
Enhancing Character Depth through Personality Exceptions for Narrative
Planners

Elinor Rubin-McGregor, Brent Harrison, Cory Siler
Department of Computer Science University of Kentucky

Davis Marksbury Building, 329 Rose Street
Lexington, KY 40506-0633 USA

erru227@uky.edu, bha286@g.uky.edu, jcsi225@g.uky.edu

Abstract

In the field of narrative planning, implementing character
personality is a challenge that’s been tackled many different
ways. Most of these methods do not incorporate any method
for personality to shift when characters are put in situations
that would, through stress or satisfaction, naturally cause the
character to behave differently than usual. Through use of
situationally-triggered Personality Exceptions, we can sup-
port the generation of a story that prominently features such
personality shifts as a narrative tool. This feature is made as
generic as possible so that it can be attached onto a wide range
of personality models in narrative generators. Through adapt-
ing Indexter’s indexes of narrative salience towards tracking
internal narrative salience in the characters’ memories, we
can accurately pinpoint triggers which are used to activate
these personality exceptions in thematically relevant situa-
tions.

Introduction
Several approaches have been made to enable narrative gen-
erators to consider the personalities of various characters in
generating a story, such as Bahamón, Barot, and Young’s
goal-based personality model (Bahamón, Barot, and Young
2015), and Shirvani and Ware’s choice-based personality
model (Shirvani and Ware 2019). However, one limitation is
that many of these narrative generators treat personality as
static and unchanging, rather than supporting complex per-
sonality dynamics.

To support a flexible personality model in response to ex-
ternal stimuli, we have created Personality Exceptions, a
combined index holding a narrative-internal situational trig-
ger, and an associated personality modification effect to be
applied when a given character is exposed to the aforemen-
tioned trigger. Our goal is to enable character depth in nar-
rative generators by creating internal situation-based excep-
tions to character personality that activates based on an event
in the present that is related to some highly salient past event
that the character has experienced. Our approach takes In-
dexter’s concept of narrative salience, which was originally
proposed to measure memorability of events to a reader, and
uses it instead to measure memorability of events to a char-
acter (Cardona-Rivera et al. 2012). We can then simulate

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the influence of powerful pre-existing character memories
from the character’s backstory by assigning a shift to the
character’s personality that only applies when they “recall”
these memories, as indicated by encountering an event that
scores highly along one of Indexter’s indices. This allows
for a slew of complex behaviors that are seen often in me-
dia: A cruel and malicious antagonist has one friend they
are kind towards. Inversely, an all-loving protagonist has one
opponent they despise due to personal vendettas. As in the
case of The Glass Menagerie, a terminally shy girl becomes
self-confident only in the presence of her figurine collection.
We can assume that Laura has countless memories of many
hours of calmly enjoying her figurines, though the audience
needs not to have this detail pointed out to understand that
she loves her collection.

For our purposes, we first outlined a set of narratives
wherein understandable situational triggers causing shifts in
behavior are critical to the story’s conclusion. These served
as our baseline story, showing what narratives are generated
when personality is not modeled. We then added personality
attributes to characters with strict prohibitions on behavior
not in line with a character’s personality model. In doing
so, we expected the generator to struggle or even outright
fail to produce a narrative that fit all expectations, as the do-
main relied upon one character behaving in different ways
at different points in the story. Finally we created further
modified domains with specific personality exceptions fea-
tured, but also still using the strict personality limitations
mentioned previously. To ensure these triggers only acti-
vated in the proper situations, we adapted Indexter’s narra-
tive salience indexes to simulate internal character memory.
This last group we expected to succeed, as the personality
exceptions allowed characters to behave differently if put in
the right situations. In this paper, we show that personal-
ity exceptions will support narratives with greater character
depth.

Related Work
The base idea for this contribution began with the idea
to take Indexter (Cardona-Rivera et al. 2012)—a model of
narrative salience in the audience’s memory—and apply it
to create character depth in generated narrative. Using in-
dexer we’ve come up with ways that the model can identify
present events that are related to highly salient past events

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

136



from the perspective of the internal agents controlled by
the model. To this end, we focused on various implementa-
tions of both personality and narrative salience. The Glaive
narrative planner (Ware and Young 2014) produces stories
that meet the author’s intended narrative goals while hon-
oring that characters would not act against their individual
personal goals, in order to create a narrative generator that
used believable characters with clear motives understand-
able to the audience. An extended model where characters
have and act on their own (possibly inaccurate) beliefs about
the world (Shirvani, Ware, and Farrell 2017; Shirvani, Far-
rell, and Ware 2018) was implemented in another narrative
planner, Sabre (Ware and Siler 2021).

Several key features from Glaive play a heavy role in our
work. To begin with, we use the concept of a Proposition
as a statement about the internal world of the narrative be-
ing generated that can be changed through the events of the
story. Our planner works by generating a tree of potential
stories, each constructed as a sequence of actions occurring
in a specific order- each action taking one timestep of time.
Each action taken must be defined by the author in the do-
main as a potential action, and has three components to it:

• A set of preconditions- propositions that must be true at
the beginning of the timestep at which the action occurs
in order for the action to be permitted

• A set of effects- statements about the world that become
true after the action is performed

• A possibly-empty set of consenting characters- charac-
ters who must all “give permission” for the action to oc-
cur

The concept of a causal link is a connection between any
two events in the narrative, i and j, that only exists if the
event which occurred first is responsible for enabling the
later action to occur. That is, if i → j and j has a precondi-
tion that was most recently made to be true as an effect of i.
The set of all preceding events in all causal links that can be
tracked backwards from any given event i are called the set
of causal ancestors of that event i.

