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Abstract

Effectively identifying an individual and predicting their fu-
ture actions is a material aspect of player analytics, with
applications for player engagement and game security. Col-
lectible card games are a fruitful test space for studying player
identification, given that their large action spaces allow for
flexibility in play styles, thereby facilitating behavioral anal-
ysis at the individual, rather than the aggregate, level. Further,
once players are identified, modeling the differences between
individuals may allow us to preemptively detect patterns that
foretell future actions. As such, we use the virtual collectible
card game “Legends of Code and Magic” to research both
of these topics. Our main contributions to the task are the
creation of a comprehensive dataset of Legends of Code and
Magic game states and actions, extensive testing of the min-
imum information and computational methods necessary to
identify an individual from their actions, and examination of
the transferability of knowledge collected from a group to un-
known individuals.

Introduction
The ability to identify a player within a game simply from
their moves is deeply relevant to gaming research. By under-
standing the behavior of many different players, game devel-
opers can identify patterns in their actions and use them to
create more engaging and personalized gameplay (Cowley
and Charles 2016; Moura, el-Nasr, and Shaw 2011). Simi-
larly, player identification allows developers to track individ-
ual player progress through games, identify potential areas
of frustration, and alter the gameplay to maintain engage-
ment (Xue et al. 2017; Zohaib 2018). Finally, player identi-
fication and action prediction are crucial for game security.
By monitoring player moves and behavior, moderators can
identify suspicious activity and intervene to prevent hack-
ing, cheating, and other forms of exploitation (Parizi et al.
2019). Furthermore, identifying players from their behavior,
as opposed to usernames or other user-provided identifiers,
would allow developers to recognize players with multiple
accounts and known cheaters in real-time (Conti and Tri-
comi 2020).

However, artificial intelligence struggles with identify-
ing individuals of interest from their actions and predicting
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the future actions of unknown individuals (Sutrop 2020),
potentially due to an inability to codify human judgment
(Agrawal, Gans, and Goldfarb 2019). Functionally, such
predictions would require AI systems to be capable of de-
termining an actor’s intentions and values (Sutrop 2020) or,
at minimum, the acceptable values of a collective (Gabriel
2020). This value alignment problem is nontrivial given that
individuals’ judgments may be highly subject to variation
(Sutrop 2020), and avoiding negative outcomes for an indi-
vidual may produce different values than maximizing posi-
tive outcomes for a collective (Gabriel 2020).

Instead, we propose that observing an individual’s behav-
ior within specified environments, and with fixed resources,
may provide valuable information about that individual’s
distinct decision-making habits. Furthermore, by analyzing
variations in each individual’s behavior, we may be able
to ascertain their intent and goals, and subsequently pre-
dict their future actions. A system capable of modeling and
predicting these individualized patterns would have numer-
ous applications for player modeling, simulation of virtual
agents, and various other gaming areas. For example, if an
individual’s future actions given a particular set of circum-
stances can be accurately predicted, it may be possible to
adjust the circumstances to induce desired outcomes, simi-
larly to how experienced chess players may lure novices into
checks by predicting their upcoming moves and capitalizing
on their vulnerabilities (Saariluoma 1995).

Playing collectible card games (CCGs) has been known to
increase creativity, cognition, logical reasoning, and knowl-
edge synthesis (Turkay, Adinolf, and Tirthali 2012). The na-
ture of CCGs facilitates quick responses to attacks and in-
centivizes players to spend more resources for better com-
bat power. As such, CCGs are a useful platform for ex-
amining resource allocation and rapid strategy development
under pressure (Adinolf and Turkay 2011). However, their
broad action spaces, imperfect information, and far-reaching
planning structures also allow almost infinitely many possi-
ble decks and innovative multi-turn sequences, enabling the
representation of individualized cognitive distinctions rather
than generalized assumptions derived from the collective
performance of numerous players (Miernik and Kowalski
2022; Yao et al. 2022). This makes CCGs an appropriate
medium for researching the intersections between AI, gam-
ing, and security.
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Our Contribution. This paper will address four specific
research questions:
RQ1 Given varying information about a player’s environ-

ment, resources, and prior actions, what features of the
information are relevant to player identification?

RQ2 What learning methods produce the best results, with
respect to speed and accuracy, for identifying a player
from their prior actions?

