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Abstract

Managing risk with imperfect information is something hu-
mans do every day, but we have little insight into the abili-
ties of AI agents to do so. We define two risk management
strategies and perform an ability-based evaluation using Star-
Craft agents. Our evaluation shows that nearly all agents mit-
igate risks after observing them (react), and many prepare
for such risks before their appearance (anticipate). We apply
traditional causal effect inference and causal random forest
methods to explain agent behavior. The results highlight dif-
ferent risk management strategies among agents, strategies
that are common to agents, and overall encourage evaluating
agent risk management abilities in other AI domains.

Introduction
Managing risk with imperfect information is required in
daily life (e.g., bringing an umbrella when it might rain).
AI agents do the same, from autonomous vehicle controls
that slow down when vision conditions deteriorate to games
such as StarCraft where a partially observable environment
ensures agents have imperfect information about the game
state. Agents are adept at managing risks under these condi-
tions, evidenced performance that approaches human-level
in everyday tasks such as driving and game-playing.

Despite the prevalence and necessity of managing risk
in these AI tasks, risk management is not evaluated di-
rectly, and we know little of its relationship to task per-
formance (Amos-Binks, Dannenhauer, and Gilpin 2023).
Existing AI domains have been almost exclusively focused
on task-based evaluations. The ability to beat and com-
pete with world-class players (e.g., Go (Silver et al. 2017),
StarCraft (Vinyals et al. 2019)) and question-answering
(e.g., Winograd schemas (Levesque, Davis, and Morgen-
stern 2012)) only use the final outcome in their evaluations.
Ability-based evaluations that cut across domains have re-
ceived comparatively little attention. Universal psychomet-
rics (Hernández-Orallo et al. 2017) is an active area of re-
search but has yet to find a foothold among existing AI
tasks. Finally, the explainable AI community has endeav-
ored to provide machine learning model user’s with insights
into why a model made a specific prediction (Gunning et al.
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2021). As AI continues to pervade everyday life, such as in
mission-critical systems, we require even more transparency
into an agent’s risk management abilities.

Figure 1: We calculate the blue agent’s ability to manage
risks with imperfect information both before observing a
risk (anticipation) and after (reaction). We adjust these cal-
culations using a baseline so we can determine whether
agents under- or over-perform.

Our approach tackles the lack of risk management char-
acterization with an ability-based evaluation of risk manage-
ment in StarCraft AI agents. StarCraft provides an ideal do-
main for evaluating risk management as defender agents are
unaware of when and to what degree (imperfect informa-
tion due to fog-of-war) attacker agents develop capabilities
(risks such as air, cloaked units) for which “hard counters”
are developed (mitigations such as anti-air, detector units) to
perform well on the overall task (win).1 Figure 1 depicts a
simplified example of air units in red and anti-air units in
green/blue. Our study makes three contributions. First, we
extract and share the relevant data for risk management from
the AIIDE 2020 StarCraft tournament, the most recent at the
time of writing. The diversity of agents and tournament de-
sign (many games, time limits, known maps, fog-of-war) are

1A “hard counter” is a unit that explicitly defeats or undermines
another unit.
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ideal for evaluating risk management. Second, we define the
risk management terms needed to perform our evaluation.
While we evaluate StarCraft agents, we expect the defini-
tions for calculating anticipation and reaction strategies can
be adapted for other tasks to evaluate risk management abil-
ity. Finally, we evaluate the abilities of tournament agents to
manage risk. To do this, we use a novel application of tradi-
tional causal inference methodologies that compares a base-
line counterfactual against an agents actions, Figure 1. We
explain an agents’ behavior as “reacting” or “anticipating”
to risks, an explanation that requires identifying the furtive
cause of the behavior. We find that many agents react to ob-
serving risks by investing in mitigations. We also found that
the average tournament-level agent anticipates risk by in-
vesting in mitigations before risks are even observed.

Background
Our contributions build on three different background ar-
eas. First, StarCraft is a real-time strategy game (RTS) with
properties conducive to applying our risk management eval-
uation. Second, our evaluation is best characterized as an
ability-based AI evaluation. We deliberately characterize it
as an ability-based evaluation because we intend risk man-
agement abilities can be assesses in other domains, unlike
task-based evaluation that are domain specific. Finally, we
discuss the concepts we employ from risk management.