In addition to these, Glaive distinguished between the
concepts of author goals and character goals, collections of
propositions that the author or character “want” to be true.
The planner will attempt to generate a story that meets all
authorial goals, while only permitting characters to be con-
senting characters for actions that help make their charac-
ter goals true (Ware and Young 2014). Characters are al-
lowed make multi-step plans known as character plans at
each timestep to progress their goals (Shirvani, Farrell, and
Ware 2018).

The concept of implementing personality into story gener-
ation planners has been approached in many ways. Bahamón
and Young (Bahamón and Young 2013) proposed an algo-
rithm using the Big Five personality structure for simulat-
ing character personality. A different personality structure,
OCEAN, was implemented on a modified format of Glaive
(Shirvani and Ware 2019). Attempts at long term character
growth have been made through games like Dwarf Fortress
and the interactive drama Versu (Evans and Short 2014), but
these cases lack the depth of exceptions because changes

in a character’s personality are applied universally the en-
tire character and carry through all situations for overall per-
sonality change. Our work focuses on a specific feature of
a character’s depth, rather than growth, in that the person-
ality shifts caused by exceptions are explicitly temporary,
which allows for subtlety in the character’s personality with-
out changing the entire character. Other models, such as
McCoy’s narrative system (McCoy 2014) and the work in
Kreminski’s Why Are We Like This (Kreminski et al. 2020)
do modify behavior based on models of character memory
of past events, however these approaches only change be-
havior during direct interaction with or actions related di-
rectly to specific other characters. These results are similar
to our ”protagonist” index exceptions, but any non-social
influences upon the character’s behavior in these systems
are not supported. Furthermore, these systems lacks support
for indirect influences on character behavior as both of our
”causal” and ”intention” indexes do.

The computational model for event-indexing known as In-
dexter was introduced to analyze audience memory salience
of previously seen events in a narrative (Cardona-Rivera
et al. 2012). Given some current timestep in the narrative, In-
dexter maps out how likely the audience is to recall specific
previous scenes of the narrative based on similar or shared
features between the current scene and the specific previ-
ous scene. The idea to use Indexter in a narrative planner
was first introduced by Farrell and Ware (Farrell and Ware
2016). Farrell and Ware proposed using the Indexter model
for the purpose of predicting player choices in interactive
narratives, hypothesizing that players were more likely to
take certain actions depending on which previous details
they remembered from earlier in the story. In this way, an in-
teractive narrative could subtly guide players towards choos-
ing certain options to lead to more favorable outcomes. Our
proposed work essentially takes this concept and transforms
it into an internal prediction, modeling theoretical memory
salience for characters based on hypothetical events in the
“backstory”- that is, taking place before the very first event
in the story generated. In short, our model uses Indexter’s
indexes to model memories salient to the characters rather
than the audience or players.

Methods
Recall that our primary contribution is a method for enabling
fluidity in a character’s actions with respect to their personal-
ity via personality exepctions. When constructing narrative
plans, we check to see if each character’s behavior aligns
with their established personality. By using personality ex-
ceptions, we enable behaviors that may appear contradictory
to a character’s personality to be acceptable if it is deemed
applicable by our personality exception measures. Our work
towards creating personality exceptions primarily involved
finding machine-calculable internal scenario-based triggers
to simulate character memory salience. At this time, the in-
ternal highly salient memories that cause Personality Excep-
tions are assumed to originate in ”events” that occurred prior
to the story’s setting. That is, all Personality Exceptions are
currently defined in the domain of the story, with the narra-
tive explanation being that the Personality Exceptions were

137



caused by events in the related agent’s backstory.
To determine if an action is salient to the character, we use

the Indexter model. In the original Indexter model (Cardona-
Rivera et al. 2012), five indexes are evaluated to estimate
memory salience. These were defined as:

• Time: time of the current timestep using the IPOCL
(Riedl and Young 2010) model of time frames

• Space: location of the current timestep
• Protagonist: presence of the narrative’s protagonist in the

current timestep
• Causal: which causal ancestors can be traced back from

the current timestep
• Intention: which character goals are motivating actions

that occur in the current timestep (Cardona-Rivera et al.
2012)

For our purposes, we have adapted these to fit internal
character memory salience as such on a specific focus char-
acter:

• Time: time label of the current timestep
• Space: location of the current timestep
• Protagonist: the presence or investment of a specific char-

acter other than the focus character in the event
• Proposition: if a given proposition is made true either due

to the event at the current timestep or for the sake of the
event at the current timestep

• Action: which specific types of actions are occurring in
the current timestep

• Intention: the specific goals of the focus character being
progressed in the current timestep

The causal index was broken into two different indexes,
one for specific trigger actions (as defined in the domains)
being taken, and one for specific trigger propositions being
found as causal ancestors. These were implemented for flex-
ibility and application in planners where causality cannot
be easily traced. We’ve found that the two results provide
unique outcomes and could both be applicable to different
cases, and thus have chosen to describe both.

