
Automatically Defining Game Action Spaces for Exploration Using Program
Analysis

Sasha Volokh, William G.J. Halfond
University of Southern California

volokh@usc.edu, halfond@usc.edu

Abstract
The capability to automatically explore different possible
game states and functionality is valuable for the automated
test and analysis of computer games. However, automatic ex-
ploration requires an exploration agent to be capable of de-
termining and performing the possible actions in game states,
for which a model is typically unavailable in games built with
traditional game engines. Therefore, existing work on auto-
matic exploration typically either manually defines a game’s
action space or imprecisely guesses the possible actions. In
this paper we propose a program analysis technique compat-
ible with traditional game engines, which automatically ana-
lyzes the user input handling logic present in a game to de-
termine a discrete action space corresponding to the possible
user inputs, along with the conditions under which the ac-
tions are valid, and the relevant user inputs to simulate on the
game to perform a chosen action. We implemented a proto-
type of our approach capable of producing the action spaces
of Gym environments for Unity games, then evaluated the ex-
ploration performance enabled by our technique for random
exploration and exploration via curiosity-driven reinforce-
ment learning agents. Our results show that for most games,
our analysis enables exploration performance that matches or
exceeds that of manually engineered action spaces, and the
analysis is fast enough for real time game play.

1 Introduction
In automatic exploration for games, an exploration agent au-
tomatically exercises different game mechanics with the aim
of covering various game states or functionalities. This tech-
nique has been used for game testing, where different states
are explored to reveal potential bugs (Zheng et al. 2019;
Gordillo et al. 2021; Liu et al. 2022), for amplifying the
coverage of human tester data (Chang, Aytemiz, and Smith
2019), and for building a database of searchable moments
(Zhan, Aytemiz, and Smith 2019).

Performing automatic exploration requires the capability
for an agent to determine the set of valid actions in its cur-
rent game state and choose an action to perform, simulating
relevant in-game events. A key challenge is that these capa-
bilities are not provided by typical game engines.

Existing work has taken various approaches to determin-
ing the game actions. The most common approach is for

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

developers to manually engineer an interface (Zheng et al.
2019; Juliani et al. 2020; Liu et al. 2022) or model (Iftikhar
et al. 2015; Schaul 2013), however these approaches require
additional developer effort. Another family of techniques
guesses the possible game inputs based on the platform or
input device (Bellemare et al. 2013; Zhan, Aytemiz, and
Smith 2019; Zhang et al. 2018), however this approach can
exhibit worse exploration performance due to many actions
with invalid inputs having no effect. Finally, another class of
techniques uses program analysis to analyze the game code
to determine possible user actions (Bethea, Cochran, and
Reiter 2011; Volokh and Halfond 2022), however existing
work is limited in the types of games and actions supported,
and has issues scaling to larger games.

In this paper we propose an approach for automatically
determining the possible actions in game states, along with
the set of relevant user inputs for each action. Our approach
is based on a program analysis of the user input handling
logic present in game code, and can scale to larger games by
automatically excluding code irrelevant to the analysis. We
evaluated the performance of automatic exploration enabled
by our technique for 16 Unity games, finding that explo-
ration with the actions determined by our analysis matches
or exceeds the performance achieved with the ideal case
of manually defined action spaces, and the analysis is fast
enough for real time game play.

2 Related Work
Several prior works using automatic exploration invest hu-
man effort into modeling the game for the exploration
agents. For example, work on reinforcement learning based
exploration strategies manually defined the player’s possi-
ble actions for the agents (Zheng et al. 2019; Gordillo et al.
2021; Liu et al. 2022). Other approaches have manually con-
structed UML state machine models to generate test cases
(Iftikhar et al. 2015; Schaefer, Do, and Slator 2013). In con-
trast to these prior works, we aim to automatically deter-
mine the actions. Moreover, we are not aiming to build a
full model of the game, but only to determine the possible
actions for the agent’s current state.

Another approach taken to determining actions is to guess
the possible user inputs based on the platform or input de-
vices. For example, in Atari game playing (Bellemare et al.
2013), agents may assume that all 18 combinations of input

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

145



are possible for all games. Zhang et al. (2018) developed an
exploration approach for the Super Nintendo platform that
utilizes all 4,096 possible combinations of controller but-
tons. While such an approach does not require additional
developer effort per game, it is known to often produce in-
valid combinations of input with no effect, therefore impact-
ing exploration performance. In our work we aim to provide
a precise set of actions based on an analysis of the game
code, giving consideration to the game state conditions un-
der which certain input combinations are valid as well.

Some prior work has sampled actions from human
demonstrations of game play (Zhan, Aytemiz, and Smith
2019; Chang, Aytemiz, and Smith 2019). In our work we
do not expect the presence of human demonstrations, which
can be challenging to obtain and can be invalidated upon
changes to the game code during development. Our ap-
proach instead utilizes the game code to determine the ac-
tions.

Bethea, Cochran, and Reiter (2011) developed an ap-
proach to detect cheating in online games that is also based
on program analysis of the game code. Their approach an-
alyzes the game loop to determine valid user actions, then
checks whether a sequence of client packets corresponds to
valid user inputs. This approach, like ours, determines valid
user inputs, and also uses a similar program analysis ap-
proach based on symbolic execution, however is ultimately
applied toward a different goal of cheat detection rather than
automatic exploration. Therefore it does not address other
necessary components we discuss, such as the mechanism
for determining valid actions during game play and simulat-
ing inputs. It also only considers keyboard inputs, whereas
our approach is capable of handling keyboard, joystick, and
mouse inputs. To scale to larger games, their work also re-
lies on a time-consuming manual trimming of game code,
whereas our approach can scale automatically with an auto-
mated approach to irrelevant code exclusion.

