drawbacks. As some of the judges noted previously, many
competitors rely on placing pre-defined templated build-
ings (Salge et al. 2022), and use a balance of ad-hoc
coding and intelligent behavior to lay out the settlement.
Some approaches are based on agents, where the simulated
lives of agents define the settlement-layout (Iramanesh and
Kreminski 2021), or Answer Set Programming (van Aanholt
and Bidarra 2020) by defining constraints and using an ex-
ternal solver to produce the actual layout. However, different
components within a settlement each have their own require-
ments, and we therefore believe that developing principled
approaches that adequately address the challenges of each
individual component is essential. In other words, while,
for example, a cellular automata-based approach may be
well-suited to generate “natural-looking” structures (John-
son, Yannakakis, and Togelius 2010), including parks, it
would not be as useful to generate structured architecture.
Our focus is on the latter. Architecture is often marked by
a self-similarity and rigidity that makes it an ideal candi-
date to be described by a rule-system. In particular, Shape
Grammars provide such a rule system and have, in fact,
been used to describe architecture in a variety of domains
(Hohmann et al. 2010). In a previous article, we have pre-
sented a Shape Grammar framework based on the notion of
boxes with a split-operation to refine a larger structure into
smaller components(Eger 2022). However, while such an
approach has the benefit of simplicity and efficiency, there
are certain forms it can not express. For example, our Box-
Split Grammars are ideal to describe how to place e.g., a
castle in a fixed and empty location, and would allow many
variations of this castle to be generated, they assume that the
target location is empty, and all geometry is placed by the
grammar system itself. In the context of a larger generator,
this assumption will not always hold, and for certain types of
structures, such as bridges, it would actually be essential to
be able to detect existing geometry and/or the lack thereof.
This inherent limitation of grammars has been noted previ-

ously (Krecklau and Kobbelt 2011), but we present a novel
approach that addresses it directly within the grammar for-
malism itself.

In this paper, we present an extension to our existing
grammar framework that incorporates observations of exist-
ing Minecraft blocks, and allows rules to change their be-
havior based on this information. Our contribution is two-
fold: First, we describe how our grammar formalism can be
extended to observe its surroundings by expanding our exist-
ing constraint-formalism. However, our existing constraint-
implementation simply failed when there was no rule whose
constraints were satisfied, which was an adequate response
for the previous applications of rule constraints. The true
versatility of observer constraints, though, comes from hav-
ing observer rules deep in the grammar structure and being
able to choose different branches. The second part of our
contribution is therefore the extension of our existing gram-
mar system with backtracking in case of failed rules. By
adding backtracking, we take our grammar from a purely
forward deriving system towards a more computational ap-
proach. We demonstrate the relevance of our extensions us-
ing bridges as a guiding example, and show tunnels as an-
other direct application of the presented technique.

Background and Related Work

While there are many approaches to Procedural Content
Generation, as mentioned above, our approach is based on
Shape Grammars, which were first described by Stiny and
Gips (Stiny and Gips 1971). Their approach, which itself
is based on formal grammars as described by Chomsky
(Chomsky 1959), details Shape Grammars that consist of
rules, where each rule maps a shape on its left side to a more
complex shape on its right side. To use such a system in a
generative manner, one would start with an initial (simple)
shape, and apply rules by finding sub-shapes that correspond
to the left side of some rule, and replace that sub-shape with
the right side of the rule. The actual implementation of such
a system therefore requires the ability to find arbitrary sub-
shapes within a larger structure. More recent advances in
the field have done away with the need for such geomet-
ric queries by explicitly labeling the shapes or 3D-structures
that are produced, similar to how Graph Grammars operate
(Ehrig, Pfender, and Schneider 1973). Wonka et al. describe
Split Grammars where rules are applied to labeled “scopes”,
which are split into smaller sub-scopes, to which further
rules can then be applied (Wonka et al. 2003). Miiller et al.
have then improved upon this system by establishing a for-
mal definition of the “split”-operation (Miiller et al. 2006).
The resulting system is widely used for everything from city
planning (Halatsch, Kunze, and Schmitt 2008) to archaeol-
ogy (Piccoli 2013). However, the focus of this system is to
allow designers (or archaeologists) to precisely define new
or existing structures, rather than providing a way to gener-
ate a wide variety of generated structures.