Every Personality Exception must have an applicable
function which can gather and report whether the excep-
tion should apply for the character to whom it belongs, at a
specific timestep given—that is, whether the character’s be-
havior at the given timestep should reflect their normal per-
sonality or their exception-caused personality. The details of
how the applicable function operates will, by necessity, be
unique to each of our six index exceptions. For this function
to work, there are certain attributes which every Personality
Exception must have:

• c: A reference to the character who the Personality Ex-
ception belongs to

• modified: A new personality value, personality trait
value, or a personality modifier

• trigger: the specific type and value of the trigger will
be unique depending on which of our six exceptions is
used

Algorithm 1: Applicable Function on Time index
Input: time label trigger, current timestep t
Output: True/False boolean reflecting exception applicabil-
ity at input timestep t

1: if time(t) == trigger then
2: return True
3: end if
4: return False

Every single applicable function begins by directly
checking applicability through testing if the trigger in ques-
tion is present to the character with the Personality Excep-
tion at the given time. It should be noted that these algo-
rithms all assume that these checks on personality, and there-
fore Personality Exceptions, only occur for actions which
the given character consents to.

Time
The time frame was adjusted to feature some authorial-
defined attribute of time that could occur or reoccur in a cy-
cle or at random. For example, the attribute of “morning”
could occur as part of a cycle followed in order by the time
attributes of “afternoon”, “evening”, and “graveyard hours”.
This could be applicable to a story wherein a character is
kind but not a morning person, and will act less outgoing
and creative during the “morning” times. It should be noted
that time is assumed to be universal at a given event. The
time value can only be changed with subsequent events, and
applies to all locations and characters universally across any
timestep where it is in place.

The trigger for a time-index exception will need to be
a generic time-attribute, for example ”12pm” or ”4pm”. It
should also be noted that this algorithm requires the planner
to be able to provide the time attribute’s value from a given
timestep collected, and there must be a way to accurately
compare the generic attribute of the trigger with the current
attribute in the planner’s timestep.

The algorithm for applicability is rather simple—it only
requires performing the direct check to see if the current
time is equivalent to the trigger time attribute. The reason
for this simplicity, when later functions will check longer-
scale character plans, is that with small-scale domains time
attributes can be highly limited to perhaps two different time
attributes, say ”day” and ”night.” This same issue crops up
with locations, as we see in the Space index below.

Space
The implementation of our Space-index exceptions is simi-
lar to our Time-index exceptions, as the trigger for a space-
index exception will be a generic location-attribute. Unlike
Time-index exceptions, location is not assumed to be uni-
versal at a given timestep. Much like Time, it’s assumed that
the author will define a list of Spaces in the domain as well
as any rules for transfer between locations. However unlike
Time, Space is a trait applicable to specific characters and
objects individually. Any object or character which exists
in-universe will mark one of the existing locations as the

138



Algorithm 2: Applicable Function on Space index
Input: location trigger, current timestep t, character the
Personality Exception belongs to c
Output: True/False boolean reflecting exception applicabil-
ity at input timestep t

1: if location(c, t) == trigger then
2: return True
3: end if
4: for eff ∀ effects(t) do
5: if trigger ∈ eff then
6: return True
7: end if
8: end for
9: return False

“current” location for each given timestep. So character A
can start the narrative in Italy while character B starts the
narrative in France. If the first event is for character A to
fly to France, then at the second timestep character A and
character B will both be in France.

The Space-index exception checks direct applicability
with the location of the agent to whom the exception be-
longs. It then checks to see if the action taken in the current
timestep will result in changes that apply to the trigger lo-
cation, for example if the current action has the character
traveling to the trigger location.

To decide if an exception applies during a certain
timestep, for this algorithm, assume that effects(t) is the
list of all effects produced by the action that occurs at
timestep t. Note that use of i ∈ j (with i and j as any two
theoretical variables) will not necessarily be used to indicate
that i exists directly in j, but rather than some sub-piece of
j contains i inside of it. In the case of Time exceptions, we
will see this to mean that some proposition effect j features
time i in it. In short, we are using ∈ to indicate both if i exists
in j, and if i can be found in a sub-component of j. Assume
that location(c, t) will provide the space where character c
is located at timestep t.

Protagonist
The base idea behind the protagonist index exceptions is that
there is one person who the acting character treats differ-
ently than they do everybody else. Perhaps the cold-hearted
villain has a younger sibling they adore, perhaps the paci-
fistic all-loving hero can’t stand the villain who slaughtered
their village, perhaps the brilliant genius will lose their head
when their lover walks into the room and become unable to
think of anything else. These kinds of relationship dynamics
have been in stories for countless years, and they add a level
of flavor to narratives that’s hard to find anywhere else.