RQ3 Given a dataset of actions for a known player in a
game, can we predict their next action?

RQ4 Given a dataset of actions for many players in a game,
can we predict the next action for an unknown player?

We make three major contributions in addressing these
questions:
• We introduce a dedicated dataset1, specifically created

for studying RQ1–RQ4, which captures the entire game
state of a virtual CCG at each turn in the game and links
that state to a unique player and their action, resulting
in nearly two million tuples of gameplay data. This is
notable as the limited amount of CCG play data has
previously hindered AI and gaming research (Bertram,
Fürnkranz, and Müller 2021). Although there are open-
source CCGs for research, such as LoCM, to the best
of our knowledge, no other comprehensive datasets of
gameplay information exist.

• We train three transformer-based large language mod-
els (LMs) and a variety of simpler classification models
with the purpose of determining the minimum environ-
mental information and computational methods neces-
sary to accurately identify an individual from aggregated
data. This is also pivotal for CCG research in particular,
as CCGs are games of imperfect information, and any
research into play style identification will be inherently
hindered as such.

• Finally, we examine the functional performance differ-
ence between individualized modeling and modeling ag-
gregated data for predicting the next action of a previ-
ously unseen individual. Similarly to the concern about
imperfect information, player modeling for games, in
general, will always need to predict the actions of new or
unknown players. If sufficient individualized information
about a player is unavailable, understanding the applica-
bility of aggregated data is crucial.

Background
Collectible Card Games. Collectible card games, also
known as trading card games, typically focus on two as-
pects: deckbuilding and player-vs-player combat (Turkay,
Adinolf, and Tirthali 2012). The specific mechanics vary
between games, but in most CCGs players build their own
card decks, either by selecting one card at a time from a set
of pre-specified options (i.e., drafting) (Vieira, Tavares, and
Chaimowicz 2020) or by creating synergistic groups to per-
form specific multi-turn effects from the cards that the player
owns (Bertram, Fürnkranz, and Müller 2021; Bjørke and

1The datasets for this work are available upon request.

Fludal 2017). Players then randomly draw cards into their
hands to engage in combat (Kowalski and Miernik 2020).

Most CCGs, including Legends of Code and Magic
(LoCM) and Hearthstone, have asynchronous turn orders
where each player performs all of their actions before the
next player can begin their turn (Chen et al. 2018). Some
games, such as 7 Wonders and Tybor the Builder, are syn-
chronous and all players play at the same time, but these
typically include significant elements of board games and
have fewer AI applications. Notably, Magic: the Gathering
(MtG) is asynchronous but allows players to respond to at-
tacks during their opponent’s turns, creating the most reac-
tive play structure. In all games, a single turn may consist
of multiple actions, classified into three categories: a player
playing cards from their hand onto the board (e.g., “sum-
moning” creatures in LoCM), a player using cards either in
their hand or on the board to increase their own health or de-
plete the health of their opponent (e.g., casting healing spells
in MtG), or a player using cards to attack or augment other
cards on the board (Kowalski and Miernik 2020). Games
typically end when either player reaches zero health (Chen
et al. 2018).

Behavioral Stylometry. Within games, the ability to iden-
tify a player from their actions alone is known as behav-
ioral stylometry (McIlroy-Young et al. 2021). The first hur-
dle to overcome in designing an AI capable of behavioral
stylometry is for the designers to effectively understand the
game’s rules and strategies. For any game, this requires sig-
nificant domain knowledge, which in turn requires either hu-
man experts or a sufficiently simplistic action space. Con-
sequently, behavioral stylometry has shown significant AI
applications in such well-defined spaces as classic board
games (de Mesentier Silva et al. 2017; Yannakakis and To-
gelius 2015), video games (Ferguson et al. 2020; Hsieh and
Sun 2008; Shaker et al. 2011), and sports (Tuyls et al. 2021).
In chess, in particular, few-shot classification frameworks
have been able to correctly identify a player from among
thousands of candidates with 98% accuracy given only 100
labeled games, and have been able to transfer that knowl-
edge to previously unseen players (McIlroy-Young et al.
2021, 2022).