Nevertheless, a related approach by Hohmann et al.
(Hohmann et al. 2010) has been used for generative pur-
poses. Most importantly, further extensions of this work
have established how grammar rules can be represented as
functions in the Generative Modeling Language (Havemann

196

2005), and have also coined the term (Thaller et al. 2013)
Box Grammars. Our own approach, detailed in a previous
publication, builds on these ideas and combines their rela-
tive advantages into Box-Split Grammars, which represent
grammar rules as simple Python functions.

Box-Split Grammars

As mentioned above, our approach is based on our work
on Box-Split Grammars, which are a recursive subdivision
scheme on axis-aligned boxes. In our system, grammar rules
are represented as python functions that operate on a so-
called scope, which contains a box in a given environment,
such as Minecraft, and a label. Rules can split a scope into
smaller sub-scopes and label them, which will lead to fur-
ther rules being applied to them, or fill them with geometry
(including “air”). A split grammar rule such as

A= XY X [split(z, [1,2,1])]

could be written in python as
@rule
def A():

with split (Direction.X,

X0, YO, X0

This rule represents taking a scope which was assigned the
non-terminal symbol A, splitting it along the x-axis into
three scopes, of sizes 1, 2 and 1, and assigning them the la-
bels X, Y, and X in this order. The decorator @rule plays
an important role, as multiple rules could exist for the same
non-terminal symbol. The decorator registers each possible
rule for a non-terminal symbol, and upon applying a rule,
selects one of the applicable rules at random. Our system
allows controlling the relative probabilities of rules with pa-
rameters to the @rule-decorator, but more importantly, it
also allows the restriction of when a rule is applicable. In
prior work, we have used this to restrict rules to only ap-
ply to matching geometry. For example, to ensure that a box
that is being split by our rule has size 4 to begin with (i.e.,
the sum of the sizes of the resulting sub-scopes), we can add
a constraint to the decorator:

[1,2,1]):

@rule (constraint=Direction.X == 4)
def A():
with split (Direction.X, [1,2,1]):
X(), YO, X(O)

When a rule is to be applied to a scope, the constraint of
each possible option are checked, and the random selec-
tion will be performed only between the option whose con-
straints are satisfied. Note that this may lead to “dead-ends”
in rule application, if there is no applicable rule for a given
non-terminal symbol. Our previous system regards such sit-
uations as errors on behalf of the grammar-author and ex-
its with an error message. For our present work, we expand
upon this constraint-mechanism to be able to conditionally
apply rules in situations depending on which prior geometry
is already present in the world. However, this may lead to
cases where an observation fails, and in such cases it can be
beneficial to back-track to earlier rule choices, to potentially
find a derivation that does not lead to such an error state.
In the next section, we will detail how we added these two
capabilities.

Approach

Procedural content generation done by a decompositional
system like a grammar has a tendency to lose information
that would make the later steps more accurate. In our case,
grammar evaluation starts with selecting a box in a world,
which is simply labeled with the start symbol, losing all
information about what else may already have been inside
parts of that box. While this may be useful when building
a house, as we certainly wouldn’t want the floor to follow
hilly terrain, and instead rather “carve out” a foundation for
the building, it is undesirable in other instances, where ge-
ometry would follow or utilize existing terrain.

Our approach to reintroducing said information into our
grammar-based generation system, is to allow grammar
rules to observe the world, beyond the grammar system’s
own labeled scopes. Such an observation is expressed as
a constraint on the applicability of a grammar rule, allow-
ing us to express what must be present in the world for
the rule to be applicable. A side effect of this addition is
the possibility of rule failure. Importantly, a failure of one
rule that does not necessarily fail the whole grammar ap-
plication, but may simply imply that a different observation
(or non-observation) may be applicable. We address this by
adding backtracking to possible alternate expansions. In this
section, we will describe the observer constraints and back-
tracking mechanism in more detail.

Observer Constraints

As described above, our rules can have constraints placed on
them that control when they are applicable. Our new con-
tribution adds a special type of constraint called Observer
constraints, that take existing geometry (e.g., produced by
the world generator) into account when determining the ap-
plicability of a rule. Observer constraints are placed on a
particular option for a grammar rule and can distinguish be-
tween which material(s) are present in the box associated
with the scope the rule is to be applied to. The simplest dis-
tinction that can be made is whether the box is empty or full
of a particular, given block type. However, as a convenience
to the end user, we also provide an additional nonempty
distinction, to determine if there is at least one block of
a particular type contained within a given scope/box. Ob-
server constraints integrate with the existing constraint sys-
tem and can be freely mixed and matched, for example, al-
lowing constraining over the dimensions of a selected box
as well as its content. Since a scope in Box-Split gram-
mars will always contain its descendants, preventing gram-
mar “self-intersections,” observer constraints currently only
work on the preexisting world data to avoid the need to con-
sider the evaluation order of the grammar. This new feature
introduces the need to recover from application failure in
grammar evaluation, as a different (observer or other) con-
straint could potentially be satisfied in a different evaluation
branch.