Volokh and Halfond (2022) also developed a program
analysis approach to determining game actions and con-
sidered its application towards automatic exploration. Their
analysis is also based on symbolic execution, however does
not support mouse actions (only keyboard and joystick ac-
tions) and imprecisely models inputs checked over multiple
frames, both of which we address in our approach. Their ap-
proach also does not scale well to larger games, which we
handle in our approach with a technique to automatically
exclude irrelevant code.

3 Methodology
The goal of our approach is to determine the possible actions
in game states and the relevant user inputs associated with
each action. To accomplish this we propose a program anal-
ysis based approach. First, in order to achieve scalability to
larger games, our analysis identifies the user input handling
logic present in the code and excludes from consideration
all other code that is irrelevant to handling user inputs (Sec-
tion 3.1). Then, it analyzes the execution paths through the
user input handling code to determine the conditions on user
input and game state under which certain behaviors will be
observed (Section 3.2). Finally, the results of this analysis

Listing 1: Example of an update function from a game com-
ponent in a Unity game that is controllable by the user.
1 void Update() {
2 if (Input.GetAxis("Horizontal") > t)
3 Move(Vector2.right);
4 else if (Input.GetAxis("Horizontal") < -t)
5 Move(Vector2.left);
6 if (jumpEnabled && IsOnGround()) {
7 bool jump = Input.GetButton(jumpButton);
8 if (jump) {
9 var rb = GetComponent<Rigidbody2D>();

10 rb.AddForce(Vector2.up);
11 }
12 }
13 foreach (Enemy e in NearbyEnemies())
14 e.Alert();
15 }

Listing 2: Computed program slice of Listing 1 containing
only statements relevant to the handling of user inputs.
16 void Update() {
17 if (Input.GetAxis("Horizontal") > t) { }
18 else if (Input.GetAxis("Horizontal") < -t) { }
19 if (jumpEnabled && IsOnGround()) {
20 bool jump = Input.GetButton(jumpButton);
21 if (jump) { }
22 }
23 }

are mapped into a discrete action space, for which the agent
can determine the valid actions and simulate a chosen action
(Section 3.3).

3.1 Identifying Input-Handling Logic
Our analysis of game actions targets code that handles user
inputs. Typically, only a small portion of the code is respon-
sible for this, since many of the game components are en-
tirely dedicated to defining the game logic and contain no
input-handling code. As we show in the evaluation, applying
the analysis to the entirety of the code can be prohibitively
time-consuming and potentially lead to failure due to time-
out or the presence of code difficult for the analysis to han-
dle. Therefore, the first step of our analysis is to determine
ahead of time those parts that should be analyzed, excluding
from consideration any code that can be determined to be
irrelevant to the handling of user inputs.

In traditional game engines, user actions are defined by
having parts of the game logic check the state of the user’s
input device and modifying the behavior of the game’s ob-
jects accordingly. An example of such input-handling logic
for a Unity game can be found in Listing 1. At line 2 the
Input.GetAxis method returns either a negative, zero,
or positive float value, which could, for example, correspond
to the position of a joystick on a game controller. At line 7
the Input.GetButton method returns a boolean value
indicating whether the target button is currently pressed. We
can see that within this function, there are program state-
ments irrelevant to the handling of user inputs, such as the
loop over game enemies at lines 13-14. Our analysis ex-

146



Listing 3: Example where user actions depend on the state
of input across multiple frames.
24 void Update() {
25 if (Input.GetButtonDown("Reload"))
26 ammo = 5;
27 if (ammo > 0 && Input.GetButtonUp("Shoot")) {
28 FireMissile();
29 ammo -= 1;
30 }
31 }

cludes such irrelevant statements from consideration. Prior
works either could only exclude entire methods (Volokh and
Halfond 2022) or expected manual trimming of irrelevant
code (Bethea, Cochran, and Reiter 2011) in order to make
the analysis scalable to larger code bases.

Our analysis performs two stages of filtering, first on the
method level and then on the program statement level. A
key challenge is to ensure that the exclusion of irrelevant
code from analysis is done in a safe way, to ensure that all
code related to user input handling is considered. Therefore,
both approaches to filtering are safe over-approximations.
On the method level, the analysis first collects an initial set
of known methods that the game engine calls directly to up-
date an object’s state, such as Update() in the Unity game
engine. A call graph is then constructed for the program,
with nodes being methods and edges being directed edges
from each caller to callee. This initial set is then filtered to
only include those update methods that have a path in the
call graph from the method’s node to the node of an in-
put API (such as those defined by the Input namespace
in Unity). This gives us a set of update methods that can
possibly lead to an input API invocation. Within these meth-
ods, our analysis excludes specific program statements that
are irrelevant to the handling of user inputs by applying in-
terprocedural program slicing (Horwitz, Reps, and Binkley
1990), which computes a slice of a program where the be-
havior of a set of desired statements is preserved. In our case,
the desired statements are any that either invoke a user input
API, or have a data dependency on input API results (such as
a branch conditioned on user input). To perform this slicing,
our analysis constructs a graph of all the control and data
dependencies in the program. The sliced program is then all
statements which are transitively control or data dependent
on the desired statements.

The resulting sliced program is a reduced version of the
original program that only includes those statements rele-
vant to the handling of user inputs. For example, the com-
puted slice of Listing 1 is given in Listing 2. As we will
show in the evaluation, the exclusion of the code irrelevant
to user input handling enables the analysis to scale to more
games.