However, behavioral stylometry and other forms of play
style identification remain a significant issue for CCGs
(Bertram, Fürnkranz, and Müller 2021). Classifying se-
quences of common moves, as well as the possible play style
strategies which apply them, based on data from large num-
bers of players is a continuing topic of research. We propose
that identifying and analyzing an individual player’s patterns
can help codify their behavior and explain why they may be
playing a particular way. While there has been significant
research into pattern categorization across players (Drachen
et al. 2012; Hoover et al. 2020), there is little work on us-
ing those patterns to identify a player, much less in CCGs.
As such, this research will attempt behavioral stylometry in
CCGs based only on a player’s immediately preceding ac-
tion, as well as the sum of their actions up to that point as
we have seen in chess.
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Figure 1: Dataset construction process. Creature cards are killed when attacked by another card with a Lethal ability or more
attack points than the attacked card’s defense points. All damage is negated for one turn if the attacked card has a Ward ability.

Play Style Identification in CCGs. Cards within CCGs
typically have some amount of natural language information
for players to parse through. Each card contains the name
identifying the card, the cost to play it in combat, statistics
indicating its strength and health, a description of the card’s
effect on the game state, etc. However, correctly interpret-
ing a card’s effect is a considerable issue, even for humans,
and is often resolved in real time by expert judges. For ex-
ample, MtG has entire corpora of decisions made by judges
in tournament settings (Adler 2019). Interpreting these same
effects in a human-like manner is an even more difficult task
for AI, in part because humans may disagree considerably
on their judgments (Sutrop 2020) and majority votes can be
exceedingly difficult to replicate heuristically (Fields, Marji,
and Licato 2022).

Therefore, for an AI system to interpret a card’s effect and
usability exactly the same way as an individual, it would
need to understand that individual’s intent, behavior pat-
terns, and biases. Current play style identification models
for CCGs are limited to recognizing pre-specified card com-
binations that are common to many players (Drachen et al.
2012; Hoover, Strobelt, and Gehrmann 2019), but they can-
not handle arbitrary sequences which may be unique to indi-
viduals. We propose that this is because these systems are in-
capable of recognizing patterns in the cards’ features which
may indicate the player’s intent and card substitutability.

As such, our approach explores two methods of deter-
mining a player’s goals. First, we examine the usefulness
of adding a feature for the game’s state at a particular turn.
This provides a snapshot of the player’s environment and
may give insight into the context under which they would
make certain decisions. Second, we consider the application

of transformer-based LMs. Transformers are distinguishable
from other LMs due to their use of self-attention to weigh
the significance of different portions of the input and focus
more attention on more significant portions (Vaswani et al.
2017). This allows Transformers to process the entire input
in parallel. We hypothesize that the self-attention will allow
transformer-based models to better identify significant card
patterns, and that the ability to process whole inputs will re-
duce the time and memory complexity for gaming purposes.

Legends of Code and Magic. We are initially studying
these research questions using Legends of Code and Magic,
an online CCG designed for testing AI capabilities. Full de-
tails on the game’s mechanics can be found in (Kowalski
and Miernik 2020), however we note a few relevant features
and their implications here. First, because both players are
presented with the same set of three cards during each round
of the drafting phase, they may construct the same or highly
similar decks. However, where the decks differ, the choice of
cards may give insight into an individual player’s strategy.

Additionally, all card effects in LoCM are deterministic
(Kowalski and Miernik 2020), and the only probabilistic el-
ement of the game is the order in which cards are drawn from
the deck into a player’s hand. Finally, although the standard
LoCM game board consists of two lanes — or board seg-
mentations which specify the state a card is in and how it
may be played — we utilized the simplified one-lane form
which is hosted on the CodinGame platform2. This form
was used in August 2018 for a platform-wide AI competi-
tion and, therefore, provided a robust set of player data for
constructing our dataset.

2https://www.codingame.com
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Figure 2: Representation of the difference in turn balancing between just the top 100 players in the full dataset (left) versus all
184 players in the limited training dataset (right).

