
Reasoning with Ontologies for Non-player Character’s Decision-Making in Games

Sylvain Lapeyrade
Université Clermont Auvergne, CNRS, LIMOS, France

sylvain.lapeyrade@uca.fr

Abstract

In most games, the decision-making of non-player charac-
ters (NPCs) is usually constructed using variants of state ma-
chines, behaviour trees, utility-based AI or planning. These
methods are relatively simple to implement, but have draw-
backs in that it can be difficult to create complex non-hard-
coded behaviour for many agents and to maintain the algo-
rithms, especially when scaling up. Game designers usually
think of their games with rules that closely resemble logic
rules. A methodology is introduced to design both general
and modular behaviour using a logic reasoner with hierar-
chical ontologies. This approach is combined with the well-
founded semantics (WFS) to solve the problem of represen-
tation and reasoning despite the lack of NPC knowledge.

Introduction
In video games, non-player characters (NPCs) often have
a very basic decision-making process which leads to be-
haviours with a low level of credibility and therefore a less
intense experience for the player. This manifests itself in
overly simple or repetitive behaviour and inconsistent ac-
tions. This problem can be observed with NPCs in com-
mercial games, virtual assistants in educational or serious
games, or with virtual agents in simulations.

The game artificial intelligence (AI) research community
has made ongoing efforts to try to identify the reasons for
this lack and to improve the credibility of NPCs (Yannakakis
and Togelius 2018; Millington 2019).

Game Development Policies
The basic decision-making regarding NPC behaviour is
partly explained by game development policies. The video
game industry faces strict resource constraints, game design-
ers want to control the game experience and the player does
not always want believable NPC behaviour.

Industry resource constraints Game development is a
complex process where deadlines are often tight (Borg et al.
2020), human resources are limited, and hardware optimi-
sation is very important. The game must be ready as soon
as possible, at the lowest possible cost, and have the lowest
material requirements possible.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These resource constraints can lead to pressure to impose
periods of intensive work for developers during the devel-
opment of a game, known as ”crunch time”. These periods
logically lead to a decrease in the quality of their work. (Bro-
gan 2021). This situation gives studios a strong incentive to
reuse as much code as possible from previous games, use
relatively simple algorithms and ultimately leaves little room
for innovation (Schmalz 2015).

Control the Game Experience Game designers may wish
to keep as much control over their game as possible, to en-
sure a smooth and enjoyable experience for the player. Lim-
iting the player’s action allows for better control of the flow
of the game and thus avoids more inconsistent behaviour
or bugs at the expense of the player’s freedom of action.
Decision-making algorithms that can generate a large num-
ber of complex behaviours are therefore more likely to also
generate behaviours not intended by the game designer.

Simplicity Can Be Desired Simple, even stereotypical,
behaviours can be implemented on purpose. Indeed, NPC
tasks can sometimes be very simple, so there is no need to
code these behaviours in a complex way, in an environment
where computing resources are very precious.

Moreover, NPCs can appear very intelligent while re-
sulting from very simple algorithms and vice versa, this is
the complexity fallacy (Millington 2019). This is even more
common when the NPC is only seen for a short time. It is
then better to choose the right behaviour rather than system-
atically the most complex.

Furthermore, it is important that the AIs are not too strong
compared to the players, especially beginners, as the goal of
the NPC is seldom to be as strong as possible but to be as
fun as possible for the player.

Overview of Decision-Making in Game AI
The most popular methods for decision-making in game
AI, according to (Yannakakis and Togelius 2018; Milling-
ton 2019; Simonov, Zagarskikh, and Fedorov 2019) include
Finite-State Machine (FSM), Behaviour Trees (BT), Util-
ity Based AI and Action Planning techniques. All of these
techniques have shortcomings, whether in terms of emergent
behaviour generation, scaling up, the need for a lot of data
or calibration, or the computational power required for be-
haviour generation.