3.2 Action Analysis
Having identified the input handling code, the next objective
is to analyze it to determine the possible combinations of
user inputs. There are numerous challenges to such an anal-
ysis, which we address in our approach. For one, in general

Listing 4: Example where axis and mouse position values
would be discretized by our approach.
32 void Update() {
33 float h = Input.GetAxis("Horizontal");
34 transform.position.x += h * Time.deltaTime;
35 var pt = ScreenToWorldPt(Input.mousePosition);
36 var hit = Raycast(pt);
37 if (hit.collider != null) {
38 Highlight(hit.collider);
39 }
40 }

the analysis needs to consider not only individual inputs, but
also combinations of inputs that result in different behaviors.
For example, in Listing 1 it is possible for the player to jump
and move right on the same frame if the horizontal axis at
line 2 is positive and the jump button at line 7 is pressed.
Secondly, some actions may only be valid under specific
conditions. For example, the player’s jump functionality de-
fined at lines 7-11 is only available if jumpEnabled and
IsOnGround() are true. Therefore such an analysis needs
to determine the conditions under which input combinations
are valid. Considerations also need to be made for certain
input types. Input APIs depending on the state of input over
multiple frames, as in Listing 3, need to be modelled ac-
curately to correctly determine the user inputs and action
validity. Some inputs, such as axis and mouse position, gen-
erate floating point values that can be used in ways that are
difficult to analyze such as in Listing 4, requiring approxi-
mations. Prior work does not handle mouse inputs (Bethea,
Cochran, and Reiter 2011; Volokh and Halfond 2022), and
models multi-frame inputs independently of the regular in-
puts (Volokh and Halfond 2022), which can lead to incorrect
results for user inputs and action validity.

On a high level, our analysis works by analyzing the dif-
ferent possible execution paths through the user input han-
dling code. The key idea is that different paths represent
the different possible behaviors the game may exhibit de-
pending on the user input, an insight made by prior work as
well (Bethea, Cochran, and Reiter 2011; Volokh and Hal-
fond 2022). As in these prior works, we use the technique
of symbolic execution (Clarke 1976) in order to execute the
game code with symbolic representations of the user input.
Whenever the execution encounters a call to an input API,
it produces a symbolic user input value. If the execution en-
counters a global variable (such as jumpEnabled in List-
ing 2), a symbolic game state value is produced for it as well.
When the symbolic execution reaches a branch point condi-
tioned on symbolic values, the execution forks into different
states, each maintaining a path condition comprised of con-
ditions on the symbolic user input and game state. As an
example, one of the path conditions produced by running
symbolic execution on Listing 2 will be:

Input.GetAxis("Horizontal") > t ∧
jumpEnabled ∧ IsOnGround() ∧
Input.GetButton(jumpButton)

(1)

This path condition corresponds to an execution path

147



where the player moves right and jumps on the same
frame. It consists of conditions on the symbolic user in-
put variables Input.GetAxis("Horizontal") and
Input.GetButton(jumpButton), and conditions on
symbolic game state variables t, jumpEnabled and
IsOnGround(). Each of these path conditions gives the
conditions under which a particular execution path is taken
(i.e. a certain game behavior is observed).

The output of the analysis is a set of path conditions for
execution paths through the user input handling code. These
conditions are sufficient to determine the different possible
combinations of user input for a given game state, since their
solution gives the inputs needed to take a desired execution
path. Because these path conditions include the game state
variables, they can also be used to test the validity of ac-
tions under certain game states (this becomes equivalent to
checking the satisfiability of path conditions). In the remain-
der of this section we address the handling of specific types
of inputs.

Axis and Mouse Movement Actions Axis inputs (such as
those returned by Input.GetAxis) and mouse position
input (such as Input.mousePosition) are core input
types used in defining user actions in games. Axis inputs can
be used to, for example, read the position of a joystick and
are commonly used for controlling player characters. The
mouse position refers to the position of the mouse cursor on
the screen and is commonly checked in the game logic of
games utilizing the mouse, so is therefore crucial to handle
correctly for mouse action support.

A key challenge with these types of inputs is that, unlike
key/button APIs that return booleans typically used to con-
trol a branch, these inputs are represented by floating point
values. These values could directly affect the game state
without a branch taking place, as demonstrated in Listing
4 at lines 33-34, which would cause them to not appear in
the path condition during symbolic execution. Even if used
in a branch, the condition itself could still be too complex
to relate the branch to the original input API invocation. For
example, at lines 35-37 of Listing 4, a ray-cast is performed
from the mouse cursor. In this operation there are exter-
nal functions for projection and ray-casting that may not be
symbolically executable, thus losing information about how
the mouse position at line 35 relates to the branch at line 37.

In order to address these issues, our analysis discretizes
axis and mouse position input values when encountering
a method call to such input APIs. When the symbolic ex-
ecution encounters a call to an axis input API such as
Input.GetAxis, it forks into three execution states that
include assumptions in the path condition for the general
cases of interest: in the first state the axis value is as-
sumed to be negative, in the second it is zero, and in
the third it is positive. For mouse position APIs such as
Input.mousePosition, the execution is forked into a
grid of mouse positions on the screen such that in each state
the mouse position’s x and y values are bounded within a
cell of the grid (in our experiments we used a grid size of
4x4). With this approach, even if an input value cannot be
related to a branch, the resulting action space will still cover

a diverse range of behavior as an approximation.

Multi-Frame Input APIs The result of some input APIs
depends on both the current and previous frame’s input state.
These cases must be modeled accurately to ensure the agent
correctly interacts with the game. For example, in Listing 3,
the method Input.GetButtonDown at line 25 will only
return true if the button’s state was released on the previ-
ous frame and pressed on the current frame. Conversely, the
method Input.GetButtonUp at line 27 will only return
true if the button’s state was pressed on the previous frame,
then released on the current frame.

To model these cases accurately, the analysis expands
these input APIs into an atomic set of input APIs, treat-
ing the previous input state as part of the game state.
For example, Input.GetButtonUp("Shoot") would
be expanded into Inputprev.GetButton("Shoot")∧
!Input.GetButton("Shoot"). This same expansion
is done for APIs such as GetKeyDown, GetKeyUp,
GetMouseButtonDown, or GetMouseButtonUp.