Dataset Construction
To create a dataset with unique players, as well as robust
game states and actions at each turn, we scraped the LoCM
leaderboard for the top 1000 players, which was the maxi-
mum number allowed by the API. This constituted the ma-
jority of players who advanced past the tutorial, and the skill
levels ranged from novice to advanced. We then used the
CodinGame API3, which hosts LoCM, to obtain the most re-
cent games played by each player, formatted as JSON files.
Games were removed if the opponent was the LoCM “Bat-
tlemage,” a training AI designed to help players learn the
game mechanics. Players cannot advance to the next league
within the game without defeating the Battlemage, and do-
ing so often requires specific strategies that the AI is attempt-
ing to teach. These games were removed because there was
little variation in player styles against the opponent. Games
were also removed if they ended within 64 turns. The first 62
game turns consist of drafting cards and dealing the initial
hands, and turns 63 and 64 are the opening moves for each
player. It is impossible to win a game within these two turns.
Therefore a game lasting fewer than 64 turns indicates that
one or both players encountered a fatal coding error during
or immediately following the drafting phase. These games
were removed for having no usable gameplay data.

The resulting games were then parsed to extract each
player’s starting hand, the subsequent cards they drew, and
their actions. From this information, we could reconstruct
the game state at each turn in the game. Each entry in the
resulting dataset corresponds with one turn and contains the
player ID for the player engaging in that turn, the game ID,
the cards in the player’s hand, the cards on the board, identi-
fied by whether they belong to the player or their opponent,
and the player’s action. This process is shown in Figure 1.

This produced nearly two million turns for 1,319 unique
players (including the original 1000 players and their op-
ponents) over 30,299 games. We then reduced this dataset
to only include players who had between 1000 and 2000
overall turns to create the subset of aggregated players. The
resulting set contains 228,487 turns for 184 unique players

3https://codingame.readthedocs.io/en/stable/api.html

over 6,367 games. We chose to limit the aggregated set in
this way for two reasons. First, the unaltered dataset is highly
unbalanced to favor a few especially active players, which
creates the potential for a model trained on the entire set
to overpredict those players to arbitrarily improve accuracy.
Second, because LoCM is a largely deterministic CCG, it is
easily managed by hard-coded heuristics. In particular, bots
can achieve high success by introducing ranked-choice pref-
erences in the deckbuilding phase — selecting cards with
strictly higher defense or attack points or strictly those cards
with preferred abilities — and then randomly selecting ac-
tions from the allowable moves in the battle phase. As such,
we chose to limit the aggregated data to mid-range players
who foreseeably had a grasp of the game’s rules and me-
chanics, but had yet to create heuristic methods to super-
sede opponents. We specifically chose the range from 1000
to 2000 turns as that was a relatively well-balanced section
of the dataset that was reasonably close to the median (703
turns). A comparison of the dataset before and after pruning
can be found in Figure 2. However, we used the top three
most active players’ data for individual modeling.

The datasets (aggregated and individual) were then split
into train, validation, and test sets by randomly selecting
80% of the games for the train set and 10% each for the
validation and test sets. The split was done to include en-
tire games within a singular set, but split individual players
across sets, so that the model could not predict a player’s ac-
tions based exclusively on the game, as the state may remain
relatively fixed for significant periods of time within a game.

Experiments
For the following experiments, we initially considered RQ1
and RQ2 in parallel and RQ3 and RQ4 in parallel. After
initial experimentation, based on the results of RQ2, we ran
additional experiments for RQ1, which will be discussed in
detail. Across all four RQs, our initial experiments used the
State feature set (discussed in RQ1) unless we were explic-
itly testing feature sets and DistilBERT unless we were ex-
plicitly testing the model. We fixed the feature set and model
to ensure that the results could be compared across RQs and
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Learning rate Batch size Weight decay
5× 10−6 16 0
1× 10−5 32 0.01
5× 10−5 64 0.1

Table 1: Tested hyperparameters.

to reduce statistical noise. DistilBERT was selected as our
hypothesized most balanced model for speed and perfor-
mance. For all experiments, we tested the hyperparameter
values given in Table 1 and utilized the combination with
the best performance on the validation set, averaged over
four runs. We performed each training four times to ensure
that any extremely good or poor results were not outliers.

RQ1: Varying Information to Identify Player
Feature Sets. To identify which features of the game state
were most relevant to player identification, we performed an
ablation study for RQ1. We started with the full information
available to a player and removed aspects of that information
to determine which features are meaningful from amongst
the hand, board, and action. We first set the player ID as the
gold label, then trained on four separate feature sets:
• State: The entire train dataset consisting of the player’s

hand, their board, and the opponent’s board, augmented
with the player’s last action. As CCGs inherently have
imperfect information, this is the most complete view of
the game possible for a player and is equivalent to identi-
fying an unknown player by watching a real-time game;

• Hand: A reduced train dataset consisting only of the
player’s hand, augmented with the player’s last action.
This is functionally equivalent to identifying an unknown
player based on a known deck and action;

• Board: A reduced dataset consisting of the player’s board
and the opponent’s board, augmented with the player’s
last action. This is functionally equivalent to identifying
an unknown opponent based on their previous actions;

• No action: To examine the possibility that the models
were simply learning to identify a player based on the
cards they drafted, without considering their actions, this
model selected a player using only the player’s hand —
which is randomly drawn from the drafted deck.