In our grammar system, the @rule annotation option-
ally accepts a constraint parameter, which accepts
constraint expressions, which were previously only ex-
pressions to involving the dimensions of the containing

197

@rule (constraint=

Observation.FULL (BlockType.SOLID))
def column_vertical_fill():

either the current box

is already solid

skip ()

@rule (constraint=Constraint .ELSE)
def column_vertical_ fill():
or we need to go
down another level
with split (Dimension.Y, [-
column_vertical fill ()
£i11l ()

1, 11):

Figure 1: Python code to generate a column until solid
blocks are found

scope. Using the same parameter, we now provide a new
Observation class of constraints. We support three types
of Observation constraints, covering a range of use
cases: FULL, NONEMPTY, and EMPTY. Each observation
constraint takes a BlockType parameter to filter which
blocks should be considered by the observation. While our
main application is Minecraft, the BlockType constitutes
an abstraction that permits portability of the system and thus
the grammar to other application domains. It also allows
grouping of blocks into larger “types”. We have mapped, for
example, all blocks that are “solid” in Minecraft to a SOLID
block type, to avoid having to specify all individual possible
block types.

Consider the rules in figure 1 which generate a support
column, e.g. for a bridge, down to ground level. There are
two cases when this rule is applied to some scope. The first
case is that the
Observation.FULL (BlockType.SOLID) is ful-
filled, that is, the box associated with the scope contains
only solid blocks and is thus ground. The skip () tells the
evaluator to do nothing with the scope, effectively removing
the scope from consideration. The second case happens
if the aforementioned Observation cannot be fulfilled
(i.e. there is at least one non-solid block in the box). The
split () breaks the box into two sub-scopes, a 1-height
box atop the other box, which contains the remainder of
the box (a size of —1 indicates a size corresponding to the
remainder of the box). The lower box is associated with the
column_vertical_fill non-terminal symbol, causing
the rule to applied recursively, while the upper one is filled
with the default material. The result of these two rules,
when applied to a location where a column ought to be
placed, is that the box containing the column is filled one
block at a time, from the top down, until the remaining box
is completely filled with solid blocks, i.e. the ground has
been found.

Note that this process may fail if no solid blocks are found
at all, as the ELSE-case will eventually attempt to split an
empty box. Rather than requiring the user to specify all such
constraints, we also added the capability to backtrack to a

higher level rule if rule application fails, as we will describe
now.

Backtracking

Since individual rules can fail even though the whole gram-
mar could still be successfully evaluated if a different branch
was taken, the grammar evaluator needs to backtrack on any
failure to take an alternate expansion. We handle this by
maintaining a stack of rule applications, together with their
associated rule applications. If a failure occurs, we pop items
from this stack until a rule application with an alternative is
found, which is then applied. In this case, all information re-
garding the failed expansion is forgotten and expansion con-
tinues as usual. If no alternate is found ere the root grammar
rule is reached, the whole evaluation is considered to have
failed, as the environment selected cannot satisfy the gram-
mar’s constraints.

Each invocation of a rule maps to an entry on the evalua-
tion stack. Each entry on this stack carries a set of possible
alternates along with the box that the rule is being applied
to. Each possible alternate consists of a Python function and
any optional parameters passed into the @rule annotation.
When executing a rule, each sub-scope it creates is pushed
onto the stack, with child rules always selecting the current
top for expansion. When a rule is successfully applied, the
corresponding scope is removed, which should be the top
scope. This makes successive rules apply to different boxes,
while also allowing the implementation to store any addi-
tional data it may require (e.g., the set of possible alternates).

When a rule is called, all of its known alternates are
checked against the scope, with their constraints (if present)
being evaluated. If the constraint was not provided, or it is
satisfied, that alternate is added to the set of possible ones for
the top scope. Once all alternates have been checked in this
manner, there are three different cases that could happen:

e If the set of applicable rule options is empty, meaning
that no option can be applied to this box, the rule fails to
apply.

o If the set contains exactly one item, that item is selected,
and the corresponding rule option applied.

e If there are multiple items, one is selected by random
choice (with probabilities controllable by an optional pa-
rameter to the @rule-decorator). The selected alternate
is removed from the set before it is applied to the top box.

