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Abstract

Narrative planning generates a sequence of actions which
must achieve the author’s goal for the story and must be
composed only of actions that make sense for the characters
who take them. A causally necessary action is one that would
make the plan impossible to execute if it were left out.
We hypothesize that action sequences which are solutions
to narrative planning problems are more likely to feature
causally necessary actions than those which are not solutions.
In this paper, we show that prioritizing sequences with more
causally necessary actions can lead to solutions faster in ten
benchmark story planning problems.

Introduction
Interactive narratives used in virtual environments for
entertainment and education can be broadly divided into
top-down and bottom-up approaches (Kreminski and Mateas
2021). In bottom-up (or emergent) systems, stories arise
from simulation. Top-down systems typically plan their
narrative in advance to meet certain goals or structural
requirements. This is not to say emergent stories lack
structure, only that their structure is a consequence of the
simulation rather than constraints that explicitly guide story
generation.

Story planning algorithms are frequently used to generate
or repair a story during play to guarantee certain structural
requirements. Narrative planners have been proposed to
ensure narrative milestones are reached (Porteous, Cavazza,
and Charles 2010), to ensure characters act according
to their beliefs and intentions (Riedl and Young 2010;
Teutenberg and Porteous 2015; Ware and Siler 2021), to
ensure certain events are salient in memory (Cassell and
Young 2013; Farrell, Ware, and Baker 2020), and for a
variety of other narrative reasoning tasks. To be used at run
time, narrative planners must be fast. Search can often be
sped up by reasoning about the structure of the story during
planning.

One important structural feature of stories is the network
of causal relationships between events. For this paper, we
say an earlier event is causally linked to a later event when
the earlier event establishes some condition needed by the
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later event. Further, we say an event is causally necessary if
leaving it out of the story would make it impossible for some
later event which depended on it to occur.

We hypothesize that prioritizing stories that contain more
causally necessary actions—that is, actions which cannot be
left out—can guide top-down forward state-space narrative
planning algorithms to solutions faster. Using a set of 14
benchmark storytelling domains, 10 of which are the right
size to give interesting results, we show that discounting
casually necessary actions often performs better than a non-
discounted search. We conclude with a discussion of ways
our simple method might be improved.

Related Work
Psychological Research on Causality in Narratives
Psychologists have shown that events with more causal
connections in a story are judged more important by readers
(Trabasso and Sperry 1985) and that the causal network
of events is used to organize narratives in memory (Gerrig
1993). When we experience a story one event at a time,
whether or not the current event is causally linked to past
events is one of several factors that affect how easy it is to
remember past events (Zwaan and Radvansky 1998).

The term causality can have several meanings. Tapiero et
al. (2002) identify four kinds of causality that are important
to narrative comprehension: physical causality, motivation,
psychological causation, and enablement. One way they
distinguish between these types of causality is whether
events in a causal relationship are necessary or sufficient to
one another. Event A is necessary to event B if, without A,
B could not occur. Event A is sufficient to B if B must occur
because A occurred. Tapiero et al. suggest that enablement
(A enabled B) may be perceived as the weakest causal
relationship because A is necessary but not sufficient for
B. However, in this paper, we primarily concern ourselves
with enablement and necessity because they are easy to
detect in plans. Before we proceed, we will briefly discuss
the nuances in mapping psychological research to narrative
planning.

Many story planners strive to be domain independent,
allowing the user to define the story world in predicate
logic. The use of arbitrary, user-defined predicates means it
is not always straightforward to distinguish the four kinds of
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causality above in a narrative planning problem. Causal links
based on predicates that describe the physical world might
be interpreted as physical causality or enablement. Causal
links based on predicates describing mental states might
be considered motivation or psychological causation. Some
narrative planning problems encode motivation as predicates
like any other (Kartal, Koenig, and Guy 2014), while some
planners reason explicitly about motivation using special
modal predicates (Riedl and Young 2010).

Applying psychological research on causality to narrative
planners is further muddied by the term event. Psychologists
tend to use event to mean any communicative act in the
discourse. For example, in the study by Tapiero et al., this
sentence about a rain-soaked book is considered an event:
“His soaked manual was almost unreadable.” Planning
domain authors might consider that a fact or a state rather
than an event. An event in the context of story planning
is usually characterized as changing the world state, so “It
began to rain” is an event, whereas “The book was wet” is a
fact, the effect of the rain.