StarCraft RTS
While the original StarCraft was released in 1998, it has be-
come a focal point of AI research with many tools, tourna-
ments, and agents in active development. StarCraft’s fog-of-
war mechanic, where players only have visibility to game
tiles immediately near their units (imperfect information),
along with the known capabilities opponents can develop
(risks), and countering capabilities (risk mitigations), are
ideal properties for assessing risk management. We use these
properties to measure the change in agent resource alloca-
tion before and after observing an opponent’s threatening
capability.2 We focus on the AIIDE StarCraft AI compe-
tition, run annually with the AIIDE conference, as tourna-
ment matches contain fog-of-war, there is a range of AI
agents, and the tournament design provides a high quality
data source as agents play over 100 matches per opponent.

AI Evaluation
AI evaluations are broken down into task- and ability-based
evaluations (Hernández-Orallo 2017). Task-based are solely
concerned with final task performance without investigating
the abilities to achieve them. Our survey of StarCraft eval-
uations found only task-based evaluations using StarCraft
match winners (e.g. (Churchill, Buro, and Kelly 2019))
or overviews of the tournaments in general (Čertickỳ and
Churchill 2017; Čertickỳ et al. 2018). In contrast, ability-
based evaluations focus on characteristics that enable per-

2In an interview, the author of the McRave StarCraft agent de-
scribed our definition of reaction as what practitioners would call
“panic buying”.

formance across several tasks. Progress in exploring univer-
sal psychometrics is promising but not concrete enough to
apply directly to StarCraft. Instead, we focus on evaluating
risk management from the ground up in StarCraft, aiming
to demonstrate the effectiveness of modern causal inference
techniques and inspire their application to other tasks.

Risk Management
Typical risk management involves five steps; identify, an-
alyze, prioritize, mitigate, and monitor. In many domains
(e.g., insurance), risks are already identified, we view Star-
Craft as one of these domains. Analyzing and prioritizing
within StarCraft amounts to enacting mitigations and ob-
serving a risk in a match. Mitigation is a measure of the de-
gree of mitigation investment, while monitoring ends when
the match does. We formalize risk management approaches
with definitions for anticipation (risk mitigation investment
before observing risk) and reaction (risk mitigation invest-
ment after observing risk) in Section .

Here, we are attempting to disambiguate if a risk actually
causes an agent to respond, or if the various motions of an
agent are merely correlated and synchronistic. One such ex-
plicit example these tools help disambiguate would be that
agent may blindly build anti-air at a particular frame count
every game because of build order (in which case the ac-
tive threat does not cause anything per se), from whether or
not they are actually responding to a threat observed (and
therefore the threat causes a response). We do this by com-
paring a counterfactual state (games where no such threat
appears) to the actual state (games where threats do ap-
pear) and contrasting the average of weighted subsets of
these games by several well-known techniques in Section .
In other fields, researchers are interested in if a particular ac-
tion causes a response, such as if adding a minimum wage
affects unemployment. The parallels are direct - the “threat”
is adding the minimum wage and the response (by the econ-
omy at large) is the changing unemployment level (Card and
Krueger 1994). Causal effect tools are for measuring these
cases and have wide reach, for example this particular ex-
ample has about 5000 citations.

Risk Management Abilities
In this section, we provide definitions that culminate in the
two risk management strategies: anticipation and reaction.
After each definition, we describe a concrete, illustrative
StarCraft example that also segways into our Evaluation in
Section . Our definitions are specific to StarCraft, though we
expect they are general enough to support risk management
ability evaluations in other real time strategy games and do-
mains with mechanics that have ‘hard counters‘.

In our example, we refer to two agents playing each other
as the defender in blue and the attacker in red. StarCraft
capabilities vary by race but are static and well-known as
the game is no longer under active development. We define
attacker unit types that have a specific capability as a risk:

Definition 1 (Risk) The set of attacker unit types with a ca-
pability cap is Rcap and the set of attacker unit instances
produced in a match up to a given time t is Rcap

t .
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Our example in Figure 1, column 1, row 2, the attacker’s
air units present a risk as they have the unique ability to in-
flict damage by shooting ‘down’. For a defender to mitigate
the risk of air units, the defender agent needs unit types with
the ability to inflict damage by shooting ‘up’ (ground units)
or ‘across’ (air unit). We define risk mitigations as:

Definition 2 (Risk Mitigation) Defender units with the ca-
pability Mcap necessary to inflict damage to any unit in
Rcap. All defender unit instances with a type in Mcap up to
a time t of the current match is referred to as Mcap

t where
mi contains the number of units produced of that unit type.

