Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

Entropy as a Measure of Puzzle Difficulty

Eugene You Chen Chen', Adam White'?, Nathan R. Sturtevant'?

! Department of Computing Science, University of Alberta
2 Alberta Machine Intelligence Institute (Amii)
eugene @ideaowl.com, {amw8, nathanst} @ualberta.ca

Abstract

Evaluating and ranking the difficulty and enjoyment of puz-
zles is important in game design. Typically, such rankings are
constructed manually for each specific game, which can be
time consuming, subject to designer bias, and requires ex-
tensive play testing. An approach to ranking that generalizes
across multiple puzzle games is even more challenging be-
cause of their variation in factors like rules and goals. This
paper introduces two general approaches to compute puzzle
entropy, and uses them to evaluate puzzles that players enjoy.
The resulting uncertainty score is equivalent to the number
of bits of data necessary to communicate the solution of a
puzzle to a player of a given skill level. We apply our new
approaches to puzzles from the 2016 game, The Witness. The
computed entropy scores largely reproduce the order of a set
of puzzles that introduce a new mechanic in the game. The
scores are also positively correlated with the user ratings of
user-created Witness puzzles, providing evidence that our ap-
proach captures notions of puzzle difficulty and enjoyment.
Our approach is designed to exploit game-specific knowledge
in a general way and thus can extended to provide automatic
rankings or curricula in a variety of applications.

Introduction

Puzzle games vary in their rules, limitations, and goals, re-
sulting in game-specific approaches to determine puzzle dif-
ficulty. Difficulty is also different for players of different
knowledge and skill levels, further complicating measure-
ment. However, such a measure can be very useful. It can be
used to predict whether puzzles will be interesting to play-
ers of different skill levels, identify specific skills that render
puzzles as easy or challenging, and help explain or generate
the ordering of puzzles within puzzle games. A difficulty
measure can also help develop a curriculum of puzzles that
requires players to gain knowledge for further progression.
A general measure related to difficulty can apply to educa-
tional games, or even learning in general, where the primary
goal is with increasing student knowledge: adjusting prob-
lem difficulty can similarly influence levels of enjoyment
and confidence, leading to further engagement and increased
learning.

Several simpler puzzle measures can be generally ex-
tracted and used as proxies for difficulty. For example, the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

34

number of solutions to a puzzle provides a natural measure
of difficulty because more solutions implies easier puzzles.
Shorter solution lengths also relate to difficulty for similar
reasons. However, these measures are not sufficient for cap-
turing difficulty in puzzles, as we will later show.

Specific algorithms have been proposed to measure puz-
zle difficulty for some games. Sudoku puzzles have been
measured for difficulty by mapping them into sets of con-
straint satisfaction problems (Ercsey-Ravasz and Toroczkai
2012). In Sokoban difficulty has been measured by the min-
imum number of steps needed to decompose a puzzle into
subproblems (JaruSek and Peldnek 2010). While effective,
these algorithms are tied to the puzzle domains they are cre-
ated to measure. We aim to design general algorithms that
apply across multiple puzzle games.

In this paper we contribute a new measure of puzzle dif-
ficulty based on entropy. Applied to single-player, turned-
based puzzles, our entropy measure quantifies the commu-
nication that would be needed to describe a puzzle’s solu-
tion, given player knowledge of the puzzle domain. Entropy
is calculated from the number of choices a player faces at
each step in the solution path. Using these notions, we derive
two information entropy measures and then evaluate them
on several puzzle test sets

Empirically, we find that our best approach, ReMUSE, is
able to measure puzzle difficulty effectively, according to
two experiment outcomes. First, in The Witness, it orders
a set of mechanic-introducing puzzles very similarly to the
original puzzle designers. Second, we find a positive cor-
relation between the ReMUSE scores and user ratings for
a series of online puzzles frequented by puzzle enthusiasts,
indicating a possible relation to puzzle enjoyment and dif-
ficulty. The correlation with user ratings for ReMUSE are
higher than the correlation with other puzzle measures such
as average solution length and a puzzle’s number of solu-
tions.

Related Works

Generative approaches need a way to select intriguing puz-
zles, and the work in this paper is related to evaluating puz-
zles based on specific properties that indicate their interest-
ing nature. Grammatical evolution can be used to create lev-
els for a clone of a puzzle game Cut the Rope, measuring
generated levels for playability and variety (Shaker et al.

2013). Incremental Exhaustive Content Generation (EPCG)
(Sturtevant and Ota 2018) can be used to produce minor vari-
ations in the design of Snakebird game levels to significantly
increase the length of the shortest possible solution (Sturte-
vant et al. 2020). In The Witness, neural-guided tree search
has been used to determine a set of ordered puzzles (Lelis
et al. 2022) that compares favourably with ordered puzzles
from the game in teaching players to solve additional test
puzzles. In each of these works, problem-specific scores are
designed to measure and select the most interesting content.

Difficulty in puzzles has been measured using different
approaches. Search and strategic depth scores have been
suggested as reasonable indicators of puzzle difficulty (EI-
Nasr, Drachen, and Canossa 2013). Others have proposed
constraint satisfaction solvers as part of a deductive search
approach to measure difficulty (Browne 2013).

Difficulty and challenge are valuable properties to ex-
tract from puzzles because they can affect player enjoyment
(Abuhamdeh and Csikszentmihalyi 2012): online games of
Chess played against superior opponents were found to be
more enjoyable than games against inferior opponents. This
reflects the concept of arriving at a positive experience, so-
called flow (Csikszentmihalyi 1990), which is arrived at
when performing slightly challenging tasks, compared to
tasks that are too easy or too difficult, leading to boredom
or frustration respectively.