3.3 Defining Action Space
With the execution path information from the analysis, an
action space for the game can now be automatically defined
for the agent to interact with, where each action is associated
with an execution path and its path condition. The path con-
dition information can then be used to determine the valid
actions for a given game state, and to determine the relevant
device inputs to simulate on the game in order to perform a
chosen action. The following sections discuss each step.

Mapping Analysis Results Given a set of N path con-
ditions corresponding to execution paths through the input-
handling code, a discrete action space can be defined such
that there are N actions, each associated with a path con-
dition. This representation is convenient for exploration al-
gorithms that require defining an upper bound on the num-
ber of actions in advance (such as the number of outputs
of a neural network in deep reinforcement learning). This
also simplifies the use of this approach with AI environment
frameworks such as Gym (Brockman et al. 2016) that re-
quire defining the action space in advance.

In the simplest case, each path condition is associated
with a single action. However, an execution path through an
update method such as Update() is also associated with
an instance of a game object. Therefore, it is possible for
multiple object instances to be associated with a single path.
In this case, statically predicting an upper bound on the num-
ber of actions is difficult or impossible, since this would
require predicting the maximum number of instances of a
type of game object in any game state. To address this issue
and remain compatible with techniques that require an upper
bound on the number of actions, our prototype implementa-
tion associates each execution path with a single action, and
if the agent chooses an action associated with multiple ob-
ject instances, the action is performed with a random object
chosen from among these instances.

Determining Valid Actions In general, only a subset of
the whole action space may be available in a given game

148



state. Therefore, during game play the path conditions pro-
duced from the analysis are used to inform the agent of the
actions that are valid in its current game state, so that it does
not choose the invalid ones. While an SMT solver could be
used to determine validity, in practice invoking a solver on
every path condition is too slow for game play in real time.

Our approach therefore relies on an approximation for
quickly testing action validity proposed in previous work
(Volokh and Halfond 2022). Every path condition p can be
split into conditions that are only on game state variables, pg ,
and conditions that include user input variables, pi, such that
p = pg ∧ pi. It then follows that if pg is false, then the path
condition is unsatisfiable since p must be false. For example,
consider the path condition in equation 1 of Section 3.2. In
this example, pg = jumpEnabled ∧ IsOnGround(),
which gives us the conditions under which jumping is avail-
able. In order to enable quickly testing the action’s validity,
our approach is to compile pg into an expression in code
to test the validity of the action (such as a C# function for
Unity). Therefore, in addition to the path conditions, one of
the outputs of the analysis is also code generated for each
of these compiled action validity functions. The agent then
tests the compiled pg for every action to determine which ac-
tions are valid in its current game state. More details about
this compiling process can be found in Section A.

Performing Chosen Action When the agent chooses an
action to perform, the specific concrete inputs need to be
determined and simulated. To determine these inputs, the
associated path condition is solved with an SMT solver.
For example, suppose we wish to determine the inputs to
simulate for the path condition in equation 1 of Section
3.2. We would add the concrete values of the game state
variables, for example t = 0.2, jumpEnabled = true,
IsOnGround() = true. The solver can then produce a so-
lution such as:

Input.GetAxis("Horizontal") = 0.3
Input.GetButton(jumpButton) = true

(2)

At this point the parameters to the input APIs are looked
up in the game’s input configuration to determine the de-
vice inputs to simulate (key codes, joysticks, mouse but-
tons, etc.). Note that in this example the button for jump-
ing is not a string constant, it refers to a global variable
jumpButton, so for this case the symbolic parameter
would first be evaluated under the current game state to de-
termine its string value.

A key technical challenge is simulating the device in-
puts, since some game engines do not provide this capabil-
ity. Prior work has simulated inputs on the operating system
level (Volokh and Halfond 2022), however such an approach
makes it difficult to run multiple games in parallel. There-
fore, our approach is to instrument the game’s user input
APIs such that they are substituted with a version that allows
for simulating inputs directly. This not only enables run-
ning parallel instances but also simplifies simulating more
devices such as game controllers or mouse cursors.

4 Evaluation and Results
We address the following research questions about our ap-
proach by running experiments that measure automatic ex-
ploration performance for a variety of games:

1. RQ1: How does the exploration performance of agents
using our analysis for defining the action space compare
to existing approaches?

2. RQ2: What is the run time of the different parts of our
analysis (execution path analysis, determining valid ac-
tions, performing a chosen action)?

3. RQ3: How is analysis success rate and exploration per-
formance affected by the irrelevant code exclusion and
mouse action components of our analysis?

4.1 Experiment Setup
In each of our experiments we ran automatic exploration
with a given approach to determining game actions. In this
section we detail the metrics used for measuring exploration
performance, the two exploration strategies, and the games
used in our evaluation.

Exploration Performance Metrics We measured explo-
ration performance with two widely used metrics of state
coverage and code coverage. We defined state coverage as
the number of distinct states reached by an agent, as in prior
work (Zheng et al. 2019), where it was found that higher
state coverage enables finding more bugs. In order to make
states countable for state coverage, we used a state abstrac-
tion that reads and abstracts the game’s scene hierarchy, re-
moving detailed attributes such as coordinates or colors, giv-
ing a more compact state representation. For code coverage
we measured the percentage of program statements executed
(statement coverage).

When aggregating coverage results, we first applied nor-
malization to the state coverage values because they repre-
sent the number of distinct states visited and therefore their
magnitude differs among games. This is similar to the prob-
lem of normalizing game scores when aggregating game
playing performance across games (Bellemare et al. 2013).
We used inter-algorithm normalization, such that we com-
puted the minimum and maximum state coverage smin and
smax achieved by any approach for a given game, then nor-
malized the range [smin, smax] to [0, 1].