In Figure 1, column 1, row 2, the defender’s air miti-
gations (Mair

obs) are three anti-aircraft units (blue rockets).
These mitigating units reduce the risk posed by an attacker’s
air units. We calculate a defender’s risk mitigation invest-
ment using an existing aggregate resources value (Synnaeve
and Bessiere 2012; Weber 2018) for Vcap:

Definition 3 (Mitigation Investment) The total quantity of
resources invested to mitigating risk cap up to time t is cal-
culated as the dot product of the value vector Vcap that con-
tains the resources required to produce unit types with cap
and the Risk Mitigation vector Mcap

t for cap at t:

Inv(Mcap
t ,Vcap) =

|Mcap
t |∑
i

mivi (1)

In Figure 1 column 1, row 2, the defender has invested
in 3 mitigating units (blue rockets, Mair

obs), if their cost is
$2 each (Vair), then they have invested Inv(3, 2) = $6.
While risks (capabilities) are known a priori in each match,
attackers acquire them through a series of building upgrades
and intermediate capabilities. It is not clear the risks an at-
tacker will develop or when they may do so. In StarCraft,
the fog-of-war game mechanic grants only imperfect infor-
mation about when their attacker has produced a given risk
(capability). We define when a defender observes the first
attacker’s unit that poses risk Rcap (risk unit first present in
a visible game tile) as an Observed Risk.

Definition 4 (Observed Risk) The first time an attacker’s
unit with type in Rcap is located in a game tile visible to a
defender in the current match is Rcap

obs

In Figure 1, the time a defender observes attacking air
units is column 2, row 2 with risk value Rair

obs = 2, if we as-
sume one air unit has a nominal value of $2. Denoting when
a defender first observes a risk is essential as it allows us
to measure how effectively a defender manages imperfect
information about risks. Drawing on inspiration from antici-
patory thinking (Geden et al. 2019), we refer to a defender’s
investment in risk mitigations before observing a risk as An-
ticpation:

Definition 5 (Anticipation Investment) The quantity of
resources a defender has invested in risk mitigations before
Rcap

obs is Inv(Mcap
ant,Vcap) such that ant <= obs.

We calculate the defender’s anticipation investment for air
risks in Figure 1 as Inv(Mair

ant,Vair) = 1.5 where, for
illustration, Vair = [0.5] and there are 3 defending rockets.

To support evaluating whether an agent is truly anticipating
and preparing for a risk, we adjust a defender’s anticipation
investment by subtracting a counterfactual baseline amount
to obtain Anticipation:

Definition 6 (Anticipation) The difference between
anticipation investment (Definition 5) and a counter-
factual where the risk is never observed, Rcap

obs = 0,
is the anticipation, Inv(Mcap

ant,Vcap)|Rcap
obs > 0−

Inv(Mcap
ant,Vcap)|Rcap

obs = 0

In our example, the anticipation in Game 2 is 2, the dif-
ference between the 3 blue and 1 green anti-air units from
the baseline. Observing an attacker’s capability prompts a
defender to react. The defender must still account for the
imperfect information of the strength/degree of the risk (i.e.,
the number of units an attacker has that pose a risk). Reac-
tion is a defender’s investment in risk mitigations after ob-
serving a risk:

Definition 7 (Reaction Investment) The quantity of re-
sources a defender has invested in risk mitigations after
Rcap

obs is Inv(Mcap
react,Vcap) such that obs < react.

After observing the attacker’s air risk in row 2, col 2 of
Figure 1, we calculate the defender’s reaction investment as
Inv(Mair

reac,Vair) = 1 where Vair = [0.5]. This formula is
similar to the definition of Anticipation Investment, but with
a change in timing to occur after the threat appears instead
of before (i.e. ant <= obs < react). To support our evalu-
ation of reacting to observing a risk, we adjust a defender’s
reaction investment by subtracting a counterfactual baseline
amount to obtain Reaction:

Definition 8 (Reaction) The difference between the
reaction investment (Definition 7) and a counter-
factual where the risk is never observed, Rcap

obs = 0,
is the reaction, Inv(Mcap

react,Vcap)|Rcap
obs > 0−

Inv(Mcap
react,Vcap)|Rcap

obs = 0

In the example in Figure 1, the reaction in Game 2 is 2,
the difference between the 3 blue and 5 blue anti-air units in
columns 2 and 3, respectively.

Both reaction and anticipation are calculated on a per
match basis. In the next section, we use anticipation and re-
action calculations to characterize an agent’s ability to man-
age risk with imperfect information over multiple matches.

Evaluation
StarCraft provides an ideal domain to evaluate ability-based
risk management strategies. The risks and mitigations are
widely known. This ensures defenders are managing known
risks and not employing strategies that might be effective in
an open-world where novelty exists.