Information entropy can be represented as the uncertainty
of outcomes of a random variable (Shannon 1948), and prior
work has explored the connections between entropy and the
perceived depth of a game, or how it enables sustained, long-
term learning by players that provide dedicated problem-
solving attention (Lantz et al. 2017).

Summarizing related work, measures of puzzle difficulty
are used in many different applications, and there is not yet
a single measure which is broadly applicable.

Background

We design two algorithms, MUSE and ReMUSE, which take
as input a single-player, turn-based puzzle and return a scalar
score for the entropy of a puzzle. In the upcoming subsec-
tions, we describe how we represent puzzles as graphs, uti-
lizing simple puzzles from the game The Witness to illustrate
essential concepts. We then describe information entropy,
KL divergence, and softmin algorithms, which are utilized
in MUSE and ReMUSE.

Puzzle Representation as a Graph

A single-player, turn-based puzzle can be defined as a di-
rected graph G = (V, E). V is a set of k vertices, also in-
terchangeably called states s, where V' = {s1, ..., s}, and
states can be reached through edges E = {e1, ea, ...}. Each
directed edge can be represented as a pair of states originat-
ing from state s; to s;, or e, = {s;, s;}. Beginning with
the action of picking an initial starting state sg;4,+ from a set
of starting states Ss:q¢, @ SOlution to a puzzle is an edge-
connected path from a start state to a goal state.

Edges E of the puzzle are not explicitly enumerated: in-
stead, they are calculated with an action function A(s) that

35

.
goal i i
start
4 iii iv
(a) Puzzle (b) Start & (c) Solutions,
Goal i-iv

Figure 1: Example Witness Puzzle

returns a set of edges, interchangeable with actions a, for a
given state s. A puzzle also needs a goal test function I'(s)
that returns 1 if state s is a goal state and 0 if not.

Considered together, a puzzle can be defined by a graph, a
set of start states, an action function, and a goal test function.
This is represented as puzzle = {G, Sstart, A, T'}. This rep-
resentation is used as the input to compute our MUSE and
ReMUSE scores.

The Witness Domain

The Witness is a 2016 single-player video game where play-
ers can explore an island filled with different biomes of
themed, solvable puzzles. Early puzzles are presented as
[w x h] sized rectangular grids, such as the [1 x 2] sized
puzzle in Figure la. Solving any Witness puzzle will, at
minimum, require a non-crossing path to be drawn along
the light-grey grid from special start junctions, indicated by
round circles, to any goal junctions, indicated by notches.
The start and goal junctions for our puzzle are displayed in
Figure 1b, and all four solutions for the puzzle are shown
in Figure 1c. Note that when a non-crossing path is drawn
and reaches the end goal junction, the notch indicating the
end goal junction is automatically filled as part of the drawn
path.

Formally, the state of a Witness puzzle is the path drawn
during play, which can be represented as a sequence of junc-
tion positions. For example, junction positions for the Wit-
ness puzzle shown throughout Figure 1 and 2 are listed in
Figure 2a. State s from Figure 2b is {[0, 0], [0, 1]}, starting
with the only start junction in this puzzle, with Sg4r =
{[0, 0]}. Graph edges or actions in Witness puzzles repre-
sent cardinal (up, down, left, right) directions used to draw a
path to a next state, so action edge-detection function A(s)
returns {ayp, arighs } for state s, as shown in Figure 2c. The
next state will return {[0, 0], [0, 1], [0, 2]} if a,,), is taken at
s, or {[0,0], [0, 1], [1, 1]} if @pigns is taken instead. Goal test
function I'(s) returns O for state s in Figure 2b, and 1 for
each state shown in Figure Ic.

Unlike the puzzle in Figure la, most Witness puzzles
also contain constraints that must be fulfilled when a non-
crossing path is drawn from a start to goal junction. The
puzzle in Figure 3a contains such a constraint: different
coloured squares within the grid are associated with con-
straints that require that squares of only one colour exist
within the regions separated by a start-to-goal non-crossing
path. As a result I'(s) returns 1 only for states shown in iii)

02”7 Nug Taup
[0,1] < [1,1] —
aright
(a) Junctions and their (b) Sample (c) Actions
positions state s from A(s)

Figure 2: Encoding states and actions in the Witness

]
) ‘= m

(a) Puzzle w (b) Solutions,
constraints iii & iv

(c) 3x2 puzzle
& solutions

Figure 3: Witness Puzzles with Square Constraints

and iv) in Figure 3b since the different coloured squares are
separated into two regions with the path. I'(s) returns O for
states shown in i) and ii) of Figure 3b. Both states depicted in
Figure 3c return 1 through I'(s). For i) in Figure 3c, the path
separates two regions of coloured squares (3 black squares
left, 2 blue squares right), while three regions (containing 1
black, 2 black, and 2 blue squares) also separate squares of
different colours in ii).

Information Entropy

In information theory, entropy is a measure of the uncer-
tainty of a random variable Z, where Z has k possible out-
comes {z1,, z; } (Shannon 1948). If the probability of an
outcome z is given by a probability function P(z), the in-
formation entropy formula is as follows:

1

k
P(z,)log (1)
; ? P(zn)

For example, for an unfair double-sided coin that always
turns up heads there is no uncertainty in the outcome. Mathe-
matically, given the random variable Zynpair = { Zheads, Ztails }»
the probability ¢ = P(zheass) = 1 and P(zui1s) = 0, and so
its entropy is H (Zungair) = [11log, 1] + [0log, §] = 0 bits.