Exploration Strategies We evaluated the impact of our
approach for two popular exploration strategies. The first ex-
ploration strategy we used is random action selection, which
has been commonly compared against as a baseline for au-
tomatic exploration of games (Liu et al. 2022; Gordillo et al.
2021; Zheng et al. 2019; Zhan, Aytemiz, and Smith 2019)
and mobile application testing (Choudhary, Gorla, and Orso
2015). In our evaluation, we used a random exploration pol-
icy that chooses uniformly at random from all valid ac-
tions in a given game state. The second exploration strat-
egy we used is exploration with curiosity-driven reinforce-
ment learning agents, where agents are given a curiosity re-
ward that rewards the agent for entering novel states. We
employed a count-based approach to curiosity based on pre-
vious work (Tang et al. 2017; Gordillo et al. 2021), where

149



the agent is given a reward inverse to the number of times
it has visited a state previously. We made the state space
countable with the same scene hierarchy abstraction used
for measuring state coverage. For the reinforcement learn-
ing algorithm, we used deep Q learning (DQN) (Mnih et al.
2015) with the same convolutional neural network architec-
ture and image processing pipeline as in the original work.
Because not all actions in our action space may be valid, we
additionally employed invalid action masking (Huang and
Ontañón 2022) to avoid choosing invalid actions. After the
network produces the action values, invalid actions are as-
signed a very low value such that they are guaranteed not to
be chosen.

Games Evaluated The games used in our evaluation are
Unity games with source code available. We excluded games
if they use online networking, virtual/augmented reality, or
are too resource intensive for our experiment setup, which
requires running multiple instances of games over a long
period of time. We included 5/6 games from GitHub evalu-
ated in previous work (Volokh and Halfond 2022), with one
excluded due to being too resource intensive. Because the
prior work did not support mouse actions, we introduced 3
additional games from GitHub that use the mouse. We ob-
tained the remainder of our games from student projects in a
graduate game development course. Each project is a Unity
game developed over the course of a semester. There were
19 projects, our analysis implementation worked for 12/19
projects. Four projects were incompatible due to the use of
alternative input APIs (Unity Input System and Unity UI),
which are not supported by our prototype. The analysis of
two projects failed due to symbolic execution issues, and
one game was incompatible with our helper scripts for com-
municating with agents. Among the 12 projects, four were
excluded due to being too resource intensive for our experi-
ment setup.

Overall, we had 8 games from GitHub and 8 student
projects used in our evaluation. Section B gives more de-
tails about each game and the number of actions. For each
game we also defined an initialization script to bring the
game through any initial menus to the main game play, and
a done condition to determine when the game is over.

4.2 RQ1: Exploration Performance
In this experiment, we measured the performance of explo-
ration agents using the action spaces produced by our anal-
ysis. We ran our action analysis on each game and inte-
grated the resulting discrete action space into a Gym (Brock-
man et al. 2016) environment that the exploration agents
interact with. We then ran exploration for each game for
150,000 steps with 3 game instances in parallel, such that
each step holds the selected action for 10 frames. The explo-
ration strategy was varied, such that for each game we ran
with both exploration strategies of random exploration and
curiosity-driven reinforcement learning. During each game’s
execution, we recorded the state and code coverage achieved
during exploration.

To provide a frame of reference for the performance of
our approach, we additionally ran the same experiments with

Figure 1: Average exploration performance across all 16
games with the different action space approaches. State cov-
erage values are normalized to [0, 1] prior to being averaged.

two other approaches discussed in the related work for pro-
viding the game actions to agents. First, we implemented the
ideal case where we manually define each game’s possible
actions with a discrete action space, as done in prior work
(Liu et al. 2022; Zheng et al. 2019), such that the action
space covers all the functionality of the game as determined
by a manual inspection of the game and its source code. Sec-
ondly, we define an action space which samples the common
inputs on the platform’s input device, as considered in previ-
ous work (Bellemare et al. 2013; Zhan, Aytemiz, and Smith
2019). We refer to this as a blind action space and define it
for the keyboard and mouse in a way suitable for interacting
with most games: we have an action for pressing down and
an action for releasing 66 commonly used keys on the key-
board and the three mouse buttons, as well as 16 actions for
moving the mouse cursor within cells on a 4x4 grid on the
screen. For some games there are undesirable actions that we
blacklist for all approaches, such as pausing/quitting/restart-
ing the game.

Results The average coverage results achieved for the 16
games with the different action space approaches are shown
in Figure 1. We can see that on average, both exploration
strategies achieved the highest state and code coverage when
using the action spaces produced by our analysis, with the
manually engineered action spaces giving second-best per-
formance and the blind sampling approach giving the lowest.

Exploration coverage results per game are given in Sec-
tion C. We found that compared to the blind sampling ap-
proach, our approach consistently gave higher state cover-
age, and either the same or higher code coverage. We then
compared our approach against the manually engineered ac-
tion spaces. We found that with the random exploration strat-
egy, our approach matched or exceeded state coverage in
12/16 games and code coverage in 13/16 games. With the re-
inforcement learning based strategy, our approach matched

150



or exceeded state coverage in 14/16 games and code cov-
erage in 15/16 games. We found there were two games for
which the manually engineered action spaces gave consis-
tently better exploration performance than our analysis, and
two others where this was only the case with the random ex-
ploration strategy. Investigating these cases revealed that for
these games, the manual action space had a greater bias to-
wards actions that could lead to entering new states. For ex-
ample, it was more likely for the agent to randomly perform
an action that created a new game object (such as firing a
bullet or placing a puzzle piece). This resulted in a new state
according to our state definition, and could also lead to more
code coverage (for example due to defeating more enemies
due to the presence of more bullets).

Discussion Overall we see these results as positive for our
approach. For the majority of games, agents using the ac-
tions from our analysis achieved exploration performance
that matches or exceeds that of the ideal case of manually
engineered action spaces, on average achieving better per-
formance. The manual action spaces require developer ef-
fort, whereas our analysis is fully automated.