Model Parameters. For our initial experimentation, we
trained DistilBERT-base-uncased4 on all feature sets, using
the aggregated dataset. We chose DistilBERT as opposed to
larger LMs such as RoBERTa (Liu et al. 2019) for this task
simply because it is faster and lighter (Sanh et al. 2020).
Therefore it can be of more utility for games, which often
can’t run extremely large LMs due to speed or memory lim-
itations. However, following the results of RQ2, particularly
the unexpected performance of the random forest (RF) clas-
sifier, we ran additional experiments testing all feature sets
for RoBERTa-base5, RoBERTa-large6, and the RF classifier.

4https://huggingface.co/distilbert-base-uncased
5https://huggingface.co/roberta-base
6https://huggingface.co/roberta-large

Figure 3: Example input string for State feature set.

The input to the model was the feature set being tested —
with each feature labeled — conjoined into a single string.
An example input string is given in Figure 3. For the RF clas-
sifier, the string was vectorized using TF-IDF vectorization.
For the Transformer models, the string was tokenized using
the model-specific Huggingface tokenizer. They were then
finetuned for up to 30 epochs, but we stopped training when
three consecutive epochs showed no F1 improvement. All
models used FP16 half-precision training for speed. We se-
lected the output with the best F1 score on the validation set
for each hyperparameter combination and the hyperparame-
ters with the best performance on accuracy and F1, averaged
over the four runs, to perform predictions on the test set.
Wherever there was a discrepancy between F1 and accuracy
in selecting the final model, we prioritized accuracy. The
specific hyperparameters for the Transformer models used
in RQ1 are given in Table 2.

Results. Results can be found in Table 3. The best overall
performance was the State feature set, with approximately
17.35–25.74% accuracy. Additionally, regardless of model,
all of the feature sets outperformed the random baseline
in RQ2, indicating that they were actually learning about
the input data instead of simply guessing, and the majority
class baseline, indicating that they are capable of identifying
unique features about all of the players, not just those play-

DistilBERT
Learning rate Batch size Weight decay

State 5× 10−5 16 0
Hand 5× 10−5 16 0.01
Board 1× 10−5 16 0
No action 5× 10−5 16 0.01

RoBERTabase
Learning rate Batch size Weight decay

State 1× 10−5 16 0.01
Hand 1× 10−5 16 0.1
Board 1× 10−5 16 0.1
No action 1× 10−5 16 0

RoBERTalarge
Learning rate Batch size Weight decay

State 1× 10−5 16 0
Hand 1× 10−5 64 0
Board 5× 10−6 16 0.1
No action 1× 10−5 16 0.01

Table 2: Hyperparameters for feature sets.
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Feature set Model Accuracy F1

State

DistilBERT 17.43% 0.1583
RoBERTabase 17.35% 0.1563
RoBERTalarge 20.96% 0.1909
RF (d = 50) 25.74% 0.2368

Hand

DistilBERT 9.91% 0.0924
RoBERTabase 9.40% 0.0872
RoBERTalarge 10.73% 0.10034
RF (d = 50) 11.85% 0.1127

Board

DistilBERT 6.98% 0.0629
RoBERTabase 6.83% 0.0614
RoBERTalarge 7.93% 0.0723
RF (d = 50) 10.52% 0.0990

No action

DistilBERT 7.95% 0.0758
RoBERTabase 7.50% 0.0707
RoBERTalarge 8.95% 0.0848
RF (d = 50) 9.23% 0.0900

Table 3: Identifying player with varying information.

ers that are most active. This implies that all features are
relevant and the entire State feature set is preferred. How-
ever, in answer to RQ1, despite significantly outperforming
arbitrary model baselines, which can be found in Table 4,
even the State feature set does not show promising results
in conclusively identifying a player from their actions, and
other means of identification should be explored.