With a fair coin, where there is an equal chance that heads
or tails is the outcome of the flipped coin, the probabili-
ties P(zheags) = 0.5 and P(zys) = 0.5 result in the en-
tropy of the outcomes being H(Zgir) = [0.5log, 5] +
[0.510g, 5=] = 1 bit. In other words, it would take 1 bit
of information to communicate the outcomes of a flipped,
fair coin.

36

KL Divergence

Kullback-Leibler (KL) Divergence (Kullback and Leibler
1951), often used in machine learning models to calculate
loss (Peng et al. 2018; Sohn, Lee, and Yan 2015), is a mea-
sure that calculates the difference between two probability
distributions. We use the relative entropy interpretation of
KL divergence, or the resulting uncertainty from using a
probability distribution () to represent a true probability dis-
tribution P:

Dir(P||Q) =)

- 3 Pllon gy
rzeX)

Keeping with our example of a fair coin where the
P(Zfair) = {P(Zheads), P(Ztails)} = {0.5, 05}, the KL di-
vergence from using a probability distribution () that esti-
mates heads turning up 90% of the time is Di(P||Q) =
[0.510g, 3:5] 4 [0.51og, 38] = 0.74. If Q had the same
probability distribution as P, then the KL divergence would
work out to be 0, reflecting no uncertainty from using @ to
represent P.

Softmin Function

The softmax function (Bridle 1990) is widely used to nor-
malize vectors of real numbers into a probability distribution
on outcomes. It is, for instance, often used as the last acti-
vation function of a neural network to turn network outputs
into a probability distribution for a set of output classes, and
is defined as:
e’
K
j=1
In our work we want the highest value in the incoming dis-
tribution to have the lowest probability, so we use the similar
softmin function, which uses —z; in place of z; in the calcu-
lation.

Softmax(z;) = fori=1,2,.... K (3

e

Encoding Puzzle Uncertainty as Entropy

MUSE and ReMUSE measure the uncertainty of a puzzle,
specifically encoding the uncertainty encountered in solving
a puzzle. This can also be viewed as the amount of infor-
mation that an oracle, who knows the solution to a puzzle,
needs to communicate to a player so that they can make the
correct decision at each step when solving a puzzle.

We utilize information entropy to encode the uncertainty
encountered at each state, similar to how uncertainty is en-
coded for the outcomes of coins or dice. We use the number
of legal actions of a puzzle at a given state s, |A(s)], to de-
termine the entropy encountered at that state.

In the Witness there are at most four cardinal actions a per
state s and thus the amount of uniform entropy is simply:

0, if|A(s)| =1

1, if|A(s)| =
H(Zas)) ={ 1.6, if |A(s)| =3 @)

2, if|[A(s)| =4

oo, if|A(s)|=0

Algorithm 1: MUSE: Minimum Uniform Solution Entropy

1: // Note: o is either A or L, depending on approach.

2: //If L, then all o(s) are replaced with L(s).

3: // Additionally, if an n-step lookahead is used, L(s,n)
and I'(s, n) applies instead of L(s) and I'(s).

4: function MUSE(Sgu, 0, 1)
5: uses []

6: for each s, € Sy do > For every start state
7: Append MINPATHENT (Sgtart, 0, 1) tO uSES

8: end for

9: return min(uses)

0: end function

11: function MINPATHENT(s, o, n)
12: if I'(s) = 1 then return 0
13: if |o0(s)| = O then return co
14: childEnts + []

15: for each a € o(s) do

16: s’ < Apply a to s

17: Append MINPATHENT(s', o, n) to child Ents
18: end for

19: local Ent «+ H(Z|U(S)|)

20: return min(child Ents) +local Ent

21: end function

> Solved
> Unsolvable

> For every action

There are two important special cases to consider. If only
one legal action is possible, then there is no uncertainty re-
garding which action must be taken, so entropy is 0. If, how-
ever, there are no possible actions, or |A(s)| = 0, then no
amount of bits can encode for the solution path from state s
since there are no future outcomes or successor states, and
we assign oo for the entropy of such states.

Minimum Uniform Solution Entropy (MUSE)

Our first measure, called Minimum Uniform Solution En-
tropy (MUSE), computes a score for a single-player, turn-
based puzzle that reflects the uncertainty encountered when
the puzzle is solved. More specifically, it computes the en-
tropy of the solution with the smallest entropy. It achieves
this through a simple recursive function depicted in lines 11-
21 of Algorithm 1. The entropy of any state s is the sum of
the local entropy resulting from the number of actions | A(s)|
and the entropy belonging to the child state with the small-
est entropy. The algorithm returns the entropy of the solu-
tion with the smallest entropy, which is particularly relevant
if there is more than one start state, or | Sy > 1.

Computed recursively, the base cases (lines 12-13) handle
if the goal is reached (returning O entropy) or if no actions
are available (returning oo entropy). The general case re-
cursively computes the entropy of each child (lines 14-18)
and then returns the local entropy of the current state plus
the minimum entropy of the children (line 20). Note that we
will later generalize the action function passed in, so o is the
action function in this pseudo-code.