In this paper we focus on causally necessary events,
where some effect of event A enabled a later event B
which otherwise would not have been possible. Further
improvements to our method might be achieved with a more
precise mapping of different types of narrative causality,
though this may come at a cost to domain independence.

Causality in Narrative Generation
Young (1999) proposed AI planning as a way to generate
and repair interactive stories, in part because of the rich
representation of causality offered by partial order planners.
Actions have preconditions which must be satisfied before
they can occur and effects which change the world state.
Partial order planners maintain an explicit list of causal
links—when the effect of an earlier action is used to satisfy
the precondition of a later action. The IPOCL (Riedl and
Young 2010) narrative planner uses causal links to model
intentionality. CPOCL (Ware et al. 2014) uses causal links
to model narrative conflict. These planners work backwards
from the problem’s goals, adding causal links as needed
to construct a valid story. While these algorithms highlight
the importance of causality, the method we describe in
this paper (prioritizing plans with more causally necessary
actions) is not directly relevant to this family of algorithms
because their actions always form a causal network.

The method we propose in this paper is for forward
state-space storytelling algorithms that add actions to the
story one at a time starting in the initial state and working
toward the end. They perform an expensive backtracking
search through the space of possible stories. Examples
include Glaive (Ware and Young 2014), IMPRACTical
(Teutenberg and Porteous 2015), Sabre (Ware and Siler
2021), HeadSpace (Sanghrajka, Young, and Thorne 2022),
and others. Young et al. (2013) provide a survey of narrative
planning systems. Our method is also relevant to storytelling
systems that use classical planners for storytelling purposes
(Cavazza, Charles, and Mead 2002; Porteous, Cavazza, and
Charles 2010).

Our method is not directly relevant to scripted behavior

systems, like behavior trees (Rabin 2013), and reactive
narrative planners, like ABL (Mateas and Stern 2002), Versu
(Evans and Short 2013), and Comme il Faut (McCoy et al.
2014). While these systems are often used for forward state-
space storytelling, they do not perform the extensive search
of all possible stories our method is meant to improve.
Rather, they decide at each moment which is the best next
action and commit. However, the value of causally necessary
actions could be one of many criteria these systems use to
choose actions. Marlinspike (Tomaszewski 2011) does this.
It is a forward state-space storytelling system that does not
perform extensive search but chooses a next scene which
best incorporates the player’s past actions—i.e. the one with
more causal links back to player actions.

Large neural language models also do not use back-
tracking search, but causal models can improve their story
generation abilities. C2PO (Ammanabrolu et al. 2021)
performs causal reasoning forward for each action (Why did
the character want to take this action?) and backward from
each action (What did the character need to take this action?)
and tries to build causal links between events where wants
and needs overlap. Similarly, the Neural Story Planner (Ye
et al. 2022) follows the same causal means-end reasoning as
a partial order planner to create a causal network of events,
but using a language model rather than a symbolic planning
domain.

Method
We hypothesize that action sequences which contain more
causally necessary actions are more likely to be solutions
to narrative planning problems than sequences with fewer
causally necessary actions. For simplicity, we define a
causally necessary action to be one which, if left out of a
sequence, would make that sequence impossible to execute.
We test this hypothesis by defining a cost function which
discounts actions that are causally necessary and testing its
performance as a guide for search in a handful of narrative
planning benchmark problems.

Forward State-Space Planning
We define our method in the context of forward state-space
planning. Let the state space of a problem be a directed
graph whose nodes are states. An edge s1

a−→ s2 exists from
state node s1 to state node s2 and is labeled with action a
if and only if action a can be taken in state s1 and doing so
would change the state to s2.

Search begins in the initial state s0 and follows edges
forward until it reaches an acceptable terminal state. A
classical planner simply defines a goal proposition; any state
where that proposition holds is an acceptable terminal state,
and any path from s0 to a terminal state is a valid plan
(Russell and Norvig 2009).

Narrative planners typically place additional constraints
on which paths are considered valid solutions. Requirements
differ by planner, but they typically define some model of
believable character behavior and require that the path to the
problem’s goal be composed only of believable actions. We
use the Sabre narrative planner (Ware and Siler 2021) in our
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experiments. Sabre’s model of believable character behavior
reasons about intentionality and character beliefs. When a
character takes an action, the action is believable if and only
if it can be the first action in a plan the character believes
will improve their utility.