The trigger for a protagonist-index exception will be a
pointer to another character in the story. A character theoret-
ically could, but most likely should not, have themselves as
their trigger character, as in most domains this would likely
cause the trigger to apply in almost every case. The direct
applicability check works by checking two things. One is
if the trigger character is included in anywhere in the set

Algorithm 3: Applicable Function on Protagonist index
Input: character trigger, current timestep t, character the
Personality Exception belongs to c
Output: True/False boolean reflecting exception applicabil-
ity at input timestep t

1: for eff ∀ effects(t) do
2: if trigger ∈ eff then
3: return True
4: end if
5: end for
6: if utility(trigger, t) ̸= utility(trigger, t− 1) then
7: return True
8: end if
9: for step ∀ plan(c, t) do

10: for eff ∀ effects(step) do
11: if trigger ∈ eff or utility(trigger, t) ̸=

utility(trigger, t− 1) then
12: return True
13: end if
14: end for
15: end for
16: return False

of effects for the action, to see if the action has a direct
impact on the trigger character. In addition, if the current
timestep’s action changes the progress towards the personal
character goal of the trigger character, then the exception
applies as well. We determine if this progress has changed
by evaluating the accuracy of the trigger character’s goals
at the current timestep, as well as at the timestep of the event
that occurred immediately prior to the current timestep in
the planned story. If the evaluated accuracy has not changed,
then we can assume that the trigger character’s goals have
not been progressed or hindered. For character triggers, we
also consider the plans of the acting agents as well as the
impacts of the current timestep.

For this algorithm, all prior syntax applies. Assume that
utility(a, t) refers to a numeric value reflecting how many
goals of character a are met at timestep t. Assume plan(a, t)
provides a list of theoretical timesteps of character a’s char-
acter plan held at timestep t, each with the same attributes
and functionalities as t. Likewise, assume that utility(a, t−
1) will reflect how many goals of character a are met at the
event preceding the event that occurs at timestep t.

Proposition
The causal ancestor exception is made for a specific state
about the world that personally affects the character to
whom the exception belongs. Although this is not a require-
ment, the concept behind this exception is that the exception-
holding character either wants or does not want the proposi-
tion to be true—for example, stories featuring an antagonist
who normally abhors violence but is willing to commit mur-
der if it progresses their plot for world peace. A strategic-
minded officer might become emotional and short-sighted
when their own hometown is endangered. A lazy adventurer
might avoid taking the easiest route to treasure if it requires

139



Algorithm 4: Applicable Function on Causal Ancestor index
Input: proposition trigger, current timestep t, character the
Personality Exception belongs to c
Output: True/False boolean reflecting exception applicabil-
ity at input timestep t

1: if prop(t, trigger) then
2: return True
3: end if
4: for eff ∀ effects(t) do
5: if trigger ∈ eff and c ∈ cons(t) then
6: return True
7: end if
8: end for
9: for step ∀ ancestors(t) do

10: if prop(step, trigger) and c ∈ cons(step) then
11: return True
12: end if
13: for eff ∀ effects(step) do
14: if trigger ∈ eff and c ∈ cons(step) then
15: return True
16: end if
17: end for
18: end for
19: for step ∀ plan(c, t) do
20: if CausalAncestor(step) == True then
21: return True
22: end if
23: end for
24: return False

disturbing their own mother’s grave. Almost every person
alive has opinions on how the world should or should not
be. The proposition index is intended to allow narrative gen-
erators to portray characters who behave differently when
some deeply-held belief of theirs is threatened.

The trigger for a proposition-index exception will be a
proposition, of course. For this to work, the planner must be
able to report if, at a given timestep, a provided proposition
is true or not. We assume that negated propositions are al-
lowed, as our exception will be considered applicable if the
trigger is true in a given timestep, or made true as a result
of the event at that timestep. In addition, the Proposition in-
dex also collects causal ancestors of the current timestep’s
event, and returns true if any causal ancestors of the event
at the current timestep require this proposition. Finally, if
any planned event which the agent consents to contains the
proposition as an effect or causal ancestor, the exception is
deemed applicable.

Assume prop(t, p) will return true if the proposition p is
true at timestep t and false otherwise. Assume ancestors(t)
will return a list of timesteps at which all causal ancestors
of the event at time t. Likewise, assume cons(t) is the list
of all characters which consent to the action that occurs at
timestep t.

Algorithm 5: Applicable Function on Causal Action index
Input: potential action trigger, current timestep t, charac-
ter the Personality Exception belongs to c
Output: True/False boolean reflecting exception applicabil-
ity at input timestep t

1: if act(t) /= trigger then
2: return True
3: end if
4: for step ∀ ancestors(t) do
5: if act(step) /= trigger then
6: return True
7: end if
8: end for
9: for step ∀ plan(c, t) do

10: if act(step) /= trigger and c ∈ cons(step) then
11: return True
12: end if
13: end for
14: return False

Action
The action index is more for quirky characters, but it’s still
a valid one. For planners without a way to collect causal
ancestors, it may be the only way to implement a causality-
focused Personality Exception. This one triggers if the char-
acter is going to take a certain kind of action. Characters
with neuroses would behave differently if permitted to en-
gage in their passion. Batman is willing to use violence of
all kinds against criminals, but he will not fire a gun.