We focus on air and cloaking risks as they have what
many consider “hard-counters”, allowing us to evaluate
agent risk management strategies. We refer to anti-air units
as those that can inflict damage to air units, a capability that
not all ground units possess. Anti-cloak units are those that
reveal the location of an attacker’s cloaked units, which is
necessary to inflict damage on them. We note there is con-
textual variability in how suitable each unit in this list is for
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the task of countering, but this is the exhaustive list of such
units. There is also an argument to be made that ignoring a
threat is sometimes the best strategy - but we are specifically
exploring and measuring anticipation and reaction, not opti-
mal strategy selection as in (Ballinger and Louis 2013; Buro
et al. 2012; Churchill et al. 2011; Ontañón et al. 2013). Ta-
ble 4 in Appendix , details the aforementioned risks across
all StarCraft races. We assume agents will respond to air and
cloak risks with by anti-air units or detectors.

We use the 2020 AIIDE StarCraft AI Tournament for the
diverse skill level of agents, replays to extract content from,
and many matches between all tournament participants to
ensure robust statistical results.

Evaluation Data
The AIIDE 2020 StarCraft AI Tournament consists of thir-
teen agents that play one hundred and fifty games (slightly
less in some cases due to technical difficulties) against all
other agents. We use the BroodWar API (Heinermann et al.
2012) in a custom program to extract game state data from
11695 game replays into csv format.

This data is summarized in Table 1.

Total Value of: Rounds After:

All
Units

Air
Units

Cloak
Units

Air
Threats

Cloak
Threats

Mean 7305 1324 226 27.4% 22.2%
Std 8087 2930 547 44.6% 41.5%
N:240,023

Table 1: Summary of in-game units

Every 30 seconds (720 frames) we take inventory of all
units on the board for both participants. We drop all very
early data prior to any possible air or cloak attack (before
6000 frames or 4 minutes), for a total of 240,023 examined
frames. We simplify this inventory by calculating the net
worth of all units of each risk mitigation by summing the
point value for each unit (point values are effective for train-
ing AI agents (Synnaeve and Bessiere 2012; Weber 2018)).

We found that 27% of frames occur after the first air unit is
created, and 22% of frames occur after the first cloaked unit
is created, suggesting both of these risks are used regularly.

Study Design
We evaluate the association between a defender’s first ob-
servation of a risk unit at time t for agent i in game g (in-
dicated by Σt

j=0R
cap
ijg > 0, now referred to as Wijg for

brevity), and the log value of total risk mitigation units indi-
cated by ln(Mcap

itg ).
3 We refer to each observation using xitg

instead of xobs. Specifically, we are attempting to measure:
E(ln(Mcap

itg )|Wijg = 1, A) − E(ln(Mcap
itg )|Wijg = 0, A),

the difference between the amount of ln(Mcap) in cases

3We use the adjustment ln(1+Mcap
itg ) since sometimes the total

value of mitigating units is 0.

where the agent has observed the risk and the counterfac-
tual case where the risk was not observed and all else (A)
being held equal.

The method of performing this evaluation is called
“difference-in-differences” (DiD). Recall the simplified pair
of three-period games shown in Figure 1 where row 1 is
a baseline game 1 in which air risk was not observed by
the defender, and row 2 was a different game 2 where an
air risk was observed by some other defender. Column 3
indicates frames after air units would have shown up (if
they did). Game 1 uses its previous states as a baseline,
E(Mcap

t=3,g=1|Wt=3,g=1 = 0)− E(Mcap
t<3,g=1|Wt<3,g=1 =

0) = 1− 1 = 0 anti-air units are added at the time of threat.
In Game 2, we also use the previous states as a baseline,
E(Mcap

t=3,g=2|Wt=3,g=2 > 0)− E(Mcap
t<3,g=2|Wt<3,g=2 >

0) = 5 − 3 = 2 anti-air units. We then compare the dif-
ference between the reactions of agents in game 1 and 2 as
counterfactuals for one another, the size of the reaction is
the 2 − 0 = 2 units, the reactions by the agent in game 2 is
estimated to be of size 2, even though the blue agent in game
2 had more investment prior to the threat. In this illustrative
example, we can observe that no other relevant factors have
changed and assume both agents follow the same parallel
trends (Angrist and Pischke 2008). This technique is not a
panacea- discussion of the appropriate comparison groups,
and adapting to limitations of this technique is an area of
active research (Callaway and Sant’Anna 2021).