Figure 4 provides a concrete example of applying Algo-
rithm 1 to a puzzle from the Witness. State 1 from the fig-

37

ID | State Position | |A[| H(Z,) | |L| | H(Z,;)

1 | as [0,0] | 2 1 2 1

2a | P 1 [0,1] | 2 1 1 0

2b li: 11 [3| 16 |1 0

2c 1:—_ [2,1] | 2 1 1 0

2d we 22 jo] o o] o

3a | 2 i = [1,0] | 2 1 2 1
Vv

3b ts 20 |1 0 1 0
Vv

3¢ 2] 2 1 1 0
og

3d ae L1 | 2 1 1 0
Vv

3e == o] |1 0 1 0
{al=]

3f == 02 |1 0 1 0

3g == [1,2] 1 0 1 0

3h E 220 (o] o o] o

Figure 4: Entropy encountered at each state for puzzle solu-
tion reached at states 2d and 3h using valid action function
return A(s) and logic action function return L(s).

ure is also the puzzle’s start state Sgtqr¢ = {[0,0]}, which
has actions a,;, and a,;gn: returned by the action function
A(s). These lead to States 2a and 3a, or {[0,0],[0,1]} and
{[0,0],[1,0]} respectively, since states in Witness puzzles
are the non-crossing paths that can be represented by a se-
ries of junction positions.

MUSE computes the sum of the local entropy encoun-
tered at State 1 plus the minimum sum of entropy from
the next state with the lowest entropy. This would be
H(Zja(s))) = 1 bit of entropy for the |A(s)| = 2 actions
at State 1 plus the lower of the two entropies from State 2a
and 3a, which themselves would need to be similarly calcu-
lated in a recursive fashion.

We can easily calculate the entropy at State 2a and 3a
through three observations. Only two solutions exist for the
puzzle, and as a result all other states not shown at Figure 4
will have an entropy of oo, since all other states eventually
end up at a terminal, non-goal state where |A(s)| = 0. Only
goal states of 2d and 3h would return O entropy to parent
states, and because the minimum child entropy is picked at
each state, all other child entropy resulting in co would be ig-
nored. Because States 2a and 3a do not branch into multiple
solutions, we sum child entropy together. Thus the entropy
at State 2a is its local entropy plus the entropy of its descen-
dant states, or 1 4+ 1.6 + 1 = 3.6 bits of entropy. Similarly,

the entropy at State 3ais 1 +0+1+14+0+ 040 = 3 bits
of entropy.

Together, the MUSE for the puzzle is 1 +min(3.6,3) = 4
bits of entropy, from reaching the goal state at 3h, or sgou =
{[0,0],[1,0],...,[1,2],[2, 2]}

MUSE is a measure that computes a score for a single-
player, turn-based game that reflects the uncertainty encoun-
tered while a puzzle is solved. The uncertainty is encoun-
tered by human players, but so far we have treated any ac-
tion returned by A(s) as a source of uncertainty, when play-
ers with skill, knowledge, and experience might not see all
actions as equally valid in achieving a solution. We can im-
prove our approach by incorporating player knowledge and
skills within MUSE, and to do that, we introduce logic-
driven inference rules.

Logic Puzzles and Inference Rules

Logic puzzle players typically deduce a set of rules that aid
them in solving puzzles. For example, with typical rectan-
gular jigsaw puzzles, players can intuit that puzzle pieces
containing two straight edges are its corner pieces, and
those corner pieces must be adjacently connected with other
pieces that have a straight edge. Accurate deductions can be
translated into inference rules, or a set of rules that must be
followed for the puzzle to remain solvable.

Inference rules reduce the uncertainty found in logic puz-
zles, and we use them to model the uncertainty encountered
by skilled players while solving puzzles. Continuing with
the example of jigsaw puzzles, experienced players know
that it is unnecessary to connect pieces with a straight edge
with ones that do not. This drastically reduces the number
of connections players need to attempt. Inference rules re-
duce the number of actions experienced players need to con-
sider, potentially reducing the uncertainty experienced at ev-
ery turn of a turn-based puzzle.

While these rules can be created automatically (Nakano
et al. 1998; Stevens, Bulitko, and Thue 2023), in this work
we manually created sets of inference rules for Witness puz-
zles to generate specific entropy-related scores based on the
uncertainty found in solving a puzzle.

Inference Rules for Witness Puzzles

Inference rules exist for different constraints found in Wit-
ness puzzles. For instance, while it is possible to extend the
path either up or right for the next part of the path for the
puzzle in Figure 5a, we can apply an inference rule that
eliminates ay, as a potential action to take. The rule ap-
plies as follows: at a junction adjacent to two different colour
squares, the action extending the path to immediately divide
these squares must be taken. Not doing so would result in
the puzzle not being solvable since the pieces have to be in
separate regions, and if we do not separate them immedi-
ately, there will be no way to do so later.

This inference rule can be formalized as follows. We in-
troduce a logic function L(s) that incorporates the inference
rule for immediately separating different colour squares.
Consider the puzzle shown in Figure 5a with A(s) =
{@up, arign }. In state s = {[0,0], [0, 1]} at Figure 5b, L(s)

38

L
right .n‘ght | |
a

—} —} (] (] (]
—
l . l l arighl l aright
o—>
(@) A(s) (b) L(s) (©) L(s) (d) L(s) (e) L(s,n)
actions action action actions with n=1

Figure 5: Comparing A(s) with Logic-Infused L(s)

would return aygn, as the only action that could lead to the
goal state, or ['(s) = 1 for a future state s.

Another inference rule can be written for must-cross con-
straints. These constraints are black hexagons (which look
like black dots in our smaller diagrams) along the grid
lines of Witness puzzles. When must-cross constraints are
present, they must be crossed over by a path for the con-
straints to be fulfilled. The inference rule for must-cross con-
straints is simple: at a junction where a must-cross constraint
lies between two junctions, the action extending the path to
cross that must-cross constraint must be immediately taken.
As aresult, L(s) returns only aright for the puzzle state shown
in Figure 5c.