4.3 RQ2: Run Time
We measured the run time of the different parts of our ap-
proach as the exploration experiments were running. The av-
erage time taken for the execution path analysis, which was
only performed once prior to game play, was 29.7 seconds
(minimum 2.1 seconds, maximum 110.6 seconds). During
game play, the total time spent determining and performing
actions each step was on average 23.75 ms (minimum 18.11
ms, maximum 42.64 ms). The times per game can be found
in Section C. The slowest part during game play is perform-
ing the actions, which is due to the invocation to the SMT
solver. Nevertheless, the average time taken for an action
step is still fast enough to observe game exploration in real
time. It is also on average within the 40 ms action selection
time limit used in some game playing competitions (Perez-
Liebana et al. 2015).

4.4 RQ3: Impact of Slicing and Mouse Support
In this experiment we examined the impact of two key com-
ponents of our action analysis: the automatic irrelevant code
exclusion via program slicing and the mouse action support.
We ran the same exploration experiments as for RQ1 with
variants of the analysis having these components enabled or
disabled.

Results Figure 2 shows the average exploration perfor-
mance for each of these variants. Note that the configuration
with both program slicing and mouse support disabled is a
close approximation of previous work in this area by Volokh
and Halfond (2022). We observed that without program slic-
ing, the analysis would fail for three of the games due to
non-termination (30 minute time-out) and fail for one of the
games due to a symbolic execution failure encountered with
code normally excluded by the program slicing. Therefore
our aggregate plot does not include these four games in the
comparison. For the 6 games in our evaluation with mouse
actions, we observed that support for mouse actions gave

Figure 2: Exploration performance with the different action
analysis variants having the program slicing and mouse ac-
tion components enabled or disabled.

improved state and code coverage for 4/6 games, with an es-
pecially large increase for 3/6 games which exclusively re-
lied on mouse inputs. The remaining 2/6 games, where non-
mouse inputs were sufficient for many of the game func-
tions, had approximately the same exploration performance.

Discussion Our results show that both the mouse action
support and program slicing components improved the av-
erage exploration performance, with the best performance
achieved with both enabled. Besides exploration perfor-
mance, with program slicing enabled we also observe a
higher analysis success rate (without slicing, the analysis did
not work for four games). Although we did find that with
program slicing the analysis time takes longer (on average
about three times as long) due to the construction and pro-
cessing of the dependence graphs, we believe the improved
success rate and exploration performance justifies this cost.

5 Discussion and Future Work
Our evaluation shows the capability of our automated anal-
ysis to match or exceed the performance of the ideal case of
manually engineered action spaces for the majority of games
in our data set. While the manual annotation of the actions
does aim to cover all the user functionality of the game, a
key advantage of the action analysis is its capability to ex-
haustively consider all possible execution paths through the
user input handling code, therefore often identifying more
combinations of valid inputs than the human annotation. For
example, for the platformers in our evaluation, the action
analysis determines all possible combinations of functional-
ities such as movement, jumping, dashing, or firing, which
enables the agents to exhibit more complex behaviors and
therefore cover more states.

While in this paper our implementation focuses on the
Unity game engine, conceptually the symbolic path analy-
sis and code exclusion of our approach could apply to any

151



game engine with a standard input API checked within the
game loop. For instance, the related work on cheat detection
by Bethea, Cochran, and Reiter (2011) also applied sym-
bolic execution to the game loop for determining valid user
actions of games written in C. Our approach does leverage
several non-trivial analyses. For one, our analysis uses data
and control dependency analysis to determine relevant state-
ments and perform the program slicing, for which we rely
on safe over-approximations to ensure all relevant code is
included. Secondly, implementing a symbolic execution en-
gine can be a difficult engineering challenge due to the many
types of program instructions and values to handle and the
exponential growth in the number of program paths (Cadar
et al. 2011). Because our analysis only targets code involved
in handling user input, this growth is reduced both through
the techniques for code exclusion described in Section 3.1
and by avoiding method evaluation when possible, summa-
rizing methods with a symbolic return value if they are not
involved in handling user input or are not symbolically exe-
cutable, such as native game engine or system APIs.

As future work, the development of a variant of the ac-
tion analysis capable of generating continuous action spaces
could be valuable, as these are currently discretized by our
approach, thus limiting the reachability of some states. Fur-
thermore, even with our automated approach to identifying
valid actions and their relevant device inputs, the exploration
of large game state spaces remains difficult. The develop-
ment of refinements and heuristics for our analysis or its ap-
plication could be useful towards this end as well.

6 Conclusion
In this paper we have proposed an automated approach for
determining actions when conducting automated exploration
for games. Our program analysis based approach automati-
cally determines a game’s possible actions and relevant user
inputs, and can scale to larger games by automatically ex-
cluding code irrelevant to the analysis. The evaluation of
our approach shows the action spaces determined by our au-
tomated approach match or exceed the performance of the
ideal case of manually defined ones for most games. With
the increasing importance of automated testing and analysis
techniques for games, we believe our approach can provide
a valuable component to simplify the use of next generation
tools based on intelligent agents.

A Path Condition Compiling
In order to provide a mechanism for quickly approximat-
ing the validity of game actions in a given state, our anal-
ysis generates boolean functions for each action that are
then invoked by the agent during game play. After the sym-
bolic execution completes, our analysis iterates over every
path condition p, splitting it into conditions that are only
on game state variables, pg , and conditions on user input
variables, pi, such that p = pg ∧ pi. For example, the
path condition in Equation 1 of Section 3.2 would give
pg = jumpEnabled ∧ IsOnGround(). The analy-
sis then translates these conditions into boolean functions
in the target language of the game engine (for example, C#

Listing 5: Example of a function generated from a path con-
dition for testing action validity.
41 bool p_g(MonoBehaviour instance) {
42 return (bool)f_jumpEnabled.GetValue(instance)
43 && (bool)m_IsOnGround.Invoke(instance,
44 new object[0]);
45 }

for Unity), which are compiled in together with the game
code. An example of the compiled pg is given in Listing 5.
The function takes as input an instance of a game object’s
component because each Update method is associated with
a game object instance. It accesses fields and methods via
reflection to address the presence of access protections. This
code generation only occurs once prior to game play, and the
resulting functions are then invoked repeatedly during game
play by the agents to determine action validity. As shown in
Table 3, our experimental times show this mechanism is fast
enough for real time usage (on average 5 ms, minimum 0.3
ms, maximum 26.2 ms).