Notably, while we care if a planned event features the
exception-holding character taking part in an action of the
given generic action trigger, we don’t care if the causal
ancestors contain a trigger event that this character con-
sented to—only that it occurred. This is an optional feature
that can be worked around, but it was included so as to sup-
port stories that feature situations where a character is either
emboldened or discomforted by the knowledge of what was
done to enable their current actions. For example, a dog-
loving hunter might struggle to use a bear trap if their own
childhood puppy lost a leg to a bear trap, but they also might
hesitate to kill a bear found in one such trap as the bear might
remind them of finding their dog in such a state. In the for-
mer case we’d have the exception applied due to the trigger
matching the current event, but in the latter case it would be
a precondition to killing the bear—the bear being injured by
the trap—that would enable the exception to activate.

For this algorithm, the format a/ = b will be used to in-
dicate the concept of ”a is an example of b”, where a and b
are both actionszz. Likewise, assume act(t) will return the
action occuring at timestep t.

Intention
The narrative concept behind the intention index exception
is a character whose motivation to reach a certain goal is
so strong that they change their behavior when acting for
that purpose. In order for the exception to work properly,
the planner should check the character’s existing goals at

140



Algorithm 6: Applicable Function on Intention index
Input: goal trigger, current timestep t, character the Per-
sonality Exception belongs to c
Output: True/False boolean reflecting exception applicabil-
ity at input timestep t

1: if eval(trigger, t) > eval(trigger, t− 1) then
2: return True
3: end if
4: for step ∀ plan(c, t) do
5: if eval(trigger, step) > eval(trigger, step − 1)

then
6: if ancestors(step) contains t then
7: return True
8: end if
9: end if

10: end for
11: return False

creation and only allow intention exceptions to be made for
goals that the character holds. In that way, it’s ensured that
the generator will be motivated to have the character act to-
wards this goal before checking for personality.

It should be noted that there are conceptually some simi-
larities between Intention index exception and proposition
index exceptions—both involve a character having some-
thing they want to happen or not happen. We chose to
break these into different categories in order to support nar-
rative generators where character goals were represented
in some non-proposition based format. Shirvani’s emotion-
based personality system, for example, utilizes emotional
states instead of direct proposition goals (Shirvani 2021).

The trigger for a intention-index exception should be the
same class as a character’s goals—ideally an equation that
can be evaluated at any given timestep for a value represent-
ing how close that goal is to being met. The direct appli-
cation check merely sees if the trigger goal has been pro-
gressed by the action- as it is assumed characters would not
consent to actions which hinder any of their goals, or if they
do then their actions cannot be considered to be motivated
by those specific hindered goals. In planners where charac-
ter plans are available, any planned step that helps progress
the trigger goal should be checked to see if it takes the cur-
rent step as a causal ancestor. If so, then it can be assumed
that the current action is at least partially motivated by the
trigger goal and thus the exception may be applied.

Assume all prior syntax still holds. For the algorithm be-
low, assume that eval(g, t) will return the value for goal g
evaluated at timestep t. Likewise, assume that eval(g, t−1)
will return the value for the goal g as evaluated at the
timestep that equates to the event that occurred immediately
before the event occurring at timestep t.

Experiments
As proof of concept, we sought to provide examples of nar-
ratives where character depth is not supported by static per-
sonality models, but is supported when Personality Excep-
tions are added in. To prove that static personality models do

not support such narratives, we set hard limitations on our
narrative generator so that any behavior considered “out of
character” would be completely forbidden. We then outlined
a set of narrative planning domains wherein understandable
situational triggers causing shifts in behavior are critical to
the story’s conclusion. Our expectation was that when run-
ning with static personality the generator would struggle or
even outright fail to produce a narrative that fit all expecta-
tions, as the domain relied upon one character behaving in
different ways at different points in the story. We used do-
mains expected to produce shorter stories in order to isolate
Personality Exceptions and their performance in the results.
We then added related Personality Exceptions to the narra-
tives to show that the inclusion of Personality Exceptions
allows the narrative generator to find a satisfactory story.

For our experiments we applied a modified variant of
Shirvani’s OCEAN based personality model to the Sabre
belief-intentionality intersecting state-space narrative plan-
ner (Ware and Siler 2021). Our set of experiments were fo-
cused on proving that the exceptions could work to improve
the range and quality of personality-implementing planners.
To that end, we used a planner where any plan that portrayed
a character behaving against their personality was outright
rejected and removed. Our personality model used five nu-
meric values for each of the OCEAN personality traits, rang-
ing from zero to one. We set the default personality values
for each character to 0.5 and then set the threshold for out-
of-character behavior plan rejection to 0.5, so that any per-
sonality attributes not being tested would never cause plan
rejection. We ran a unique collection of domain sets that
were all meant to represent the same basic ”story” with dif-
ferent features included or excluded to show the impact Per-
sonality Exceptions had on the results. Collectively, we call
this the hollow domain set.

The hollow domain set picks one OCEAN trait to make
relevant, specifically Agreeableness, for the sake of simplic-
ity. Agreeableness can be summarized as how compassion-
ate and considerate of others a character behaves. Actions
which feature multiple consenting parties and progress the
goals of other characters have high Agreeableness scores,
while actions that hinder other characters goals and have few
consenting parties have low Agreeableness scores.