L(s) can return no actions if a combination of inference
rules suggest no future states beyond s can lead to a goal
state, even though A(s) would return a set of actions. This is
the case of the puzzle in Figure 5d, where inference rules re-
quire both ay, and aygn, to reach a possible goal state. Since
that is not possible from s, L(s) returns no actions.

Modeling player lookahead Uncertainty can be further
reduced if we account for a player’s ability to consider the
consequences of actions a few steps ahead in turn-based
games, as good chess players typically do (Campitelli and
Gobet 2004). In our case, we extend L(s) to L(s,n) to re-
turn a set of logic-driven actions at s that check if the puzzle
is still solvable after a n-step depth first search (DFS), or
is solved in the DFS, suggesting O entropy. Having already
established that the puzzle state from Figure 5d cannot re-
sult in reaching future goal states, L(s, 1) for the start state
shown in Figure 5e will only return ayigy.

MUSE with a Modified Action Function

We augment MUSE with inference rules by simply replac-
ing valid action function A with logic action function L
for o as shown in Algorithm 1. In some cases A(s) and
L(s) are exactly the same: in the example puzzle shown
in Figure 4, no local inference rules apply to L at State 1,
so |A(s)| = |L(s)| = 1. However, in many other states
like State 2a or 2b, the inference rule pertaining to coloured
squares makes aign, the only logical action that can be taken,
L(s) = {arign}, and the local entropy at that state, not ac-
counting for child entropies, is 0.

As a result, the uncertainty encountered in solving the
puzzle, or the puzzle MUSE score, is reduced. This can be
seen for the solutions reached at States 2d and 3h in Fig-
ure 4. Similar to the earlier derivation of the MUSE score,
we can first sum up their local and descendant entropies:

Algorithm 2: ReMUSE: Relative MUSE

20: local Ent +
K L(softmin(childEntropies), (Z|1(s)|))

for State 2a this is 0 + 0 + 0 = 0 and for State 3a it is
14+ 0+0+ 0+ 0 = 1. Therefore, the puzzle’s MUSE score
is the local entropy at State 1 plus its smallest child entropy,
or MUSE = 1 + min(0,1) = 1, which is smaller than the
entropy of 4 computed using only the valid action function
A.

ReMUSE: Relative MUSE

Our MUSE algorithm with inference rules, which we will
simply refer to as our general MUSE algorithm from here,
encodes the uncertainty of a puzzle experienced by a mod-
eled player. This uncertainty is measured locally and uni-
formly at each state, but does not account for the difference
in entropy from different actions. To account for this, we in-
troduce our ReMUSE approach.

Several cases need to be accounted for in the design of
our ReMUSE algorithm. Consider a state s where three ac-
tions |L(s)| = 3 exist, but the eventual outcome of all three
actions is that the puzzle will be solved. MUSE returns a lo-
cal entropy score of 1.6 for state s despite the intuition that
in such a state, no further information needs to be encoded
or communicated to the player to solve the puzzle. The en-
tropy should be 0 in such a state. A similar situation occurs
if all children have the same entropy: the choice again does
not matter, and no information needs to be communicated
to describe the solution. Finally, consider if the three actions
have only an € difference in entropy: even if a player takes
the wrong action, the entropy of the rest of the puzzle is es-
sentially unchanged.

ReMUSE utilizes KL Divergence to account for the rel-
ative entropy between two probability distributions when
computing the local entropy of a given state. The first dis-
tribution is a uniform probability distribution based on the
number of actions. The second distribution is the softmin
of the entropy from the immediate children. The larger the
KL divergence measure, the larger the divergence from the
assumption of uniform probability.

This approach only differs from the MUSE algorithm
shown in Algorithm 1 by a single line (line 19), highlighted
in Algorithm 2. Instead of setting a state’s local entropy as
the uniform information entropy of the state, we replace it
with a KL divergence comparison between the softmin of
the entropy of the children and the uniform distribution.’

Other Puzzle Measures

Single player, turn-based puzzles from different puzzle
games share a set of general measures with which we can

'We use a uniform prior distribution to model the probability
of player actions. If a player has a different prior distribution or
policy, we can use that instead.

39

compare our entropy-related scores from MUSE and Re-
MUSE. The number of solutions and the average length of
solutions provide reasonable measures of puzzle difficulty.
The number of solutions can be determined by the number
of states that return I'(s,0) = 1 after a brute-force traver-
sal of every path. The average length of solutions takes the
average number of actions needed to arrive at a solution for
the puzzle. We expect that for puzzles of a given [w X h]
size, the more difficult puzzles are ones with fewer number
of solutions and larger average length of solutions.

Experiment Setup and Results

We setup our experiments to answer a number of questions.
First, can our proposed puzzle scores predict puzzle diffi-
culty on user-submitted puzzles from a site frequented by
puzzle enthusiasts? How do MUSE and ReMUSE compare
with measures like solution length in capturing puzzle dif-
ficulty? We also compare our ReMUSE-based orderings of
puzzles to those found within the Witness game, as well as
the neural-ordered equidistant puzzles from prior work on
puzzle ordering (Lelis et al. 2022).