RQ2: Varying Models to Identify Player
Models. To create comparisons to our transformer-based
approach, we first trained five simple classifier models using
the aggregated dataset: Naı̈ve Bayes, decision trees, random
forest, and a linear support vector classifier (SVC) from the
Scikit-learn Python library (Pedregosa et al. 2011), as well
as XGBoost (Chen and Guestrin 2016). Despite being a bi-
nary classifier, we chose to utilize a linear SVC due to its
potentially high performance and efficiency in classifying
large numbers of samples. The linear version defaults to a
one-versus-rest classification for multiclass problems. All of
the remaining classifiers are multiclass by default. We were
required to limit the maximum depth of the decision trees
and random forest for practical memory purposes. We tested
depths of 15, 25, and 50 and utilized the option with the best
performance on each, averaged over four runs.

We then trained three transformer-based models on
each task: RoBERTabase, RoBERTalarge, and DistilBERT.
RoBERTa was chosen for its strong capabilities in natu-
ral language understanding (NLU) (Liu et al. 2019). Distil-
BERT, while generally not as high-performing as RoBERTa,
has considerably fewer parameters and increased compu-
tational speed (Sanh et al. 2020). The increased efficiency
may be preferable depending on the functional reduction in
performance, particularly because the input consists only of
card names and LoCM has a relatively small card set.

Baselines. To evaluate whether our trained model was able
to perform better than arbitrary models, we also used two
baselines:

• Random: This model randomly selected a player from
the entire space of players in the train set.

• Majority Class: To examine the possibility that the model
was simply selecting the most active player in order to
arbitrarily increase their accuracy, this model selected the
player with the most turns in the entire set.

Model Parameters. The input to every model was the
State input string from RQ1. For the baseline classifiers,
the input string was vectorized using TF-IDF vectorization.
For each transformer-based model, the input string was to-
kenized using the Huggingface tokenizer specific to that
model. The Transformer models were then finetuned for up
to 30 epochs, but we stopped training when three consec-
utive epochs showed no F1 improvement. We selected the
output with the best F1 score on the validation set for each
hyperparameter combination and the hyperparameters with
the best performance on accuracy and F1, averaged over the
four runs, to perform predictions on the test set. Wherever
there was a discrepancy between F1 and accuracy in select-
ing the final model, we prioritized accuracy. The specific hy-
perparameters for the Transformer models used in RQ2 are
given in Table 2, under State.

Results. Results for RQ2 can be found in Table 4. The
best overall model was the random forest classifier with
25.74% accuracy and an F1 of 0.2368, outperforming all
three transformer-based models. However, all three Trans-
former models outperformed the random and the majority
class baselines, as well as the other classifiers, suggesting
that either a significant branching factor, using trees, or more
complex computation, using LMs, is needed to differenti-
ate between player features. Finally, although RoBERTalarge
outperforms DistilBERT, as expected, it took over 300%
longer per epoch to train and 130% more epochs to con-
verge to optimal performance. As such, we would not con-
sider RoBERTa to be a significant improvement over Distil-
BERT, particularly when a simpler classifier (RF) performed
better and faster than both. In answer to RQ2, a random for-
est classifier is most accurate at identifying an individual and
performs significantly faster than its next-closest competitor.

Model Accuracy F1

DistilBERT 17.43% 0.1583
RoBERTabase 17.35% 0.1563
RoBERTalarge 20.96% 0.1909
Naı̈ve Bayes 5.42% 0.0366
XGBoost 15.06% 0.1395
Decision tree (d = 50) 8.20% 0.0777
Random forest (d = 50) 25.74% 0.2368
LinearSVC 13.21% 0.1118
Random 0.551% 0.0050
Majority class 1.54% 0.0002

Table 4: Identifying player with varying models.
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Player 1 Player 2 Player 3
# of Games 6671 5030 978
# of Turns 208017 157134 36811

Table 5: Dataset information for players.

RQ3: Individual Modeling to Predict Action

Methodology. To predict the actions of an individual
player, we took the datasets for the top three most active
players, shown in Figure 2 and hereafter referred to as Play-
ers 1, 2, and 3, and set the action taken as the gold label.
Despite its remarkable performance on RQ2, we chose not
to train a random forest classifier for the action prediction
tasks due to the significantly larger branching factor when
classifying over 14,000 actions versus 184 players. For prac-
tical memory purposes, we would have had to limit the max-
imum depth to below 15, which would have considerably
reduced the classifier’s capabilities. We instead trained Dis-
tilBERT and compared the models’ performances to the ma-
jority class baseline.