The hollow story has three characters: Shadow, Sara, and
the Sprites. A proposition known as “suffer” exists for ev-
ery character, such that at any given timestep each character
can have “suffer” true or false for them. Shadow wants the
Sprites to suffer, while Sara and the Sprites want the op-
posite. Shadow also wants Sara to be alive, and Sara is the
only mortal character of the three, meaning she will die if
she suffers. Our authorial goals are for Shadow to become
mortal, and the Sprites to not “suffer”. It should be noted
that this domain set fixates on what would ideally be the
climax of a longer work, and a longer narrative would por-
tray each character’s base personalities outside the influence
of Personality Exceptions, so that the emotional impact on
the audience would be more meaningful during parts of the
story where the Personality Exception(s) are active. We used
shorter domains in order to isolate the impact of Personality
Exceptions, but also to give room for future work to pro-

141



duce Personality Exceptions during narrative generation by
allowing an event generated by the planner to be identified
as highly salient to a character and used to produce a Per-
sonality Exception.

It should be noted that in order to keep our experiments
as simple as they could be, we incorporated the elements
of multiple locations and shifting times only in the domains
that were testing these elements. But as our goal was to keep
our domain set as similar as possible, any deviations in do-
mains warrented a unique test to ensure that these changes
were not causing unexpected deviations. To that end, we cre-
ated three near-identical domains with no personality, only
differing in the inclusion and exclusion of spatial and tem-
poral implementation. For example, the test hollow1 incor-
porates time, while hollow2 and hollow3 do not. Likewise
in implementing personality, we extended these three base
tests in the same ways. So hollow2.1 has multiple locations
and personality (but no personality exceptions), while hol-
low1.1 and hollow3.1 both have personality neither incor-
porates multiple locations.

Hollow Domain Experiments
No Personality When no personality is included (hollow3
in Table 1), the story reaches that conclusion in a slightly
disturbing way:

1. Shadow torments the Sprites to cause them pain. It
should be noted Shadow is capable of tormenting an im-
mortal being only because he is also immortal.

2. The Sprites torment Sara, causing her pain that kills her.
3. Shadow and the Sprites work together to revive Sara,

which requires Shadow to sacrifice his immortality and
become mortal.

4. Sara sacrifices herself to free the Sprites from their pain.
This sacrifice causes her great pain, and because she is
mortal, this kills her.

Two additional domains exist- one implementing time in
the form of a four-time cycle that loops from “Morning” to
“Afternoon” to “Evening” to “Graveyard” and in a cycle af-
ter every single event takes place (hollow1 in Table 1). This
domain had the same story produced as the original. An-
other base domain implements two locations, a “Lake” and
a “Hollow.” We added a handful of extra conditions, such as
the “revive” action and “torment” action requiring all rele-
vant parties to be at the same location, and a new action to
enable travel. This domain is summarized as hollow3 in Ta-
ble 1. This domain ran similarly, with one extra step added
for the Sprites to take Shadow to the Hollow before torment-
ing Sara.

Static Personality We created one modified variant of
each of our three base domains (hollow1.1, hollow2.1, and
hollow 3.1 in Table 1) to implement personality for one
character. Specifically, we gave Shadow an Agreeableness
score of 0.0, and the Sprites an Agreeableness score of 1.0.
The result of this was that with our planner prohibiting any
out-of-character behavior, the planner could find no work-
ing story with any of our three domains. Notably, even when
we removed the modified Agreeableness for the Sprites and

Domain P EI Time Space SF

hollow1 No - Yes No Yes
hollow2 No - No Yes Yes
hollow3 No - No No Yes
hollow1.1 Yes - Yes No No
hollow2.1 Yes - No Yes No
hollow3.1 Yes - No No No
hollow1.1.1 Yes Time Yes No Yes
hollow2.1.1 Yes Space No Yes Yes
hollow3.1.1 Yes Protag No No Yes
hollow3.1.2 Yes Prop No No Yes
hollow3.1.3 Yes Action No No Yes
hollow3.1.4 Yes Action No No Yes
hollow3.1.5 Yes Intent No No Yes

Table 1: Domains by included factors. Key: P: Personality,
EI: Exception Index, SF: Solution Found

only gave Shadow a unique personality score, the domains
still failed to find a solution. This is because Shadow’s per-
sonality bars him from working with other characters and
from progressing the goals of other characters. The revive
action would require working with the Sprites, and would
help achieve Sara’s own goal of being alive. Thus with
strict personality in place, we can see how a personality-
implementing planner would not support stories that require
character depth to this degree. Shadow can be a cruel char-
acter, but doing so hinders any plot-action that requires him
to be kind, even if there’s a valid reason in the story for this
behavior.

Personality Exceptions With that, we created six further
developed domains, each of which implemented a different
Personality Exception, and each of which successfully found
a story that satisfies the author’s goals. Based on our assump-
tion that it’s Shadow’s low Agreeableness score that prevents
an in-character story that meets authorial goals from being
reached, we added exactly one Personality Exception to each
case. While the triggers differed, every exception belonged
to Shadow, and when triggered the exceptions would change
his Agreeableness score to 0.5. These six domains all pro-
duced working stories, and since the only change was the
inclusion of Shadow’s character depth, we can confirm our
earlier assumption that the personality-only narrative is hin-
dered due to Shadow being unable to revive characters.