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

303



Reasoning With Ontologies
It seems surprising that none of these decision AI ap-
proaches are based on logical reasoning. Yet symbolic logic
programming is an important part of AI and has proven its
effectiveness for several decades in various AI applications
such as natural language analysis (Pereira and Warren 1980),
compilers (Van Roy 1990), database management (Ceri,
Gottlob, and Tanca 1990), the semantic web (Berners-Lee,
Hendler, and Lassila 2001) and expert systems (Jackson
1999). According to Peter Jackson (1999), expert systems
are software that emulates the decision-making ability of a
human expert, which is very similar to what we are aiming
at. Therefore, is it an adapted AI method for NPC decision-
making?

Is Declarative Programming Too Complicated? Prolog
(Colmerauer and Roussel 1996), one of the most popular
logic programming languages,is a declarative programming
language. This means that the programmer can express the
rules of the game in a declarative way as opposed to im-
perative languages such as C, Python or Java where the
rules are written in a procedural way. Imperative languages
are undoubtedly more popular than declarative ones, espe-
cially among game developers where the most popular game
engines Unity (Unity Technologies 2022) and Unreal En-
gines (Epic Games 2022) use respectively C# and C++ for
scripting. But the same can be said for action languages such
as STRIPS or PDDL which are used for planning. With a
proper methodology and a beginner-friendly interface, such
as a game engine plugin, game designers should be able to
use logic programming without having to be a Prolog ex-
pert. However, this will not guarantee mass adoption of the
technique, as other declarative programming tools such as
EmbASP (Calimeri et al. 2018a) and Potassco (Gebser et al.
2011) offer beginner-friendly interfaces and documentation
but are not very popular.

Rules-Based Systems The AI approach to modelling NPC
behaviour that we have found most similar in principle to
the way logic programming works are rule-based systems.
They are described by Millington as ”the most complex
non-learning decision makers [covered in his book] [...] a
formidable programming task that can support incredible
sophistication of behaviour. It can support more advanced
AI than any seen in current-generation games” (Millington
2019). As exposed in the last section, Millington also points
out that the main weaknesses of rule-based systems are the
difficulty of writing good rules, known as the knowledge ac-
quisition problem. This makes them more difficult to use
compared to behaviour trees or state machines that can be
directly created from popular game engines. This is why, de-
spite some attempts, including that of (Horswill 2015) and
(Wright and Marshall 2000), they are not very common. The
issue does not seem to be the quality of the approach but the
handling of the algorithm.

Advantages of Using Logic Programming
The main advantages of using logic programming over sim-
ple rule-based systems is the utilisation of backward chain-

ing (Nilsson and Maluszynski 1995) and knowledge infer-
ences through an inference engine. The use of an appropri-
ate methodology for constructing ontologies may also ad-
dress the problem of knowledge acquisition described in the
last paragraph. Logic-based AI also allows for a very easy
and complete explanation of the results, unlike e.g. learning-
based techniques, which can be very useful in explaining the
AI’s behaviour to the player.

Knowledge Inference An inference engine like Prolog
can also deduct new facts from the facts already in the
knowledge base. It works by combining available data and
inference rules to extract more data until a specified goal is
reached. Every fact does not have to be known as inference
rules can be used to derive them. This again emphasises the
need to have the most precise rules and ontologies possible.

Planning with Backward Chaining An inference engine
like Prolog can do planning using backward chaining. Back-
ward chaining aims, via a deep first search algorithm, to find
the conditions necessary to fulfil the conditions of a given
goal (Russell and Norvig 2021). By giving the inference en-
gine the goal that the agent is trying to reach, it will be able
to return the set of sub-goals (e.g. actions) to achieve the
main goal and thus lead to an intelligent action sequence.
This is very powerful since the sequences are not hard-coded
by the game designers and potential sequences not imag-
ined by the game designer may emerge. However, these be-
haviours are framed by the rules declared by the game de-
signer and, if the rules are well defined, should not result in
inconsistent actions.