However, the random baseline has obvious shortcomings
when assessing action prediction. In addition to the other
data, the model is also presented with a set of cards in the
game state at each turn, whether they be in the player’s hand
or on the board. The resulting action must be bounded by
the cards that the player has available. As such, at each turn,
we constructed a set of possible moves from the cards avail-
able in the game state. We then had a model, which we call
the condensed random baseline, randomly predict an action
from this reduced action space. As before, we performed
each training four times. Player 1’s “Pass” actions were also
randomly downsampled by 67,612 instances to better bal-
ance the dataset. Dataset information regarding the individ-
ual players can be found in Table 5.

Model Parameters. The input to every model was the
State input string from RQ1, sans the action label. The string
was tokenized using the DistilBERT Huggingface tokenizer.
Each model was then finetuned for up to 30 epochs, but we
stopped training when three consecutive epochs showed no
F1 improvement. All three models used FP16 half-precision
training for speed and tested the hyperparameters shown in
Table 1. We selected the output with the best F1 score on the
validation set for each hyperparameter combination. How-
ever, given that players may have preferred moves, cards,
or play styles, all three datasets were highly unbalanced to
favor certain actions over others. We made every effort to en-
sure “Pass” was not an overwhelming option in any dataset,
but true balance is infeasible. As such, for RQ3, we also ac-
counted for the Matthews correlation coefficient (Matthews
1975), which is a preferred evaluation metric for imbalanced
data (Chicco and Jurman 2020). For each dataset, we se-
lected the hyperparameters with the best performance on at
least two of our three evaluation metrics, averaged over the
four runs, to perform predictions on the test set. The specific
hyperparameters for RQ3 are given in Table 6.

Learning rate Batch size Weight decay
Player 1 5× 10−5 16 0
Player 2 5× 10−5 16 0.1
Player 3 1× 10−5 16 0.01

Table 6: Hyperparameters for individual models.

Results. Results for RQ3 can be found in Table 7. All
models outperform the condensed random and majority
class baselines, suggesting that they are learning features of
each individual’s play style. Furthermore, all three models
also outperform the model to predict actions from aggre-
gate data, shown in Table 8. As expected, all models had
relatively low F1 values (a feature of data imbalance), but
performed quite well when considering the Matthews coef-
ficient. In answer to RQ3, all three models display relatively
high performance at predicting an action for a known player,
considering that there were over 14,000 possible actions.

RQ4: Group Modeling to Predict Action

Methodology. To predict the actions of a new or unknown
individual based on the actions of an aggregated group of
players, we trained DistilBERT using the aggregated train
and validation datasets from RQ1 and RQ2. We then per-
formed predictions on the individual players’ test sets. We
also used the aggregated group’s test set as a baseline.

Model Parameters. The input to every model was the
State input string from RQ1, sans the action label. The string
was tokenized using the DistilBERT Huggingface tokenizer.
Each model was finetuned for up to 30 epochs, as before.
The specific hyperparameters were determined by selecting
the output with the best F1 score on the validation set for
each hyperparameter combination and the hyperparameters
with the best performance on at least two of our three eval-
uation metrics, averaged over the four runs, to perform pre-
dictions on the test set. As such, every model had a learning
rate of 5 × 10−5, a batch size of 16, a weight decay of 0.1,
and used FP16 half precision training for speed. This differs
from RQ1 because we are now predicting the action, not
the player. We again report each model’s accuracy, F1, and
Matthews coefficient.

Accuracy F1 MCC

Player 1
Model 28.75% 0.0486 0.2855

Random 5.57% 0.0302 0.0544
Majority 0.7413% 0.000003 0.0

Player 2
Model 54.71% 0.2166 0.5449

Random 7.22% 0.0360 0.0691
Majority 2.42% 0.00002 0.0

Player 3
Model 28.37% 0.0350 0.2800

Random 6.68% 0.0395 0.0645
Majority 1.33% 0.00002 0.0

Table 7: Action prediction with individual modeling.
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Model Accuracy F1 MCC
Player 1 24.40% 0.0491 0.2423
Player 2 33.86% 0.1134 0.2859
Player 3 27.35% 0.0969 0.2711

Aggregate 26.95% 0.0595 0.2608

Table 8: Action prediction with group modeling.