Methodology: Causal Methods

In the causal effect literature, the stimulating event is re-
ferred to as a “treatment”, and we are attempting to measure
the “effect of treatment” – specifically the effect of each first
observation of an attacker’s air and cloak units. Our goal
is to estimate the effect of treatment (Wijg) on an outcome
(Mcap) with a set of features Xijg which control for observ-
able characteristics of the game. The difficulty is that treat-
ment is either observed or not - we cannot rewind and fork
time to consider both cases for a particular individual and
time period. Therefore, it is critical to these causal methods
that we construct a counterfactual treatment (or nontreat-
ment) case using other available data.

The typical method of estimating difference-in-
differences is designed for data where individuals are
observed for a single timespan (there is typically no g
(game) dimension to the data) (Angrist and Pischke 2008).
Two-way fixed-effect estimation refer to the presence of
a set of indicators for both the set of time periods and the
set of individuals. We could apply the typical methodology
directly if, hypothetically, we had a data from a large
number of tournament participants playing one game
each and each individual serves as a counterfactual for
others. In the AIIDE tournament, we have repeated games
- and repeated games by the same agents serve as close
counterfactuals. This estimator is called the “three-way
fixed-effect estimator,” and the general projection that is
universally applicable is to include all interactions of each
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of the 3 dimensions (Balazsi, Matyas, and Wansbeek 2017).

ln(Mcap
itg ) = β0 + β1Witg + β2Xitg + β3Litg (2)

+ λ1it[Individual]i ∗ [TimePeriod]t
+ λ2tg[TimePeriod]t ∗ [Game]g
+ λ3ig[Individual]i ∗ [Game]g + ϵitg

Here, treatment is measured by the appearance of a risk: W
takes the value 1 if a risk has been observed at that time
in the game (or earlier) and 0 otherwise. The coefficient β1

measures the estimated effect of treatment, it is the differ-
ence between the treated and untreated counterfactuals. The
covariates, Xigt are the defender’s value of all assets (which
changes within a game) and race (which may change for ran-
dom players). L is a binary variable which takes the value 1
if it is the period before a risk is observed and 0 otherwise -
we include this factor if and only if we are examining antici-
pation effects, and the coefficient β3 estimates that anticipa-
tion. We include an indicator for each time period t (encoded
one-hot, which we indicate with brackets) and an indicator
for each observed individual i and game g (also encoded
one-hot). These indicators are interacted with one another
to capture all possible interactions of game, individual, and
time period. These are called ”fixed effects” because they
account for the average effect of a fixed period, defender,
or game. One element (called the base) must be excluded
from each dimension to avoid multicollinearity, for a total
of (I − 1) ∗ (T − 1)+ (I − 1) ∗ (G− 1)+ (G− 1) ∗ (T − 1)
fixed effects. We examine this model for the two different
risks – where cap is air and cloaking – and measure both
anticipation and reaction using difference-in-differences.

Reaction: Our estimate of reaction is the significance of
β1, where the presence of the treatment is the appearance
of a threatening cloak or flying unit indicated by the indi-
cator Witg shifting from 0 to 1. After the threat appears,
Witg remains as 1, so β1 represents the estimated impact
of observing a threatening unit relative to an equivalent
counterfactual un-threatened period, E[ln(Mcap

itg )|Witg =

1]− E[ln(Mcap
itg )|Witg = 0].

Anticipation: Our estimate of reaction is the significance
of β3, where the appearance of a threatening cloak or fly-
ing unit in the next period is indicated by the indicator Litg

shifting from 0 to 1. If the observation of a risk in the next
period is a significant predictor of response in period t, then
we conclude the agent used some information in period t to
anticipate the appearance of a risk in period t+ 1.

Causal Random Forest Our goal is to identify under what
conditions each agent is likely to respond (anticipate, react,
or not at all) to risks. Since DiD only finds average causal
effects, we supplement the above examination with a more
recent model, the causal random forest (CRF) (Wager and
Athey 2018; Athey and Wager 2019; Athey, Tibshirani, and
Wager 2019; Weber and Cappellari 2022). Most important
here is the the ability to use CRF to estimate reactivity along
specific dimensions of the data, such as an individual play-
ers’ reactivity as the game progresses.

This model leans on the intuition of propensity score
weighting (Hirano, Imbens, and Ridder 2003). The first idea
is that one can estimate the predicted outcome by construct-
ing a tree, and evaluating the average outcome within the
outcome leaf F using a set of unconfounded features Xi and
the observation of a threatening unit Wi to find an estimated
outcome, in this case the amount of M cap with estimated
value indicated by M̂ cap.