Interesting Puzzles from the Windmill

We collected a series of Witness puzzles from an online site
called the Windmill (Gruen 2016) where users submit puz-
zles and can upvote or downvote those puzzles (which we
define as user ratings). We compute MUSE and ReMUSE
scores, the number of solutions, and the average solution
length for all puzzles. Our hypothesis is that they measure
difficulty, and test this by seeing if the scores correlate with
user ratings. We make this hypothesis with two assumptions.
First, the players that solve puzzles on the Windmill have
likely played, if not completed, The Witness, and can be
generally considered advanced players. Second, advanced
players positively upvote challenging puzzles, and downvote
trivial ones.

We downloaded every single puzzle from the Windmill
up to November 29th, 2022, and then filtered puzzles by a
number of criteria. First, we only computed puzzle scores
for puzzles containing one or a combination of must-cross,
rounded-square, and cannot-cross (briefly described in the
final paragraph of this section) constraints, since these were
the constraints our puzzle solver could account for, and ones
we had inference rules written into our code. We also filtered
specifically for puzzles that had a [4 x 4] size. This was done
for a number of reasons: a fixed grid size allows for a consis-
tent assessment and evaluation of puzzles that have similar
number of states, thereby removing the element of variable
scoring due to different puzzle sizes. This grid size also lim-
its a puzzle’s maximum entropy, as we believe that players
do not enjoy puzzles with entropy that is too high. We also
removed exact copies of puzzles that appear in the game. Fi-
nally, we removed five outlier puzzles with user ratings of
above 40: these were created and voted upon early on when
the Windmill was launched.

After filtering, 104 puzzles fit our criteria for testing with
an average of 6.4 upvotes. We also adjusted user ratings to
reflect the smaller number of players participating on the

30 A

20 A

101

Date-Normalized Ratings

ReMUSE

Figure 6: User ratings of puzzles and their ReMUSE
scores. An interactive version of these results with all
the data and each playable Witness puzzle is available at
https://ideaowl.com/remuse

Approach Correlation p-value
MUSE, no lookahead 0.41 1.1E-05
MUSE, n=1 step lookahead 0.40 2.4E-05
MUSE, n=2 step lookahead 0.40 2.4E-05
ReMUSE, no lookahead 0.57 1.5E-10
ReMUSE, n=1 step lookahead 0.56 4.9E-10
ReMUSE, n=2 step lookahead 0.56 4.2E-10
Number of Solutions 0.32 9.7E-04
Average Solution Length 0.47 3.9E-07

Table 1: Correlation (Pearson Correlation Coefficients) and
p-values with user ratings for Windmill puzzles

Windmill site over time by identifying the correlation be-
tween user ratings and time, creating a temporally adjusted
user rating for each puzzle.

The scores obtained from applying different approaches
to user-generated puzzles from the Windmill provide a num-
ber of interesting insights. As seen on Table 1, MUSE scores
on puzzles correlate moderately with the puzzle’s user rat-
ings, with ReMUSE scores leaning towards a strong correla-
tion at 0.57. ReMUSE scores for every puzzle are visualized
in Figure 6. Unintuitively, it seems that performing n-step
lookaheads with either MUSE or ReMUSE approaches low-
ers the entropy scores’ correlation with user ratings. Looking
at other measures, the number of solutions for puzzles had
a low correlation to user rating. We expect that puzzles with
fewer solutions would be more strongly correlated to higher
user ratings since fewer solutions imply more difficult puz-
zles.

These results suggest that the uncertainty-based MUSE
and ReMUSE approaches can be used to predict puzzle en-
joyment, and by extension we argue that it can predict puzzle
difficulty. When we see a positive correlation with user rat-
ings, we are likely seeing a proxy of encountered difficulty
since players from the Windmill are experienced and likely
derive more enjoyment from challenging puzzles, suggest-
ing that our approaches can be used to assess puzzle diffi-
culty.

40

(a) 14 actions, (b) 24 actions: (c) 24 actions: (d) 20 actions:
ReMUSE:1 ReMUSE:0 ReMUSE:6 ReMUSE: 11

Figure 7: Puzzles on the Windmill with only 1 solution

Comparing the ReMUSE measure to the measures of the
number or the length of solutions yields two additional find-
ings. Our approaches compare well, if not notably better,
in correlating with user ratings. Given that these other mea-
sures are often associated with predictors of difficulty, this
is a good result. Perhaps more meaningful, however, is the
discovery that our puzzle scores can vary greatly even when
those other measures are held constant. For example, puzzles
from Figure 7 have only one single solution but vary in the
number of actions necessary to solve them, as well as their
ReMUSE scores. Puzzles a) and b) are solved, noting that
for b) the gaps/breaks in the grid mean that no path can be
drawn across the gap: these are also known as must-not cross
constraints. Puzzle a) is simple, but b) is comparatively triv-
ial to solve despite requiring more actions to solve it. Like
Puzzle b), Puzzle c) also requires 24 actions to reach the only
solution for the puzzle, but is more challenging than b) and
has a ReMUSE score of 6. Puzzle d) has fewer actions nec-
essary than b) or c), but has the highest ReMUSE score of
the four puzzles, suggesting a higher level of difficulty. For
reference, puzzles a) to d) have respective user rating scores
of -6, -15, 15, and 28.

Patterns from Ordered Witness Puzzle Sets

We consider puzzles from two sets of Witness puzzles, with
the first being the starting slate of puzzles within The Witness
that introduce constraints to the player. We start by comput-
ing ReMUSE scores for these puzzles. Sorting puzzles by
the ReMUSE scores, we can look for patterns that can help
to explain the ordering of puzzles with the game.