Our definition of causal necessity does not rely on Sabre’s
particular model of believability, so for details we refer
readers to the full description of that planner (Ware and
Siler 2021). Though we tested our method in Sabre, our
method can apply to non-narrative forward planners used for
storytelling (Porteous, Cavazza, and Charles 2010) and other
forward narrative planners like IMPRACTical (Teutenberg
and Porteous 2015) and HeadSpace (Sanghrajka, Young, and
Thorne 2022) which use different definitions of believability.

Causal Necessity
Let π be a sequence of n actions {a1, a2, ..., an}. Let α(π, s)
denote the state of the world if we begin in state s and then
take each action in π in that order. α(π, s0) is defined if and
only if, for all 0 < i ≤ n, the edge si−1

ai−→ si exists in the
state space. In other words, α(π, s0) is defined if π is a valid
path through the state space that starts at the initial state.

We define a causally necessary action to be one
which, if left out, would make the plan impossible to
execute. Formally, for some sequence {a1, a2, ..., an},
action ai (where i < n) is causally necessary if
α({a1, ..., ai−1, ai+1, ..., an}, s0) is undefined. In other
words, if it is left out of the sequence, the actions that remain
no longer form a valid path. Otherwise, we say the action is
causally unnecessary (the sequence without the action is still
a valid path).

There is one special case to consider: the last action
in the sequence. We might say the last action is always
unnecessary, since it can always be left off. We might also
say the last action is always necessary by virtue of being
the last action. Instead, we apply a special test for the last
action. We define action an to be necessary if it achieves
a goal. For Sabre, this means that the utility in state sn is
higher than utility in the previous state sn−1. We write this
as u(sn−1) < u(sn).

Causal Necessity Cost
Now we can define a cost function which discounts causally
necessary actions.

In classical planning, all actions are assumed to have a
unit cost. That is, the cost of a sequence of actions π =
{a1, a2, ..., an} is |π| or n.

For our cost function, causally unnecessary actions still
cost 1, but causally necessary actions cost a constant value
ϵ, where 0 < ϵ < 1. We define our cost function as follows:

cost(π) =

|π|∑
i=1


1 if i = |π| and u(si−1) ≥ u(si)

ϵ if i = |π| and u(si−1) < u(si)

1 if α({a1, ..., ai−1, ai+1, ..., an}, s0) defined
ϵ otherwise

The first two cases above are for the last action an. When
an does not improve utility, it is unnecessary and costs 1;

otherwise, it is necessary and costs ϵ. The last two cases are
for all other actions ai where i < |π|. Causally unnecessary
actions cost 1, and causally necessary actions cost ϵ.

In our experiments, detailed later, we found ϵ = 0.4 to
perform well across a variety of problems, so we will use
that value in the following examples.

Motivation
Consider the example interactive narrative planning problem
introduced with Sabre. The player starts in their cottage with
one coin and a quest to get a potion and return home. There
is a market, where a merchant who wants money is selling
the potion or a sword for one coin each. An armed guard is
stationed at the market to punish criminals. An armed bandit
lurks in a nearby camp and schemes to get valuable items
like the coin and potion. A crossroads connects the cottage,
market, and camp. Characters can walk between locations,
give an item to another character, buy an item from the
merchant, attack another character if they are armed, and
take items from slain characters. The story ends when the
player completes their quest by returning home with the
potion or dies.

Our hypothesis about the value of causally necessary
actions arose when we observed a weakness in forward
state-space story planners. Several actions have satisfied
preconditions when the story above begins: all four
characters can walk to the crossroads, the guard can attack
the merchant, or the merchant can give either item away
to the guard. Some of these actions are not believable—
namely the guard leaving the market, the guard attacking the
merchant, and the merchant giving items away—but they are
possible, so Sabre will explore them as possible first actions
before ultimately rejecting them.

Suppose the first event in the story is that the player walks
to the crossroads. The state changes, but the list of actions
with satisfied preconditions remains about the same. The
options for where the player can walk have changed, but
otherwise the same set of actions remains possible: other
characters can walk to the crossroads, the guard can attack
the merchant, and the merchant can give items away to the
guard. The planner’s options for the second action in the
story are very similar to its options for the first action.