M̂cap
itg =

1

|{itg : Xitg ∈ F (x)}|
∑

itg:Xitg∈F (x)

Mcap
itg (3)

Granting that this estimation process is unconfounded
(Rosenbaum and Rubin 1983), we can recognize that those
in the same leaf have similar propensities for treatment. As
such, we can estimate impact of exposure for one tree by
τ̂ by subtracting the estimated mitigation amount with and
without the threat for all elements in each leaf:

τ̂(xitg) = (4)
1

|{itg:Witg=1,Xitg∈F (x)}|
∑

itg:Witg=1,
Xitg∈F (x)

Mcap
itg

−
1

|{itg:Witg=0,Xitg∈F (x)}|
∑

itg:Witg=1,
Xitg∈F (x)

Mcap
itg

As we expand the number of trees B, the average treat-
ment effect is directly estimated by averaging τ̂(xi) =
B−1ΣB

b=1τ̂b(x) across all trees. The features (X) we use
for CRF inputs are the same as for the previous model:
defender’s net value of all assets, the time period, the de-
fender’s name, the defender’s race, and the game ID.

Like with difference-in-differences, using Witg provides
an estimate of τ̂ measuring the average effect of reaction.
If we wish to instead use Litg , we estimate a τ̂ measuring
average effect of anticipation.

Estimating heterogeneous treatment effects requires
stronger assumptions: honest trees (a construction choice to
forego outcome information while estimating the tree) and
that treatment and non-treatment cases are sufficiently dis-
persed throughout the tree (α-regularity in splits). We note
we do not have sufficient dispersion of air/cloak threats to
evaluate anticipation using CRF, the period before risk expo-
sure tends to arrive at similar time periods in the game with
great regularity. This is because the agents tend to execute
build orders precisely, and therefore the estimation pivots on
the information in a single 30-second time period before the
threat arrives, and this period is usually the same every time.
On the other hand, in estimating reactions, there are many
periods after the threat arrives to serve as contrasts. We al-
ready discard extremely early periods where threats are pos-
sible. For details of the calculation, proof of consistency, and
standard error, see (Wager and Athey 2018).

Results
Risk Management In Aggregate, DiD One can describe
the goal of this DiD approach as trying to measure the
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”jump” in the response variable after treatment relative to
the untreated groups. We have visualized the jump for all
agents within games treated by cloak in Figure 2.

Figure 2: The dotted blue line represents a fit of the log value
of anti-cloak units a player has before and after observing air
units, normalized around 0. The solid green line, also nor-
malized around 0, represents the moment a cloaking unit is
observed (in games where this has occurred). There is a large
and significant jump in the log value of anti-cloak units after
observing that the enemy team has cloaking units. Normal-
ized for all listed fixed effects and controls.

This figure provides a contour plot of the log value of anti-
cloak units before and after a cloaked threat appears. We
normalize by the large slate of fixed effects in the regression,
so one could equally describe this figure as a residual plot
of a regression containing only these factors, following the
Frisch-Waugh theorem (Stock and Watson 2012). Figure 2
shows that there is a jump in the value of log anti-cloak units
after agents observe cloak units, after controlling for all fixed
effects and controls.

The relative increase in mitigating units is measured pre-
cisely by estimating Equation 2, and the regression results
of that equation are presented in Table 2.

Dependent Variable: ln(Mitg)
Anticipate React

Coef. Cloak Air Cloak Air
Witg 4.26∗∗∗ 0.33∗∗∗ 4.13∗∗∗ 0.30∗∗∗

(0.01) (0.02) (0.01) (0.25)
Litg 3.07∗∗∗ 0.84∗∗∗ - -

(0.04) (0.04) - -

R2 0.57 0.33 0.55 0.32
N 240,023 240,023 240,023 240,023
Standard errors, in parentheses, are clustered by player.
Significance levels: ∗∗∗0.01, ∗∗0.05, ∗ 0.1

Table 2: Difference In Differences Regression Results

Table 2, the React columns present the estimated DiD
coefficient β1 in row 1, representing the estimated impact
of observing a nonzero Rcap on the quantity ln(Mcap

itg ), in
other words measuring the average size of “panic buying.” In
the case of cloak risks, shown in column 3, we find a signif-
icant increase of about 4.13 in the log quantity of resources
directed towards anti-cloak units after a cloaking unit has
been discovered. When adjusted for a log-level perspective,
this means that there is approximately a 413% increase in the
value of anti-cloak units relative to the baseline after identi-
fying a cloaking risk (Stock and Watson 2012). This means
that in frames following the discovery of the cloak units,
AIIDE 2020 agents have substantially more units that attack
cloak units - relative to the agents’ average for that time and
type of game.