If the same scope is encountered again during backtrack-
ing, the set of alternates of the previous instance is used as
the initial set, instead of rerunning the constraint evaluation
again. Since an arbitrarily deep child of this box may fail to
apply, the aforementioned set rules are run again if a failed
expansion is reported, without the rule option that had just
been applied (since that alternative was removed from the
list). This leads to backtracking behavior in the expansion
of the grammar rules: If a child fails, a rule will explore all
possible alternatives, before, itself, reporting a failure to its
parent rule.

Figure 2 shows how this process may play out for the rules
shown in figure 1. The case in which the rule is applicable
is labeled as the “happy path”, whereas the case where no

198

solid block is present is labeled as the “sad path”. The upper,
“happy” path shows how conventional function calling in
Python is used to evaluate each box, with stack frames cor-
responding to the evaluation stack. In particular, the happy
path shown is one where the vertical fill terminates due to
finding some ground underneath it. This results in one-by-
one stack popping, as each @rule (ELSE) needs to execute
its second part. Similarly, the “sad” path mimics the error
handling procedure of Python’s t ry-catch blocks. Here,
when no ground can be found to start the column fill due to
the final unit box being not full, all boxes in that column are
popped off. This is due to constraint reevaluation not find-
ing a possible alternate, due to both failing (FULL due to its
precondition and ELSE being the one currently failing).

For another example of this backtracking algorithm, con-
sider building a garden fence that respects the underlying
geography. The grammar could split the length of the fence
into 1-block wide columns, traversing each downwards. At
the first evaluation, a column could fail its terminal rule and
need to use its recursive one. This “local” failure would oc-
cur repeatedly until either the terminal rule succeeds or the
evaluator tries to create a box with 0 height. In the first case,
this success would propagate up the column, finishing the
evaluation of the recursive case like a chain of dominoes.
However, in the latter case, since a box with 0 in any dimen-
sion is considered invalid as it cannot contain any blocks, the
whole column fails, leading to a “global” failure due to the
fence grammar not permitting any breaks.

Results

Observer rules extend the existing grammar formalism sig-
nificantly, by allowing the incorporation of existing geom-
etry, which is highly relevant in a number of applications.
Real-world architecture often incorporates the existing land-
scape to place support structures, or even determine the
placement of buildings, such as a castle on top of a hill or
in another location that is easy to defend. Out of the myriad
of structures that could benefit from observation rules, we
focused on bridges due to their simplicity and direct need to
conform to surroundings.

The placement of support structures is the most direct ap-
plication of our observer rules. The supports of a bridge must
reach to the ground and, depending on designer preference,
stop somewhere at or below ground level. It is uncommon,
especially in procedurally generated worlds like Minecraft,
to find perfectly flat terrain, let alone have it conveniently
placed at the desired bridge location. Our grammar exten-
sion addresses this by allowing us to build the supports re-
cursively, terminating at the first full box of solid blocks.
We can also gracefully handle cases where a bridge cannot
be built, due to missing environmental constraints, or even
the lack of need for a bridge.

Bridge Rules

For our demonstration, we consider the case where we want
to cross a given span with a bridge. It is wasteful, or at least
unnecessary, to delve supports beyond what the player can
see. Thus, in the rules to generate the bridge, a support ter-
minates early if there is a solid block underneath it.

@rule(Observation.FULL) @rule(ELSE)
Happy Path column_vertical_fill Column_vertical_fill
Part 2
F’;pped Popped
0 off Fill with
solid
@rule(ELSE) Evaluate block
rule new top
column_vertical_fill | plock EEEJE"‘ L
Part 1 success) variant Repeat happy
Pushed Stack path
onto ale Stack
Box
)
Split
Pop off
Sad Path until a Box |xN Either:
Stack branching 1. continue
rule is sad path or
Evaluate found 2.take a
new top Reevaluate possible
block constraints alternate
fail
Stack Stack

Figure 2: Grammar Evaluation Handling a Possible Failure

Bridge Scenarios

Figures 3 shows what was possible with our previous system
without observer rules, while 4 contrasts this with output us-
ing our newly introduced observer rules. The non-observing
grammar in figure 3 simply drills through the obstacle to
place support structures, as it can not determine what already
exists in the landscape, while the observing version in figure
4 allows the pillar to not destroy the model hill. The bridge
in figure 4 uses the rules defined in figure 1 to generate its
supports. Instead of simply generating the support from one
monolithic block, figure 1 breaks the support into a chain
of sub-boxes from top to bottom, with the lowest one either
equal in height or the largest of the whole chain. The boxes
are evaluated top down until the next box is already filled
with solid blocks. If the next box is not filled with solid
blocks, the large bottom box is split into a 1-height box at
the top and the remainder becomes the new bottom.