A human storyteller looking at this problem would
probably choose a second action that builds on the first;
otherwise, what was the point of the first action? A planner,
however, has no such intuition, and it would consider any of
the available second actions an equally good choice. Each
choice represents a new branch in the search, quickly leading
to the combinatorial explosion that prevents narrative
planning from scaling to large problems. By incentivizing
action sequences with more causally necessary actions, we
hope to encourage the planner to reuse its past actions.

Figure 1 shows some example calculations for two story
branches in this domain. Note that an action which is
unnecessary in Story A2 (the player walking to the market)
becomes necessary after another action is added (the player
buying the potion) in Story A3. Also note that the total cost
of a story is not monotonically increasing. Story A4’s total
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Story 1 Cost
The player walks to the crossroads. 1.0

Total 1.0

Story A2 Cost
The player walks to the crossroads. 0.4
The player walks to the market. 1.0

Total 1.4

Story A3 Cost
The player walks to the crossroads. 0.4
The player walks to the market. 0.4
The player buys the potion from the merchant. 1.0

Total 1.8

Story A4 Cost
The player walks to the crossroads. 0.4
The player walks to the market. 0.4
The player buys the potion from the merchant. 1.0
The player walks to the crossroads. 1.0

Total 2.8

Story A5 Cost
The player walks to the crossroads. 0.4
The player walks to the market. 0.4
The player buys the potion from the merchant. 1.0
The player walks to the crossroads. 0.4
The player walks home. 0.4

Total 2.6

Story B2 Cost
The player walks to the crossroads. 1.0
The bandit walks to the crossroads. 1.0

Total 2.0

Story B3 Cost
The player walks to the crossroads. 0.4
The bandit walks to the crossroads. 0.4
The bandit slays the player. 0.4

Total 1.2

Figure 1: Some example cost calculations where ϵ =
0.4. Branch A shows a story that achieves one acceptable
terminal state where the player completes the quest. Branch
B shows a story for the other acceptable ending where the
player dies.

cost is higher than Story A5, even though Story A5 is a
longer version of Story A4. The same is true of B3 and B2.

Limitations
There are at least two significant limitations to our cost
function. First, actions which will eventually become
necessary may have a high cost until they do. When an
action has two or more causal parents (that is, it directly
relies on two previous actions) those causal parents might
be unnecessary until their causal child is added. This is

illustrated by the B story in Figure 1. The bandit cannot slay
the player until they are both at the crossroads, but the slay
action depends on two previous and otherwise unnecessary
actions.

Second, our cost function only measures whether an
action is necessary for the story to be a valid sequence of
actions; it is not measuring narrative necessity. We see this
in Story A5. Buying the potion is necessary to achieve the
player’s quest, but if it is left out of the story, the remaining
actions are all still possible to execute. Another example
can be seen in the Treasure Island domain introduced by
Shirvani et al. (2017), where the first action in the solution
is for Jim Hawkins to spread a rumor that there is treasure on
the island. This action does not change the physical state of
the world, only the beliefs of Long John Silver. The rumor
action is not causally necessary according to our definition,
because without it the remaining actions in the story can still
be executed. However, the rumor is narratively necessary
because without it Long John Silver has no motivation to
seek the treasure.

This raises an obvious question: Why not modify the
cost function to detect narratively necessary actions? For
Sabre at least, this would be expensive. Checking whether
actions would still make sense if an earlier action is left out
(i.e. Would Long John Silver still be willing to sail to the
island if he does not believe there is treasure on it?) would
require additional costly searches that would make our cost
function expensive to calculate in many cases. We have
intentionally kept this cost function simple in the hopes that
it will be efficient to calculate and can potentially be applied
in other systems. We acknowledge that causal necessity is
not narrative necessity, and this is a limitation of our method.

Evaluation
We tested the effectiveness of discounting causally neces-
sary actions for three kinds of simple forward state-space
search. All three algorithms begin in the initial state s0 and
add actions to the end of the plan π until π is a solution
according to Sabre. We tested all three algorithms with ten
different values of ϵ in {0.1, 0.2, ..., 0.8, 0.9, 1.0}.
• Uniform Cost Search (UCS) always extends the plan π

which has the lowest cost(π), where cost is the function
we defined earlier. Note that when ϵ = 1 this search is
identical to Breadth First Search, since all actions cost 1
regardless of whether they are causally necessary or not.