Time Index Exception When we added in a Personality
Exception for Shadow along the Time Index (hollow1.1.1 in
Table 1), we found a valid story that did not feature cruel be-
havior from the kind-hearted Sprites, and allowed the cruel
Shadow to do something for others. Our exception chose the
Graveyard time as the trigger, the narrative idea being that
Shadow becomes contemplative and compassionate during
the Graveyard hours of the night. This produced a very dif-

142



ferent story:

1. Morning: Shadow torments the Sprites
2. Afternoon: Sara sacrifices herself to free the Sprites from

their pain, ultimately causing her death
3. Evening: Shadow torments the Sprites again, causing

them more pain
4. Graveyard: Shadow and the Sprites both revive Sara,

rendering Shadow mortal
5. Morning: Sara again sacrifices herself for the Sprites

This tale’s differences show how personality can be useful
in creating unique and interesting stories. The original story
implied that the Sprites are highly amoral and calculating,
tormenting Sara to manipulate Shadow into giving up his
immortality, while at the same time planning for Shadow’s
goals to fail after Sara sacrifices herself for them. Using per-
sonality gets a story where the Sprites are much more com-
passionate, which may be closer to the author’s goals.

Between the personality-lacking and exception-handling
domains the narratives are quite different, and while we
might’ve been able to collect the second story through
adding on extra goals and loopholes, personality implemen-
tation provides a shortcut that’s much easier and will encom-
pass all possibilities. For example, we might’ve gotten the
second story without personality by giving the Sprites goals
to want Sara alive. But if we were looking at this small story
as one piece of a larger story, that might not be so easy to
generate- there would be more characters to include, and to
portray the Sprite’s compassion their goals would need to in-
clude desires for the survival of every single character. Sim-
ply giving them a high compassion score covers that easily
as well as other aspects of compassion.

Space Index Exception For the Space Index Exception
(hollow 2.1.1 in Table 1), we chose to use the location of
“Hollow” as the trigger for Shadow’s agreeableness. This
way Shadow would still display cruel tendencies at the be-
ginning of the story when he and the Sprites are both at the
Lake. Since a sacrifice could only happen at the Hollow we
predicted that Shadow and the Sprites would need to travel
to the Hollow for the story to work. When the exception
set Agreeableness to 0.5 as normal, the story diverged very
little from our predictions. The first event changed to have
Shadow take the Sprites from the Lake to the Hollow, and
all subsequent events followed the same path as the story
created by the Time Index Exception domain.

Protagonist Index Exception The domain featuring an
exception along the Protagonist Index (hollow 3.1.1 in Table
1) worked by giving Shadow a Personality Exception with
Sara as the target. When triggered, the exception changed
Shadow’s Agreeableness index to 0.5, thus showing that
Shadow is willing to cooperate with others (though he won’t
like it) if Sara is involved. We got the same story as gener-
ated with the Time Index Exception, but this time the narra-
tive implications are different.

In the Time-index exception and Space-index exception
domains, Shadow is normally cruel unless certain condi-
tions are met. Given this is a story with immortals, these

conditions could well be supernatural in nature—perhaps
the graveyard hours have mystical properties that soothe
Shadow’s soul, or perhaps the Hollow is a sacred place
whose holy energies influence Shadow. In the story gener-
ated by protagonist index exception, the most straightfor-
ward explanation is a tale driven by character flaws. Shadow
chooses to abuse the Sprites even after Sara’s sacrifice, and
while Shadow is willing to sacrifice his immortality for Sara,
his own cruelty renders the point moot when she simply
gives her life a second time.

Proposition Index Exception The domain displaying the
proposition index exception (hollow3.1.2 in Table 1) utilized
a trigger that was deliberately picked to be as close to the
original concept as possible, and thus was simply the con-
dition that Sara is alive. The result matched the Time Index
Exception exactly, although we can argue that the narrative
reflects a unique story. Rather than Shadow being kind to-
wards Sara, it could be that Shadow needs Sara alive for
some unknown reason and is simply pragmatic enough to-
wards this goal that he’s willing to do whatever it takes to
reach it.

Action Index Exception For the Action index, we found
two different tests that produced the same story as the Time
index exception domain, but used different triggers of revive
(hollow3.1.3 in Table 1) and sacrifice (hollow3.1.4 in Table
1) actions. Narratively these exceptions could be explained
by expanding Shadow’s backstory to give him a fascination
with these two highly Agreeable actions.

While revival is an action that Shadow partakes in him-
self, the sacrifice action is one that he has no role in. What
happened in this case is that a revival includes the target’s
dead status as a precondition, which makes the event that
led to that status a causal ancestor. The fact that the domain
works both ways proves that the causal ancestor check is in-
deed useful, and also illustrates why it is necessary to add
that feature.