B Games Evaluated
Table 1 gives information about the Unity games (sourced
from GitHub and student projects) used in the evaluation.
The LOC column gives the number of lines of C# source
code, excluding third-party dependencies and our analysis
helper code. The Inputs columns describe the types of in-
puts that are present in the games. The Analysis Action
Count column gives the number of actions (i.e. execution
paths through the user input handling code) determined by
the analysis. The Analysis Avg Valid Actions column shows
the average number of valid actions across the states encoun-
tered by the exploration agents, which gives an estimate of
the actual number of actions that agents have to choose from.
The Manual columns give these values for the manually en-
gineered action spaces compared against in the evaluation.

C Per Game Results
The exploration results per game measured for RQ1 in Sec-
tion 4.2 are given in Table 2. The bold cells in this table
indicate the action identification approach that achieved the
highest coverage with a given exploration strategy. The run
time results per game measured for RQ2 in Section 4.3 are
shown in Table 3, which gives the average times both for
the initial execution path analysis, and the time to determine
valid actions and perform them during game play.

Acknowledgments
The authors acknowledge the Center for Advanced Research
Computing (CARC) at the University of Southern Califor-
nia (USC) for providing computing resources that have con-
tributed to the research results reported within this publica-
tion. The authors acknowledge Scott Easley from the USC
Games program for facilitating access to the student projects
used in the experiments. This work was partially supported
by U.S. National Science Foundation grant no. 2211454.

152



Identifier Genre LOC Button
Inputs

Axis
Inputs

Mouse
Inputs

Analysis
Action
Count

Analysis
Avg Valid
Actions

Manual
Action
Count

Manual
Avg Valid
Actions

GH1 Platformer 2,107 X 432 17 6 5
GH2 Platformer 3,283 X X 140 51 8 7
GH3 Maze 1,902 X X 45 31 7 7
GH4 Puzzle 1,493 X 600 18 7 5
GH5 Puzzle 699 X 22 10 6 5
GH6 Physics 133 X X 116 60 19 13
GH7 Tile-Matching 1,290 X X X 8 6 6 5
GH8 Physics 96 X X 38 9 19 5
SP1 Platformer 2,241 X X 77 25 13 7
SP2 Platformer 7,670 X X 87 28 16 7
SP3 Maze 4,990 X X 18 10 13 4
SP4 Maze 4,293 X X 164 5 23 4
SP5 Maze 9,694 X X 13 10 9 7
SP6 Platformer 2,240 X X X 56 23 31 19
SP7 Shoot ’em up 7,378 X X X 219 24 24 10
SP8 Platformer 5,218 X X 2,560 11 19 6

Table 1: Information about the Unity games used in the evaluation. Games whose identifiers start with “GH” are sourced from
GitHub, and those with “SP” are sourced from student projects.

Game
State Coverage Code Coverage

Action Analysis Manual Blind Action Analysis Manual Blind
RL Rand RL Rand RL Rand RL Rand RL Rand RL Rand

GH1 59 62 29 44 6 9 90.33% 90.25% 87.11% 90.41% 73.35% 85.53%
GH2 106 104 35 55 6 10 48.58% 50.99% 42.75% 43.58% 36.18% 38.76%
GH3 24,993 26,455 21,076 21,357 1,182 902 70.01% 70.01% 70.01% 68.76% 70.01% 70.01%
GH4 199 83 73 85 25 15 91.51% 91.51% 91.51% 91.51% 81.25% 81.25%
GH5 15 15 15 15 12 9 90.02% 90.02% 90.02% 90.02% 86.51% 86.51%
GH6 1,255 1,380 630 287 132 49 92.68% 92.68% 92.68% 92.68% 92.68% 92.68%
GH7 78 101 77 99 30 40 82.56% 82.56% 82.56% 82.56% 82.56% 82.56%
GH8 13 18 6 6 1 1 100.0% 100.0% 77.05% 77.05% 22.95% 22.95%
SP1 70 57 28 40 11 11 45.52% 45.52% 41.49% 41.49% 41.72% 41.72%
SP2 2,499 1,228 3,930 2,552 575 662 17.9% 17.87% 17.9% 17.9% 17.83% 17.87%
SP3 16 17 12 11 10 10 16.68% 16.68% 16.68% 16.68% 15.77% 16.68%
SP4 15 18 10 14 7 7 15.19% 15.19% 15.19% 15.19% 12.99% 12.99%
SP5 184 184 168 226 63 61 4.32% 4.32% 4.32% 4.32% 4.32% 4.32%
SP6 17 18 14 15 7 7 34.73% 34.73% 34.73% 34.73% 29.44% 29.44%
SP7 72,492 76,416 82,063 87,210 44,818 47,361 27.66% 27.57% 28.46% 27.6% 27.25% 27.22%
SP8 57 21 43 15 4 3 35.71% 35.83% 35.2% 34.64% 29.29% 21.2%

Table 2: Results for exploration coverage with the curiosity-driven reinforcement learning and random exploration strategies.
Bold cells represent the highest coverage achieved with a given exploration strategy by any of the three approaches to identifying
game actions.