We also evaluate Witness puzzles and compare their or-
dering with the set of equidistant puzzles from work on
learning curriculum (Lelis et al. 2022). Given that the
equidistant curriculum was generated and shown as effec-
tive in helping players learn to solve later puzzles, a similar
ordering of the puzzles can provide a possible relationship
between of the perceived entropy of a puzzle and its diffi-
culty as modeled through their approach.

Comparing the order of the introductory constraint puz-
zles from the Witness game with the ordering from Re-
MUSE provides a number of insights. First, as seen in Figure
8, the overall order is very similar. ReMUSE scores the first
three puzzles as trivial and equivalent in uncertainty, while
puzzles vi-ix have the exact same order that the ReMUSE
scores for. Only one change in order occurs as a swap for
puzzle iv and v. Both have the same MUSE score of 1 bit
of entropy that occurs at state sy = {[0, 0]}, but the KL

Original Witness Constraint Puzzle Ordering & ID
i ii iii iv v vi vii viii ix
L] L]
bt bt] L4 s s e DO : - =
b L] L L
e eje|e sss ss s se s
0.47 1.0 3.0 3.2 4.0 6.8

ReMUSE Ordering & Score

Figure 8: Puzzle order of introductory constraint puzzles in
The Witness compared with ReMUSE score-driven order

divergence of the softmin in the ReMUSE measure accounts
for the two possible solutions (by first taking either ay, or
Gright), SO even if the shorter solution is missed by taking
ayp the player can still solve the puzzle, resulting in lower
overall entropy at s, With ReMUSE. Note that we assume
the player knows the constraints, but they do not when these
puzzles are first introduced to them. This may account for
the difference in the ordering of earlier puzzles.

The similar ordering is a promising result, as it suggests
that ReMUSE can be used to create sets of increasingly chal-
lenging puzzles to teach concepts. This is what happens in
The Witness: the game designer creates a variety of puzzles
and an ordering of the puzzles to allow players to learn in-
ference rules about the game. This ordering of increasingly
challenging puzzles should not deter the player from con-
tinued play, either because the puzzles are too simple or too
difficult. As demonstrated here, the ReMUSE approach is
able to credibly rank puzzles for difficulty.

The ordering of puzzles through our ReMUSE measure
can also help to explain the choice of puzzle ordering by
a game designer. Puzzles iv and vi, as well as vii through
ix, are similar to one another: in all five puzzles, four black
square constraints sit beside the start junction of the puzzle.
What mostly changes is the position of the exit junction, and
it is done to force the player to evaluate another, more uncer-
tain path to solve the puzzle. For example, instead of taking
path of least uncertainty to a solution by first taking ay, at
Sstart for puzzle v), puzzle vi) removes the option for taking
that path, requiring the player to encounter uncertainty for
the first three states by taking the solution path starting with
Qright-

The similar ordering for the equidistant curriculum puz-
zles in Figure 9 further reinforces the validity of using Re-
MUSE as a measure of difficulty and for ordering puzzles for
learning. A neural-guided tree search modeled the difficulty
of a set of generated puzzles, and 9 were selected for their
equally increasing gaps in difficulty. They were successfully
tested as possible replacement puzzles for the introductory
constraint puzzles in the Witness game, and implies that Re-
MUSE would have done well at ordering another set of puz-
zles to teach concepts and logic to players.

These puzzles also suggest insights about entropy in dif-
ferent size puzzles, work that we explore further by exhaus-

41

Original Equidistant Curriculum Ordering & ID

i ii iii iv v vi vii viii ix

L] UL LIl ~t : . : . : se s
L] L]

. sss ssss
LALIL I 0 a scss
L] UL a8l = : . : : : sa s
. b 000 D000
s ajeje . . sces

0 0 0.16 2.0 2.3 2.9 3.9 4.7 6.3

ReMUSE Ordering & Score

Figure 9: Puzzle order of equidistant puzzles compared with
ReMUSE score-driven order

tively generating Witness puzzles of different grid sizes and
comparing their ReMUSE score distributions in an upcom-
ing theses (Chen 2023). First, ReMUSE scores vary across
different size puzzles, and as shown in both sets of ordered
Witness puzzles, smaller puzzles can have larger ReMUSE
scores than their larger counterparts. This is promising as it
suggests that ReMUSE can identify more challenging puz-
zles that have a smaller size rather than relying on grid size
to determine difficulty. Additionally, O-entropy puzzles exist
on any puzzle size, and the larger the puzzle the longer the
maximum path, and the greater the maximum entropy.

Slitherlink Puzzles and Triangle Constraints

As a separate, independent experiment, we also computed
ReMUSE scores, the number and average solution length of
152 Witness puzzles from the Windmill that contain only tri-
angle constraints. These puzzles are similar to puzzles from
the game Slitherlink, also known as Fences or Takegaki. A
full analysis is beyond the scope of this paper, but the pre-
liminary results suggest that ReMUSE can be used to mea-
sure difficulty for Slitherlink puzzles (Chen 2023). Com-
pared to the Windmill puzzles discussed earlier in this paper,
ReMUSE scores for puzzles containing only triangle con-
straints had a lower absolute correlation to user ratings, but
the relative positive difference to all other measures were
much higher.

Limitations and Future Work

Inference rules are hard to write and discover. A potential
solution to this problem is to use inductive logic program-
ming (Muggleton and De Raedt 1994) to automatically cre-
ate sets of inference rules by learning from databases of puz-
zles and their solutions (Stevens, Bulitko, and Thue 2023).
These automatically generated inference rules could then be
applied to our entropy algorithms.