We repeat the same methodology for the risk of air units
and present the results in column 2. The DiD coefficient is
a significant 0.30, and under the same interpretation of log-
level regression, this means there is a 30% increase in the
value of anti-air units after the first observation of an air risk.
The significance of the coefficients in Table 2 are consistent
with the hypothesis that, on average, the pool of agents sig-
nificantly responds to both cloak risks and air risks.

In Columns 1 and 2 of Table 2, we explore the idea that
there is anticipation by indicating the period before the threat
appears, Litg , in row 2. Because this coefficient is signif-
icantly positive, we find evidence that agents, on average,
appears to have significant buildup of mitigations in the pe-
riod before observing a risk for both air and cloak, implying
anticipation. We also find evidence of significant reaction for
both air and cloak units. However, there is variability among
the agents, some agents react more than others. We next in-
vestigate CRF to determine if it estimates different treatment
effects, and to exploit its ability to estimate heterogeneous
responses.

Risk Management In Aggregate, CRF Next, we use the
causal random forest with the same covariates as the previ-
ous estimate.

Dependent Variable: ln(Mitg)
Anticipate React

Coef. Cloak Air Cloak Air

τ̂ -603† -371† 3.58∗∗∗ 3.68∗∗
(0) (15014) (0.97) (1.35)

N 240,023 240,023 240,023 240,023
Standard errors, in parentheses.
Significance levels: ∗∗∗0.01, ∗∗0.05, ∗ 0.1
†: process indicated challenges, discussion below.

Table 3: CRF Estimation Results

In Table 3 columns 3 and 4, we find a similar story to the
DiD results. The average agent has significant reactions to
both air and cloaked units (Witg) when controlling for com-
binations between covariates and the propensity for treat-
ment. Unlike in DiD, the magnitude of the estimated reac-
tion is large for both air and cloak threats. The difference
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Figure 3: Stardust (Blue), PurpleWave (Orange). Left: Top agents indicate nearly identical reactivity across time. Right: First-
place Stardust shows slightly better reactivity in the lower asset levels relative to second-place PurpleWave.

in magnitude between the air reactivity and cloak reactivity
is extremely small relative to the standard errors, suggest-
ing approximately equal levels of reactivity. We attribute this
distinction to CRF’s ability to search for interaction between
individuals and game factors such as army size or game time,
flexiblity that DiD does not provide.

In columns 1 and 2, we instead use Litg to estimate an-
ticipation effects. However, CRF did not converge, indicated
by the large negative coefficients and untenable standard er-
rors. This did not appear as a problem for DiD. We attribute
this lack of convergence to a violation of α-regularity; there
is not sufficient dispersal of Litg periods - air risks tend to
be first observed at the same time every game, and there is
(at most) a single period before air arrives. As a result, the
propensity of rare events tend to be extremely close 1 or 0.
Since these propensities are placed in the denominator, the
standard errors were nearly ± 10000 or failed to be mea-
sured. In other packages (e.g. grf for R), there are standard
error messages for this case.

We next discuss examples of individual agents, rather than
the aggregate average agent, and use the CRF method to ex-
plore and characterize reactivity along different features.

Discussion
We have identified (Table 2 and Table 3) the average agent
in the 2020 competition significantly responds to the appear-
ance of cloak and air risks. This identification stems specif-
ically from the fact that frames following the discovery of
risk have substantially more units that mitigate that risk rel-
ative to the agent’s average for that time and type of game.
The baseline created by the extensive fixed effects allows us
to control for many cases, such as when agents are simply
following a regular build order and coincidentally building
protective units at the same time risks are observed. Instead,
we have evidence that the average agent is reacting to the
information within the game that is simultaneous with the
appearance of the threat. Individually, we find a great deal
of variation in agent performance, see Figure 5, placed in

the appendix for reference. A detailed version of any agent’s
figure is available upon request or can be manufactured with
the code and data found online at [Author’s Github]. De-
spite this variation, nearly every single agent has significant
and positive reactions to air risks, at nearly all frame counts.
These reactions tend to improve as the agents gather more
assets - catching the fact that agents are more willing and
able to respond when they have more resources to do so.
Both of the top two agents as measured by winning percent-
age (Stardust and Purplewave) indicate nearly identical re-
sponse charts across time and across mitigation levels, ex-
panded and overlayed in Figure 3.