GH1 GH2 GH3 GH4 GH5 GH6 GH7 GH8 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8
Analysis (sec) 15.1 9.8 5.3 37.4 23.6 3.9 2.9 2.4 8.0 58.3 97.5 10.1 2.1 13.2 74.5 110.6
Validity (ms) 12.2 3.9 3.3 17.2 1.5 1.7 0.8 0.3 2.0 2.0 1.3 1.6 2.5 1.5 1.9 26.2
Perform (ms) 17.8 17.5 15.9 16.3 20.6 17.2 17.4 18.5 19.6 16.1 19.4 23.1 19.4 23.9 21.2 16.4

Table 3: Analysis run times per game. The first row gives the time for the execution path analysis (average of 10 runs). The
second and third rows give the time to determine valid actions and perform a chosen action during game play (averaged over
all agent steps).

153



References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research, 47: 253–279.
Bethea, D.; Cochran, R. A.; and Reiter, M. K. 2011. Server-
side verification of client behavior in online games. ACM
Transactions on Information and System Security, 14(4): 1–
27.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv:1606.01540.
Cadar, C.; Godefroid, P.; Khurshid, S.; Păsăreanu, C. S.;
Sen, K.; Tillmann, N.; and Visser, W. 2011. Symbolic Exe-
cution for Software Testing in Practice: Preliminary Assess-
ment. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, 1066–1071. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450304450.
Chang, K.; Aytemiz, B.; and Smith, A. M. 2019. Reveal-
more: Amplifying human effort in quality assurance testing
using automated exploration. In 2019 IEEE Conference on
Games (CoG), 1–8. IEEE.
Choudhary, S. R.; Gorla, A.; and Orso, A. 2015. Automated
Test Input Generation for Android: Are We There Yet? (E).
In 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 429–440.
Clarke, L. 1976. A System to Generate Test Data and Sym-
bolically Execute Programs. IEEE Transactions on Software
Engineering, SE-2(3): 215–222.
Gordillo, C.; Bergdahl, J.; Tollmar, K.; and Gisslén, L. 2021.
Improving Playtesting Coverage via Curiosity Driven Rein-
forcement Learning Agents. In 2021 IEEE Conference on
Games (CoG), 1–8.
Horwitz, S.; Reps, T.; and Binkley, D. 1990. Interprocedural
Slicing Using Dependence Graphs. ACM Trans. Program.
Lang. Syst., 12(1): 26–60.
Huang, S.; and Ontañón, S. 2022. A Closer Look at Invalid
Action Masking in Policy Gradient Algorithms. In Barták,
R.; Keshtkar, F.; and Franklin, M., eds., Proceedings of the
Thirty-Fifth International Florida Artificial Intelligence Re-
search Society Conference, FLAIRS 2022, Hutchinson Is-
land, Jensen Beach, Florida, USA, May 15-18, 2022.
Iftikhar, S.; Iqbal, M. Z.; Khan, M. U.; and Mahmood, W.
2015. An automated model based testing approach for plat-
form games. In 2015 ACM/IEEE 18th International Confer-
ence on Model Driven Engineering Languages and Systems
(MODELS), 426–435.
Juliani, A.; Berges, V.-P.; Teng, E.; Cohen, A.; Harper, J.;
Elion, C.; Goy, C.; Gao, Y.; Henry, H.; Mattar, M.; and
Lange, D. 2020. Unity: A General Platform for Intelligent
Agents. arXiv:1809.02627.
Liu, G.; Cai, M.; Zhao, L.; Qin, T.; Brown, A.; Bischoff,
J.; and Liu, T.-Y. 2022. Inspector: Pixel-Based Automated
Game Testing via Exploration, Detection, and Investigation.
In 2022 IEEE Conference on Games (CoG), 237–244.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
Lucas, S. M.; Couëtoux, A.; Lee, J.; Lim, C.-U.; and Thomp-
son, T. 2015. The 2014 general video game playing competi-
tion. IEEE Transactions on Computational Intelligence and
AI in Games, 8(3): 229–243.
Schaefer, C.; Do, H.; and Slator, B. M. 2013. Crushina-
tor: A framework towards game-independent testing. In
2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 726–729.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In 2013 IEEE Confer-
ence on Computational Intelligence in Games (CIG), 1–8.
Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, X.;
Duan, Y.; Schulman, J.; De Turck, F.; and Abbeel, P. 2017.
#Exploration: A Study of Count-Based Exploration for Deep
Reinforcement Learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Sys-
tems, NIPS’17, 2750–2759. Red Hook, NY, USA: Curran
Associates Inc. ISBN 9781510860964.
Volokh, S.; and Halfond, W. G. 2022. Static Analysis for
Automated Identification of Valid Game Actions During Ex-
ploration. In Proceedings of the 17th International Confer-
ence on the Foundations of Digital Games, FDG ’22, 1–10.
Association for Computing Machinery. ISBN 978-1-4503-
9795-7.
Zhan, Z.; Aytemiz, B.; and Smith, A. M. 2019. Taking the
Scenic Route: Automatic Exploration for Videogames. In
Proceedings of the 2nd Workshop on Knowledge Extraction
from Games co-located with 33rd AAAI Conference on Ar-
tificial Intelligence, KEG@AAAI 2019, Honolulu, Hawaii,
January 27th, 2019.
Zhang, X.; Zhan, Z.; Holtz, M.; and Smith, A. M.
2018. Crawling, Indexing, and Retrieving Moments in
Videogames. In Proceedings of the 13th International Con-
ference on the Foundations of Digital Games, FDG ’18.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450365710.
Zheng, Y.; Xie, X.; Su, T.; Ma, L.; Hao, J.; Meng, Z.; Liu, Y.;
Shen, R.; Chen, Y.; and Fan, C. 2019. Wuji: Automatic on-
line combat game testing using evolutionary deep reinforce-
ment learning. In 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 772–
784. IEEE.

154