People also vary in knowledge and skill, so certain play-
ers, like beginners, may find certain puzzles difficult because
they have not yet developed their own internal set of infer-
ence rules. Our experiments model the strong player that
does not make mistakes based on the inference rules we
know, which works well for trying to predict the difficulty
of a puzzle for experienced players. A natural next step is to

create models of players with different skillsets and knowl-
edge: they may not know all the inference rules and get stuck
at a puzzle unless that gap in their knowledge is filled.

Finally, the approach to evaluating uncertainty can be ex-
tended to non-game settings. Injecting measurable uncer-
tainty into educational settings could help learners better ab-
sorb lessons by providing skill-appropriate questions that are
not too challenging or simple.

Conclusion

In this paper we introduced MUSE and ReMUSE as mea-
sures of puzzle difficulty based on entropy. We imbued our
algorithms with logical inference rules to better reflect how
people solve puzzles. We evaluated our approach on Wit-
ness puzzles, comparing our entropy scores with user rat-
ings from a large online database. Our results suggest that
our ReMUSE measure produces scores that correlate well
with user ratings and better than the correlations from al-
ternative measures like solution length and the number of
solutions. Finally, our approach produced similar orderings
for puzzles in two sets of puzzle curricula, and had a posi-
tive correlation to user ratings for Witness puzzles that are a
close equivalence to a different puzzle game.

Acknowledgements

This work was supported by the National Science and Engi-
neering Research Council of Canada Discovery Grant Pro-
gram and the Canada CIFAR AI Chairs Program.

References

Abuhamdeh, S.; and Csikszentmihalyi, M. 2012. The Impor-
tance of Challenge for the Enjoyment of Intrinsically Moti-
vated, Goal-Directed Activities. Personality and Social Psy-
chology Bulletin, 38(3): 317-330.

Bridle, J. S. 1990. Probabilistic interpretation of feedfor-
ward classification network outputs, with relationships to
statistical pattern recognition. In Neurocomputing: Algo-
rithms, architectures and applications, 227-236. Springer.
Browne, C. 2013. Deductive search for logic puzzles. In
2013 IEEE Conference on Computational Inteligence in
Games (CIG), 1-8.

Campitelli, G.; and Gobet, F. 2004. Adaptive expert deci-
sion making: Skilled chess players search more and deeper.
ICGA Journal, 27(4): 209-216.

Chen, E. 2023. Entropy as a Measure of Puzzle Difficulty.
Forthcoming.

Csikszentmihalyi, M. 1990. Flow: The Psychology of Opti-
mal Experience. Harper & Row. ISBN 0060162538.
El-Nasr, M. S.; Drachen, A.; and Canossa, A. 2013. Game
Analytics: Maximizing the Value of Player Data. Springer
Publishing Company, Incorporated. ISBN 1447147685.
Ercsey-Ravasz, M.; and Toroczkai, Z. 2012. The chaos
within Sudoku. Scientific reports, 2(1): 725.

Gruen, M. 2016. The Windmill. https://windmill.
thefifthmatt.com. Accessed: 2023-05-26.

42

Jarusek, P.; and Pelanek, R. 2010. Difficulty rating of
sokoban puzzle. In STAIRS 2010, 140-150. IOS Press.

Kullback, S.; and Leibler, R. A. 1951. On information and
sufficiency. The annals of mathematical statistics, 22(1):
79-86.

Lantz, F.; Isaksen, A.; Jaffe, A.; Nealen, A.; and Togelius, J.
2017. Depth in Strategic Games. In AAAI Workshops.

Lelis, L. H.; Nova, J. G.; Chen, E.; Sturtevant, N. R.; Epp,
C. D.; and Bowling, M. 2022. Learning Curricula for Hu-
mans: An Empirical Study with Puzzles from The Witness.
In IJCAI, 3877-3883.

Muggleton, S.; and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming, 19: 629-679.

Nakano, T.; Inuzuka, N.; Seki, H.; and Itoh, H. 1998. In-
ducing shogi heuristics using inductive logic programming.
In Page, D., ed., Inductive Logic Programming, 155-164.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-540-69059-7.

Peng, X. B.; Kanazawa, A.; Toyer, S.; Abbeel, P.; and
Levine, S. 2018. Variational discriminator bottleneck: Im-
proving imitation learning, inverse rl, and gans by constrain-
ing information flow. arXiv preprint arXiv:1810.00821.

Shaker, M.; Sarhan, M. H.; Naameh, O. A.; Shaker, N.; and
Togelius, J. 2013. Automatic generation and analysis of
physics-based puzzle games. In 2013 IEEE Conference on
Computational Inteligence in Games (CIG), 1-8.

Shannon, C. E. 1948. A mathematical theory of communi-
cation. The Bell System Technical Journal, 27(3): 379-423.

Sohn, K.; Lee, H.; and Yan, X. 2015. Learning struc-
tured output representation using deep conditional genera-
tive models. Advances in neural information processing sys-
tems, 28.

Stevens, J.; Bulitko, V.; and Thue, D. 2023. Solving
Witness-type Triangle Puzzles Faster with an Automati-
cally Learned Human-Explainable Predicate. arXiv preprint
arXiv:2308.02666.

Sturtevant, N.; Decroocq, N.; Tripodi, A.; and Guzdial, M.
2020. The Unexpected Consequence of Incremental Design
Changes. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 16(1):
130-136.

Sturtevant, N.; and Ota, M. 2018. Exhaustive and semi-
exhaustive procedural content generation. In Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, volume 14, 109-115.