In Figure 3, estimates of their reactivity under these coun-
terfactual situations are always positive and significant, with
the necessary exception of when they have no units. Partic-
ularly interesting is the shape of McRave’s nonreaction in
early periods, a capable agent that is now a regular finalist.
We have expanded this plot of reactivity in Figure 4. One
might hypothesize that at the competitive level, all agents
react at all time periods, particularly for McRave’s agent,
which has risen in the rankings rapidly in the last few years.
An interview with McRave’s author suggests that this is in-
deed reasonable. Discussion reveals that the 2020 version
of the agent did not react to air risks in the early game - it
did not build Spore Colonies or Hydralisks to defend. How-
ever, McRave’s author adds that in very late-game, the agent
transitions to an army that is allowed to include Hydralisks,
matching the frame counts where we see the increase in re-
activity. We see direct confirmation as a critical sanity check
to confirm the feasibility of these results.

Conclusion
Ability-based evaluations are essential to moving past single
task-based evaluations and gaining a more nuanced under-
standing of AI systems. Risk management is a key ability
in everyday life tasks and warrants methods to evaluate the
abilities of AI systems. To this end, we have made three con-
tributions that both further ability-based evaluations and our
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Figure 4: McRave’s anti-air reactivity (blue) is nearly zero
for much of the mid-game until very late game while anti-
cloak reactivity (orange) is steadily increasing over time.

knowledge of agent risk management.
Our first contribution is the definitions of two risk man-

agement strategies: anticipation and reaction. While our
definitions are designed for StarCraft, they can be easily
adapted to other domains, supporting cross-domain ability-
based evaluations. Second, we performed a risk manage-
ment ability-based evaluation of the agents in a recent Star-
Craft AI Tournament using two different causal inference
techniques. We find that many agents react to observing risks
by investing in mitigations. We also found that the average
tournament-level agent anticipates risk by investing in mit-
igations before risks are even observed. Finally, we provide
the data and tools we used to extract relevant StarCraft data.
This enables others to investigate more domains, reinforc-
ing the qualities that make risk management a worthwhile
ability-based evaluation.

Our most immediate future work tasks consists of analyz-
ing additional years of StarCraft tournaments to identify lon-
gitudinal patterns of risk management. This will both expose
any limitations of our current results (e.g. a confounding
variable in 2020) and inform a more general way to assess
how agents manage risk (e.g. beyond hard counters). More
ambitiously, we’d like to develop the ability to assess agents
outside of gameplay, as the number of games needed for the
analysis we presented here is onerous, and replace it with
a pre-hoc risk management assessment using a more gen-
eral concept such as the Anticipatory Thinking Assessment
Framework (Amos-Binks, Dannenhauer, and Gilpin 2023).

CRF
Here, we move away from aggregated measures and instead
look at the estimated individual reactions for each agent,
displayed as sparklines along potential inputs. We cannot
examine individual anticipations for agents because of the
same problem mentioned in Table 3, the propensities of
treatment for these narrow timing attacks approach 0/1 and
the results become unstable.

Figure 5 reinforces the intuition of Table 3. All agents in

Figure 5: The blue line represents the predicted reactivity of
the agent at a given total market value or frame count. This
reactivity is estimated as their preferred race (random was
represented as 1/3 of all other races), and at the mean of all
other features. The shaded blue area is the 95% confidence
interval.

Column 1 show low reactivity when they have a low total
market value. This is in line with expectations - an agent
with no assets cannot react, and so all agents begin this col-
umn at the origin. Most agents are generally more reactive
as their asset count increases, though some agents decline in
reactivity as their assets grow larger - perhaps something in-
dicative of fixed late-game composition or naturally building
into anti-air units (such as Goliaths or Carriers).

In Column 2, we plot how an agent’s reactivity changes
over time. Reactivity tends to increase with the game du-
ration until a plateau is reached. Some agents contain re-
gions where their reactivity declines (holding other factors
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Air Risks (Rair) Mitigations (Mair)
Protoss Carrier, Interceptor, Scout, Arbiter, Corsair Scout, Corsair, Dragoon, Arbiter, Archon, Interceptor, Photon Cannon
Terran Science Vessel, Battlecruiser, Wraith Battlecruiser, Ghost, Marine, Wraith, Valkyrie, Missile Turret, Goliath
Zerg Mutalisk, Cocoon, Queen, Guardian Devourer, Mutalisk, Hydralisk, Spore Colony, Scourge

Cloak Risks (Rcloak) Mitigations (Mcloak)
Protoss Observer, Dark Templar Observer, Photon Cannon
Terran Wraith, Ghost Comsat Station, Missile Turret, Science Vessel, Vulture Spider Mine
Zerg Lurker Overlord, Spore Colony

Table 4: Air and cloak units pose risks and serve as mitigations but are not evenly distributed across races; we control for race
in our analyses.

at the mean), indicating potential opportunities to examine
for weaknesses.

Unit Capabilities
StarCraft units that we used to calculate air and cloak
risks/mitigations are in Table 4.
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