This ability to generate bridge supports along a given
landscape is directly applicable to scenarios encountered in
actual Minecraft-worlds. Figure 5 uses the observing gram-
mar to generate a bridge with varying column heights over
a valley within a real Minecraft world. The screenshot was
taken in-game, showing that this system can fit in an already
established end to end game or level design system.

Alternatively, observer rules can also serve as a simple bi-
nary test for the suitability of column-placement. In figure 6
a foot path across a pond can be seen. The pond, as generated
by the game, contains several islets/land areas inside it, upon

199

which a column can be placed. When generating the foot-
path, the grammar attempts to place columns evenly along
the length. The rule placing a column contains an observa-
tion constraint, though, and only actually places the column
if it would rest on solid ground.

Tunnel Scenarios

Another, somewhat related, structure that can be generated
in a geometry-dependent way using our approach is a tunnel.
The grammar used for figures 7 and 8 adds sidewalls and
a roof only as far as needed on each end. This allows the
tunnel entrances to fit more naturally into their surroundings
without requiring manual editing after generation.

To gain the precision required for the tunnels, both the
wall and roof volumes are split into strips perpendicular to
the longest axis. These strips are then tested for having any
solid blocks in them, with such strips being filled. Strips that
do not contain solid blocks, would be located outside the
mountain the tunnel is dug through, and therefore nothing
needs to be placed in them.

Conclusion and Future Work

In this paper, we have shown how our existing rule-based
grammar system can be extended to include observer rules.
Unlike our existing approach, such observer rules allow the
grammar to take already existing geometry, such as blocks
that are already filled in our Minecraft world, into account,
and incorporate them in deciding how rules are being ap-

Figure 3: A bridge without observation rules crossing a hill Figure 4: A bridge with observation rules crossing a hill

Kralik

Figure 5: A bridge over a “naturally occurring” valley in-game. Without observer rules, the support columns would all terminate
at the same height.

Figure 6: A footpath over a pond. Observer rules can be used to only place support columns when there is solid ground, and
avoid placing them on water.

200

Figure 7: One end of a grammar-generated tunnel. Without ob-
server rules, the tunnel walls would terminate in one straight
edge, rather than following the outline of the mountain side.

plied to scopes. We have also shown that back-tracking is
beneficial for such cases, in order to explore different rule
options, some of which may fail in the presence (or absence)
of existing blocks. There are a myriad of structures that ben-
efit from being able to incorporate existing geometry, and
this capability is particularly important for being able to use
grammars to generate content within an existing world. As a
standalone example that benefits from observation rules, we
have shown how bridges, in particular, can be defined in a
way such that their supports follow the existing relief of the
existing landscape.

Our goal with this extension to our existing system is to
make it applicable to the challenge of populating Minecraft
worlds with larger-scale content, including entire settle-
ments, or even groups of settlements. Our system is well
suited for integration with other generators, but its strengths
are the generation of artificial structures, which often utilize
the existing landscape, just as our bridges do. In future work,
we want to expand the scale of generation, and integrate it
into such a larger system. As our generator only needs a box
in which to evaluate the grammar, and can use the exist-
ing geometry to inform the evaluation, existing generators
in the competition could utilize the grammar-formalism for
the generation of buildings rather than relying on templated
buildings. Observation rules can then be used to ensure the
proper orientation and placement of doors, and otherwise
connect the building with the settlement. We are also cur-
rently investigating the generation of road networks in order
to actually connect our bridges with something.

While we use Minecraft as our main application domain,
our system is actually agnostic to the concrete output. In our
previous publication, we have, for example, demonstrated

Figure 8: The other end of the same tunnel. The ceiling is cur-
rently modeled as one slab, but could also be split into multiple

pieces that terminate at different lengths.

201

its applicability to generating tile patterns in PNG files. The
extension presented in this article, likewise, is applicable to
other domains, and we are still exploring what observation
rules for other backends might be used for.