• A* Search always extends the plan π which has the
lowest cost(π) + h(π), where cost is the function we
defined earlier and h is a heuristic that estimates the
number of actions remaining before the plan is a solution.
We use Bonet and Geffner’s additive heuristic (2001).
Note that when ϵ = 1 this search is a default A* search
where all actions have unit cost.

• Explanation First Search (EFS) is a variant of A* that
first performs the search needed to discover if an action
is explained before it performs the search to discover if
the action can lead to the problem’s goal (Siler and Ware
2022). Among all plans π which contain only explained
actions, it extends the π with lowest cost(π) + h(π).
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Domain # Characters # Fluents # Actions # Triggers Max |π| Max Exp. Max Epi. Best Search
Bribery 3 25 27 0 5 5 2 too small

Deer Hunter 3 42 28 76 10 5 1 A* ϵ = 0.1
Secret Agent 2 15 44 75 8 8 1 EFS ϵ = 0.1

Aladdin 5 150 282 378 11 8 3 too large
Hospital 4 67 102 196 10 6 3 A* ϵ = 0.5

Basketball 4 93 168 192 8 5 3 too large
Space 2 26 29 66 5 3 2 EFS ϵ = 0.6

Fantasy 4 85 76 141 9 3 3 A* ϵ = 0.3
Western 4 99 352 637 8 5 2 EFS ϵ = 0.3
Raiders 3 29 35 66 7 4 2 EFS ϵ = 0.2
Gramma 4 96 800 952 5 4 2 EFS ϵ = 1.0
Treasure 2 9 5 0 4 4 3 too small
Jailbreak 3 46 106 54 7 7 2 A* ϵ = 1.0

Lovers 3 40 312 375 5 5 2 EFS ϵ = 1.0

Table 1: Summary facts for benchmark problems. After Sabre grounds and simplifies each domain, this table gives the number
of agents (characters), number of fluents which describe a state, number of actions, and number of triggers in the domain. It also
shows the limit on the length of a story (Max |π|), limit on the length of an agent’s explanation for their actions (Max Exp.),
and limit of epistemic nesting (Max Epi.). For problems that gave interesting results, it gives the best performing search and its
ϵ value. If several ϵ values tied for best, we give the lowest.

We did not test ϵ = 0, since this would make the searches
incomplete. We can quickly prove this by example. It is
possible to construct an infinitely long sequence of causally
necessary actions. In our example domain, if the player
simply walks back and forth between the cottage and
crossroads, all but the last action will be causally necessary,
resulting in an arbitrary number of sequences that would all
cost 1 when ϵ = 0.

We ran all three of these search techniques, for all ten
values of ϵ, on each of the benchmark problems described
below. We ran each test 10 times, shuffling the order of
actions1 in the domain each time, to measure the average
number of state space nodes visited during a search. Each
search was allowed to visit up to 1,000,000 nodes (that
is, to consider 1 million possible stories) before ending in
failure. All searches were performed on a Dell Precision
5820 desktop computer with a 4.10GHz Intel Xeon W-2225
CPU and 512 GB of RAM.

Benchmark Problems
We gathered benchmark narrative planning domains from
the literature to test these search methods. Most were
originally described in the Planning Domain Definition
Language (PDDL), which distinguishes between a planning
domain—its types and actions—and a planning problem—
its initial state and goal. For most of the domains below,
each domain is associated with a single problem, so we use
“domain” and “problem” interchangeably. For domains with

1Sabre builds a tree data structure similar to Fast Downward’s
(Helmert 2006a) to efficiently detect which actions have satisfied
preconditions in a given state. This tree dictates the order in
which actions are tried during search, but when ties arise in
the tree construction process, the original action order can affect
search performance. We shuffle the action order to control for any
performance that arises from lucky action orderings.

more than one associated problem, we chose a representative
small example problem.

Sabre reasons about two phenomena beyond classical
planning: character intentions and character beliefs. Some
domains were not originally designed with one or both
of these in mind, so we have made an effort to add
them. For problems without explicit intentionality, it was
straightforward to determine which characters were the
consenting characters based on when characters appear
in an action’s parameters and the semantics of example
stories from that domain. For example, the steal action in
the Basketball domain clearly specifies which character is
stealing the item (and is thus a consenting character) and
which is an unwitting victim (not consenting). For problems
without explicit beliefs, we used simple conventions. For
example, characters observe actions if they happen at their
location and do not observe actions at other locations.