Results. Results for RQ4 can be found in Table 8. All
models still outperform the condensed random and major-
ity class baselines found in Table 7. This suggests that, even
when a specific player has not been seen previously, some
play style features can be effectively predicted from the
common patterns of the group. However, only one individual
model significantly outperforms the model to predict actions
from aggregate data, and all three perform worse than mod-
els specifically trained to the individual, shown in Table 7.
The models still had relatively low F1 values compared to
the Matthews coefficient. In answer to RQ4, all three mod-
els display strong performance at predicting an action for
an unknown player with, at worst, approximately a 1 in 4
chance of correctly guessing the next move, but the perfor-
mance would be improved by having some data specific to
the player in advance.

General Discussion
For RQ1, it is clear that the entire game state is necessary
to obtain the maximum possible accuracy in identifying a
player. This is expected, given the small action space, as
multiple players may have identical or highly similar decks
and, therefore, similar hands at any given point. For these
players, the only differentiating factor may be the moves
they make when presented with a given environment.

As could also be expected, for RQ2 large transformer-
based LMs perform better than most other classifiers in iden-
tifying players from their CCG play styles. The notable ex-
ception is the random forest classifier, which shows over-
whelming potential when provided with sufficient depth and
performs faster than LMs, a necessary consideration for
gaming. However, forests are functionally impractical for
choosing between many actions, such as in RQ3 and RQ4.
Additionally, in relation to RQ2, larger Transformers with
more parameters and layers identify players better at the
cost of additional computational time. However, even the
smallest Transformer model (DistilBERT) performed bet-
ter than nearly all of the non-transformer methods it was
compared against. Therefore, its performance loss against
RoBERTalarge is likely to be a justifiable tradeoff for speed
and memory in many instances, particularly within gaming
applications.

For RQ3, we can see that there is a strong potential to
accurately predict a player’s future actions, when trained on
their common actions within a particular environment. In ex-
treme cases, an action can be predicted with over 50% accu-
racy from a set of over 14,000 possible options. From RQ4,
we also see that predicting a player’s future actions using
models tailored to that individual significantly outperform

predictions based on aggregated data. However, the predic-
tions made using such aggregated data still show a signifi-
cant ability to predict moves.

However, in relation to RQ4, the models that predict an
unknown player’s actions from the common actions of a
group perform the same or worse than predictions about
the group’s actions in most cases. This may be indicative
of the higher-ranked individual players making creative and
unconventional moves, which are not expected when con-
sidering only common actions. In this way, as we hypothe-
sized, predicting an individual’s future actions based on the
majority’s actions may cause unique features of that indi-
vidual to be lost. Furthermore, the F1 scores for group mod-
els were generally higher than the individual models. This
substantiates our theory that the low scores were due to in-
dividual players having highly preferred and individualized
actions (i.e., fewer true positives and more true negatives
which were not captured by F1), as opposed to the mod-
els being poor predictors (i.e., having more false positives
and negatives which were captured by F1). Further study is
required to fully localize the causes of these phenomena.

The main drawback to using LoCM for this research, as
well as its main advantage, is that the game has a signifi-
cant player base with a relatively small action space, com-
pared to other CCGs. This makes it simpler for AI agents to
handle, allowing us to test complex algorithms and LMs eas-
ily. However, the limited action space also drastically dimin-
ishes one of the key benefits of CCGs, creativity and flexi-
bility in play styles. Future work will focus on testing and
adjusting these models to account for more complex CCGs,
particularly those with natural language effects on the cards,
such as Hearthstone or MtG. This would also drastically im-
prove the model’s robustness and generalizability to abstract
resource allocation applications outside the realm of CCGs.

Finally, we plan to improve these results by exploring tree
pruning strategies, to enhance the performance of the RF
classifier, and introducing improved relative position em-
beddings, which have been shown to increase performance
for LMs (Huang et al. 2020). An artifact of our dataset is that
the state feature strings are ordered in the same way cards are
presented to the player, from left to right. In CCGs other than
LoCM, where players interact directly with the game, there
may be biases toward playing certain cards based on their
relative location in the player’s hand, board, etc., which we
would like to capture.
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