References

Adams, T. 2019. Emergent narrative in dwarf fortress. In
Procedural Storytelling in Game Design, 149-158. AK Pe-
ters/CRC Press.

Chomsky, N. 1959. On certain formal properties of gram-
mars. Information and control, 2(2): 137-167.

Cook, M. 2022. Puck: A Slow and Personal Automated
Game Designer. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 18, 232-239.

Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.;
Sengupta, B.; and Bharath, A. A. 2018. Generative adver-
sarial networks: An overview. IEEFE signal processing mag-
azine, 35(1): 53-65.

Eger, M. 2022. Instant Architecture in Minecraft using Box-
Split Grammars. Proceedings of Foundations of Digital
Games (FDG ’22).

Ehrig, H.; Pfender, M.; and Schneider, H. J. 1973. Graph-
grammars: An algebraic approach. In /4th Annual sympo-
sium on switching and automata theory (swat 1973), 167—
180. IEEE.

Halatsch, J.; Kunze, A.; and Schmitt, G. 2008. Using shape
grammars for master planning. In Design Computing and
Cognition’08, 655-673. Springer.

Havemann, S. 2005. Generative mesh modeling. Ph.D. the-
sis, Braunschweig University of Technology, Germany.

Hohmann, B.; Havemann, S.; Krispel, U.; and Fellner, D.
2010. A GML shape grammar for semantically enriched
3D building models. Computers & Graphics, 34(4): 322—
334. Procedural Methods in Computer Graphics Illustrative
Visualization.

Iramanesh, A.; and Kreminski, M. 2021. AgentCraft: An
Agent-Based Minecraft Settlement Generator. In Proceed-
ings of the AIIDE Workshop on Experimental Al in Games,
1-6.

Johnson, L.; Yannakakis, G. N.; and Togelius, J. 2010. Cel-
lular automata for real-time generation of infinite cave lev-
els. In Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, 1-4.

Krecklau, L.; and Kobbelt, L. 2011. Procedural modeling
of interconnected structures. In Computer Graphics Forum,
volume 30, 335-344. Wiley Online Library.

Lindenmayer, A.; Prusinkiewicz, P.; et al. 1990. The algo-
rithmic beauty of plants, volume 1. New York: Springer-
Verlag.

Miiller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; and Van Gool,
L. 2006. Procedural modeling of buildings. In ACM SIG-
GRAPH 2006 Papers, 614-623.

Nelson, M. J.; and Smith, A. M. 2016. ASP with applica-
tions to mazes and levels. In Procedural Content Generation
in Games, 143-157. Springer.

Piccoli, C. 2013. CityEngine for Archaeology. In Proceed-
ings of the Mini Conference 3D GIS for Mapping the via
Appia, Amsterdam, The Netherlands, volume 19.

Salge, C.; Aranha, C.; Brightmoore, A.; Butler, S.;
De Moura Canaan, R.; Cook, M.; Green, M.; Fischer, H.;
Guckelsberger, C.; Hadley, J.; et al. 2022. Impressions of the
GDMC AT Settlement Generation Challenge in Minecraft.
In Proceedings of the 17th International Conference on the
Foundations of Digital Games, 1-16.

Salge, C.; Green, M. C.; Canaan, R.; and Togelius, J. 2018.
Generative Design in Minecraft (GDMC), Settlement Gen-
eration Competition. CoRR, abs/1803.09853.

Stiny, G.; and Gips, J. 1971. Shape grammars and the
generative specification of painting and sculpture. In IFIP
congress (2), volume 2, 125-135.

Thaller, W.; Krispel, U.; Zmugg, R.; Havemann, S.; and Fell-
ner, D. W. 2013. Shape grammars on convex polyhedra.
Computers & Graphics, 37(6): 707-717.

van Aanholt, L.; and Bidarra, R. 2020. Declarative proce-
dural generation of architecture with semantic architectural
profiles. In 2020 IEEE Conference on Games (CoG), 351—
358.

Van Der Linden, R.; Lopes, R.; and Bidarra, R. 2013. Proce-
dural generation of dungeons. IEEE Transactions on Com-
putational Intelligence and Al in Games, 6(1): 78-89.
Wonka, P.; Wimmer, M.; Sillion, F.; and Ribarsky, W. 2003.
Instant architecture. ACM Transactions on Graphics (TOG),
22(3): 669-677.

202