• The appendix of Riedl’s dissertation (2004) provides four
problems originally used by the IPOCL planner: Bribery,
Deer Hunter, Secret Agent, and Aladdin. They include
explicit intentionality, but we added beliefs. Of these,
Bribery was too small to show significant differences
between search techniques, and Aladdin was too large for
any search technique to solve before visiting 1 million
nodes.

• Porteous has released2 two planning domains used in
storytelling systems. NetworkING (Porteous, Charles,
and Cavazza 2013) generates medical drama stories
based on the relationships between characters. Even a
small example problem in this domain was too large for
any of our search techniques. A prototype system by
Kartal et al. (2014) used Monte Carlo Tree Search in
a planning domain to generate crime stories. We refer

2Julie Porteous’s website: https://porteousjulie.bitbucket.io/
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Domain Baseline ϵ = 1.0 Best Search % Improvement
Visited Visited σ Time (ms.) Time σ ϵ Visited Visited σ Time (ms.) Time σ Visited Time

Uniform Cost Search
Deer Hunter 10885 13 788 58 0.4 1809 23 164 44 83% 79%
Secret Agent 179 1 20 13 0.1 145 2 15 4 19% 25%

Hospital - - - - - - - - - - -
Space 4503 343 310 23 0.6 2416 44 148 24 46% 52%

Fantasy - - - - 0.3 235543 2379 25014 591 - -
Western - - - - - - - - - - -
Raiders 12681 2930 677 151 0.4 7400 327 430 31 42% 36%
Gramma 24027 117 8329 501 1.0 24027 117 8329 501 0% 0%
Jailbreak - - - - - - - - - - -

Lovers - - - - - - - - - - -
A* Search

Deer Hunter 68 0 30 5 0.1 42 0 40 11.12 38% -33%
Secret Agent 38 0 12 2 0.1 34 0 14 5 11% -20%

Hospital - - - - 0.5 118874 89 136715 5736 - -
Space 2838 32 350 22 0.6 1447 13 146 11 49% 58%

Fantasy - - - - 0.3 233927 2350 49328 1297 - -
Western 813322 62888 789892 80072 0.7 788655 95742 751735 96538 3% 5%
Raiders 1382 285 128 29 0.2 1201 555 108 46 13% 16%
Gramma 8596 156 18955 1153 1.0 8596 156 18955 1153 0% 0%
Jailbreak 399402 0.0 96131 4063 1.0 399402 0 96131 4063 0% 0%

Lovers - - - - - - - - - - -
Explanation First Search

Deer Hunter 93 0 22 3 0.1 72 0 18 3 23% 19%
Secret Agent 32 0 12 2 0.1 32 0 12 2 0% 0%

Hospital - - - - - - - - - - -
Space 652 21 115 6 0.6 358 4 54 8 45% 53%

Fantasy 85732 0 27006 1245 0.2 23952 17 6822 102 72% 75%
Western - - - - 0.3 349154 1403 427302 36809 - -
Raiders 386 0 44 4 0.2 340 3 35 4 12% 21%
Gramma 3805 172 3655 344 1.0 3805 172 3655 344 0% 0%
Jailbreak - - - - - - - - - - -

Lovers 108893 186 23519 1977 1.0 108893 186 23519 1977 0% 0%

Table 2: Results for each search technique on each problem. This table gives the number of nodes visited and time spent to
search for a solution for the baseline version of each search technique (ϵ = 1.0) and for the best performing version of each
search technique, along with the ϵ value that gives that best performance. Percent improvement over the baseline is also given.
Values are an average of 10 runs and include standard deviations as σ. If several ϵ values tied for best, we give the lowest.

to this domain as Basketball. We added intentions and
beliefs. We adapted a small example problem with three
citizens, who can commit two kinds of crimes and play
basketball to relieve anger, and one detective, who can
gather clues and arrest criminals.

• The appendix of Ware’s dissertation (2014) provides five
problems originally used by the Glaive narrative planner:
Space, Fantasy, Western, Raiders, and Best Laid Plans.
They include explicit intentionality, but we added beliefs.
The last of these domains was used in The Best Laid
Plans (Ware and Young 2015), and a smaller version of
it that incorporated beliefs was later released in the Save
Gramma! interactive narrative (Ware et al. 2022). We
use this version, which is the example domain described
earlier, and refer to it as Gramma.