Intention Index Exception The Intention index exception
domain (hollow3.1.5 in Table 1) used Shadow’s goal to keep
Sara alive as its trigger, and produced the same story as
the Time index exception domain. Though the results are
largely the same, it’s still noteworthy that the concept works.
In a longer narrative, the use of Intention index rather than
Protagonist index could enable a story wherein Shadow has
some selfish motivation to want Sara alive, but does not care
for her well being as a person.

Future Work
Several aspects of the experiment that can be improved upon
and explored in greater depth. One prominent area that we
lacked the time to delve into is fully applying the exceptions
to more than one personality-implementing narrative plan-
ner, to prove that the algorithms can be generalized. While
the label-based time exception introduced has its own bene-
fits, using an exception that implements the Indexter’s orig-
inal IPOCL frame model could also produce interesting re-
sults. Another expansion could be to include multiple-index
personality exceptions, to allow multiple avenues by which

143



a single character could be influenced by past history. This
would allow the exception in question to have more influ-
ence on the story. Research on emotions has indicated that
utilizing multiple memory triggers may be a more accurate
reflection of real-life applications (Moors et al. 2013), and
this feature could also increase the audience’s perception of
the specific aspect of character depth the exception repre-
sents in longer narratives that may not touch on the excep-
tion frequently.

In terms of long-term application, there are some unique
implications of this project. A logical next step would be
enabling the planner to generate Personality Exceptions
through including significant events that would naturally
cause some lasting psychological effects on the characters.
That is to say, finding a way for the planner to generate
causes for Personality Exceptions would be an ideal con-
tinuation. In the example of our experimented domain, we
could remove the pre-existing exception and instead have the
planner add on an additional first step where Sara protects
or helps Shadow in some regard. This event would give him
motive to show her kindness in return, and allow the plan-
ner to assign a Personality Exception to him after that event.
To do so one would most likely need some way of measur-
ing a score to represent intense emotional attachment- likely
some measurement of changes in how well the character’s
goals are met and relevance of elements in the preconditions
of the event that causes the shift. This is a future project, and
details won’t be explored here.

If we can make Personality Exceptions both scalable and
generatable by a planner, this opens up narrative planning
for stories where character development is the primary fo-
cus. If a character gains enough Personality Exceptions with
the same resulting personalities, or if they gain an excep-
tion with a trigger that is usually in place, the character after
gaining the exception(s) will eventually effectively have a
different personality—but since the audience got to watch
the character develop this way, the change feels natural.

Coming-of-age stories, redemption stories, stories about a
villain protagonist’s fall to darkness—these genres are many
and well loved by audiences. While they could be some-
what emulated by planners without personality modeling us-
ing strict goals, personality ensures consistency and allows
the planner to come up with unique stories outside of the
author’s predictions that still fit the character’s personality
and may even work better than what the author originally
intended.

References
Bahamón, J.; Barot, C.; and Young, R. 2015. A Goal-Based
Model of Personality for Planning-Based Narrative Gener-
ation. In AAAI Conference on Artificial Intelligence, vol-
ume 29, 4142–4143.
Bahamón, J. C.; and Young, R. M. 2013. CB-POCL:
A Choice-Based Algorithm for Character Personality in
Planning-based Narrative Generation. In Workshop on Com-
putational Models of Narrative.
Cardona-Rivera, R. E.; Cassell, B. A.; Ware, S. G.; and
Young, R. M. 2012. Indexter: a computational model of

the Event-Indexing Situation Model for characterizing nar-
ratives. In Workshop on Computational Models of Narrative,
34–43.
Evans, R.; and Short, E. 2014. Versu—A Simulationist Sto-
rytelling System. IEEE Transactions on Computational In-
telligence and AI in Games, 6(2): 113–130.
Farrell, R.; and Ware, S. G. 2016. Predicting user choices
in interactive narratives using Indexter’s pairwise event
salience hypothesis. In International Conference on Inter-
active Digital Storytelling, 147–155.
Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020. Why Are We Like This?: Exploring Writing
Mechanics for an AI-Augmented Storytelling Game. In In-
ternational Conference on the Foundations of Digital Games
(FDG ’20).
McCoy, e. a., Joshua. 2014. Social story worlds with
Comme il Faut. IEEE Transactions on Computational in-
telligence and AI in Games 6.2, 6(2): 97–112.
Moors, A.; Ellsworth, P.; Scherer, K.; and Frijda, N. 2013.
Appraisal Theories of Emotion: State of the Art and Future
Development. Emotion Review, 5: 119–124.
Riedl, M. O.; and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research, 39: 217–268.
Shirvani, A. 2021. Personality and Emotion for Virtual
Characters in Strong-Story Narrative Planning. Ph.D. the-
sis, University of Kentucky.
Shirvani, A.; Farrell, R.; and Ware, S. G. 2018. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 222–228.
Shirvani, A.; and Ware, S. G. 2019. A plan-based person-
ality model for story characters. In AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
188–194.
Shirvani, A.; Ware, S. G.; and Farrell, R. 2017. A possible
worlds model of belief for state-space narrative planning. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 101–107.
Ware, S. G.; and Siler, C. 2021. Sabre: A narrative plan-
ner supporting intention and deep theory of mind. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 17, 99–106.
Ware, S. G.; and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 80–86.

144