• Shirvani et al. (2017) describe a domain with explicit
intentionality and beliefs based on Treasure Island, but
this domain was too small to show significant differences

between search techniques.
• Farrell and Ware (2020) provide a domain with intentions

and beliefs for manipulating the salience of events in
prison escape stories. We call this problem Jailbreak.

• Farrell and Ware (2020) provide a randomizable domain
with intentions and beliefs for performing belief and
intention recognition. We call this domain Lovers. We
used a version of the problem that requires one agent to
lie in order to reach a solution.

Table 1 gives summary facts about each domain. It includes
the numbers of characters and actions in a problem. PDDL
allows only Boolean predicates when defining a state,
but Sabre uses multi-valued fluents—essentially variables
which can have one of several possible values (Helmert
2006a). Sabre also allows problems to define triggers, which
have preconditions and effects similar to actions, except that
they must happen when their preconditions are satisfied.
Triggers are similar to but not identical to PDDL axioms,

160



and they are typically used for belief updates (e.g. when one
character is in a room with another character, the characters
realize that each other are there). Before planning, Sabre
grounds and simplifies the problem to remove fluents whose
values can never change and actions or triggers which can
never occur. The numbers in Table 1 reflect the size of the
problem after grounding and simplification.

Sabre performs best when upper limits are placed on the
size of a plan, the length of an explanation used to justify a
character action, and the depth of epistemic nesting (what
character x believes character y believes, etc.). We chose
limits based on the known solutions to these problems. For
example, the shortest solution to Gramma, where the player
dies, has only 3 actions, but the shortest solution for the
best ending, where the player succeeds on their quest, has
5 actions, so we chose 5 as the upper limit on plan length.

Results
After ruling out problems that were too small or too large,
we were left with 10 that gave interesting results. Results for
Uniform Cost Search (UCS), A* Search, and Explanation
First Search (EFS) on each of these problems is given in
Table 2. For each of these three search techniques, we use the
version where ϵ = 1.0 as the baseline. UCS when ϵ = 1.0
is equivalent to Breadth First Search; A* when ϵ = 1.0 is
equivalent to generic A*, etc.

Standard deviations for the number of nodes visited and
time spent during search were low enough across 10 runs to
suggest that the values reported are representative for these
problems. For example, the UCS baseline takes about 13
minutes to solve Western, with a standard deviation of 1.3
minutes. The search visited 813322 nodes on average, with
a standard deviation of 62888 nodes, or about 8%.

Discounting causally necessary actions usually improves
performance. For example, when we do UCS on the Deer
Hunter problem with ϵ = 0.4, the search visits 1809 nodes
(on average), which is 9076 fewer nodes than the baseline
UCS search where ϵ = 1.0, which visits 10885 nodes, an
improvement of 83%.

Some problems which could not be solved using the
baseline method can be solved by discounting causally
necessary actions. For example, baseline UCS cannot
solve the Fantasy problem in under 1 million nodes, but
discounting causally necessary actions with ϵ = 0.3 allows
it to be solved. This also happens for Hospital and Fantasy
with A*, and for Western with EFS.

We observed some negative results as well. Discounting
causally necessary actions was not helpful for the Gramma,
Jailbreak, and Lovers problems in any search method (i.e.
the baseline ϵ = 1.0 performed best on these problems).
However, for Lovers, ϵ had very little influence on any of
the search methods. For EFS on Secret Agent, ϵ had no effect
(i.e. all values of ϵ performed the same).

Figure 2 shows the effect of different values of ϵ
on each search method for each problem. A* and EFS
generally outperformed UCS, though neither A* nor EFS
was consistently the best. Lower values of ϵ tended to be
better. One notable exception is Western, where lower values
of ϵ were better for EFS but higher values were better for

A*. For Raiders, values between 0.3 and 0.7 were best.
For Gramma, higher values of ϵ were better, though no
value of ϵ beat the baseline. These three domains all contain
examples of causally necessary actions which must be added
early to a plan but do not become necessary until later.
Western is the most extreme example; the first action of
the shortest solution requires one of the characters to get
bitten by a snake, and the last action has that character die
of the snakebite, with the other actions in between being
an unsuccessful attempt to save that character’s life. We
suspect that solutions that have long distances between when
a necessary action is added and when it becomes necessary
will benefit from higher values of ϵ.

Different values of ϵ often had an effect on UCS, but
ϵ generally had a smaller effect on A* and EFS. We
suspect this is because the differences in the heuristic
estimates are large enough to eclipse our cost function.
Like most planning heuristics, the additive heuristic we used
for A* is not admissible and can overestimate on some
problems, sometimes dramatically. This may suggest that
while discounting causally necessary actions is helpful, a
better heuristic has a larger impact on the search. The effect
of discounting relative to the heuristic may become more
pronounced by using Weighted A*.

Overhead
We also need to verify that our cost function is not too
expensive to compute. For each action in a sequence, we
need to check whether the sequence can still be executed if
we leave that action out. This costs O(n2), but considering
that planning is P-SPACE complete (Helmert 2006b), and
that narrative planning is still limited to small problems, we
expect this to be negligible relative to the overall cost.

To test this empirically, we considered the Space problem,
since it can be solved by all search techniques and has a
relatively long solution of 5 actions. A longer solution is
important because the cost of checking which actions can be
left out of a sequence increases as the length of the sequence
increases.

We compared Breadth First Search (BFS) to UCS with
ϵ = 1.0. These searches will visit exactly the same nodes
in exactly the same order, except that UCS will incur
the additional overhead of calculating the cost function.
Similarly, we compared generic A* to A* using our cost
function with ϵ = 1.0. We ran each search 100 times without
shuffling action order.

BFS and UCS both visited 4256 nodes every time.
On average, BFS took 263.11 milliseconds and UCS
took 262.42 milliseconds. UCS actually took about 200
nanoseconds less per node visited, however this extremely
small amount of time is more likely due to small variations
in the Java garbage collector or the underlying operating
system than differences in the search.

Generic A* and A* with ϵ = 1.0 both visited 2777 nodes
every time. On average, A* took 301.30 milliseconds and
A* with ϵ = 1.0 took 301.54 milliseconds. A* with the cost
overhead took about 100 nanoseconds more per node visited
than A* without the cost overhead, but again this is a very
small difference.
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Figure 2: These graphs plot values of ϵ on the x axis and the number of nodes visited by UCS, A*, and EFS on the y axis for
each problem. Search is faster when it visits fewer nodes, so lower values on the y axis are better. The upper limit on search
was 1 million nodes; a value of 1 million on the y axis indicates the search failed.
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We conclude that our cost function is negligible to
calculate relative to the other costs of planning. For example,
the costs of calculating the heuristic for A* adds about
40,000 nanoseconds per node visited for this problem.

Conclusion and Future Work

The causal network of how the effects of earlier actions
enable the preconditions of later actions in a story has been
thoroughly studied by psychologists and shown to influence
how we perceive stories (Trabasso and Sperry 1985; Zwaan
and Radvansky 1998; Tapiero, van den Broek, and Quintana
2002). In this paper, we proposed a simple, low-overhead
method to detect causally necessary actions by testing
whether or not they can be left out of an action sequence.
We hypothesize that discounting causally necessary actions
will allow a forward state-space narrative planner to find
solutions faster. We provided preliminary support for that
hypothesis on a collection of benchmark narrative planning
problems. However, the best search technique and best
discount factor, and whether large or small discounts were
better, varied by problem.

There are many clear directions for future work. We
would like to gather more benchmark problems and repeat
these tests with a higher limit on the number of nodes
visited to demonstrate greater generalization. Weighted A*
may be more effective than basic A* at allowing causal
necessity discounts to influence heuristic-guided search. We
would like to test additional heuristics, like Fast Forward
(Hoffmann and Nebel 2001) and the Causal Graph Heuristic
(Helmert 2006a), as well as heuristics that account for
narrative structure, like the Glaive Heuristic (Ware and
Young 2014).

We kept our method simple in the hopes that it could be
easily implemented and efficiently calculated in a variety
of domain-independent forward planners, including both
narrative planners and off-the-shelf classical planners. We
focused on necessity and enablement, but Tapiero et al.
(2002) identified several kinds of narrative causality with
differing effects on perception. Narrative planners may be
able to leverage more nuanced concepts of causality if
they can distinguish between physical causality, motiva-
tion, psychological causation, and enablement. Earlier, we
discussed the difference between causal necessity (neces-
sary for the execution of actions) and narrative necessity
(necessary for the actions to make sense). We also hope to
investigate approaches that better capture narrative necessity
without being prohibitively expensive to calculate.
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