Hierarchical Ontologies
An ontology is the structured set of terms and concepts rep-
resenting the meaning of a field of information, such as the
elements of a knowledge domain. They are used in Knowl-
edge Representation and Reasoning (KRR) so that agents
can represent their knowledge about the world and make rea-
soning.

Our ontologies are organised as hierarchical packages,
like in OOP and its principle of encapsulation. Only specific
parts of the ontology are accessible from other ontologies.
This is to have generic and modular ontologies and to help
the developer to know how to use the different ontologies.

Representing False and Unknown Facts
Prolog is based on the Close-World Assumption (CWA). The
CWA is the presumption that a true statement is also known
(i.e.present in the knowledge base or derivable from the
knowledge base) to be true. Conversely, a statement that
is not known to be true is considered as false. Therefore,
any statement of which we have no knowledge, or which
cannot be proven, is evaluated as false. This is known as
the Negation As Failure (NAF) inference rule (Nilsson and
Maluszynski 1995). Furthermore, in logic programming,
one cannot assert false facts, or rules that lead to false facts.
This inability to differentiate between facts that are false be-
cause they are factually false and facts that are false because
they are unknown is restrictive for the modelling of agents’
knowledge and for the quality of their reasoning.

304



Figure 1: The architecture of the integration of logic pro-
gramming environment in a game engine.

Well-Founded Semantics In order to deal with negation,
two main semantics are used, the Well-Founded Semantics
(WFS) (Van Gelder, Ross, and Schlipf 1991) and the Stable
Model Semantics (Gelfond and Lifschitz 1988) at the basis
of Answer Set Programming (ASP) (Lifschitz 2019).

The Stable Model Semantics makes it possible to model
simply the logical negation (i.e. to indicate explicitly that
a statement is false) but generate multiple models for each
query. A similar piece of work to what we are trying to do
has been undertaken in (Calimeri et al. 2018b), where an
ASP framework has been integrated in Unity to use rule-
based systems and planning.

However, the WFS was preferred because it only gener-
ates one model and introduces a third truth value for unde-
fined values (Nilsson and Maluszynski 1995). One contribu-
tion of this work is to use this third truth value to represent
the absence of knowledge.

A Third Truth Value The WFS allows to manage, with-
out leading to inconsistency, the cases where facts are known
to be true and false at the same time. This type of case is
particularly possible when the NPC receives conflicting in-
formation from several different sources. The WFS provides
the possibility for Well-Founded Partial Models (Van Gelder,
Ross, and Schlipf 1991) to circumvent the presence of con-
tradictions and proceeds to derive as many two-valued facts
as possible, although some of the consequences may remain
undefined. This indefiniteness can be used to represent the
unknown facts according to some deduction rules. The NPC
can also choose to give more credence to one source than the
other and choose its truth value, or choose to remain uncer-
tain and take the undefined truth value for this fact.

Global Architecture
Figure 1 shows how a logic programming development en-
vironment is integrated with a game engine. In brackets are
the solutions we used in a prototype. For the game engine,

we used the Unity game engine arguably the most popu-
lar game engine. As, for the Prolog environment, we chose
SWI-Prolog (Wielemaker et al. 2010) which is one of the
most popular Prolog environments and one of those that im-
plement the most features. One of the features we were par-
ticularly interested in was the ability to use Prolog from an-
other programming language. SWI provides interfaces for
this, especially for C#1 used by Unity and C++2 used by the
Unreal Engine.

To use the Prolog interface from Unity, we just need to
import the interface DLL file into Unity Plugins and call the
interface functions in a C# script. We personally decided to
separate the code that interacts directly with Prolog into a
separate file from the rest of the game code. This is to make
the code more modular, and to be able to integrate the inter-
face into an existing game. Putting the script code interacting
with Prolog in a library would allow a game designer to use
the interface knowing only a minimum of Prolog.

Future Work
We are currently developing a proof of concept of our ap-
proach. This game prototype is developed on Unity, using
SWI-Prolog and allows us to test the basics of our method
in a simple game unit.

We would like to develop an interface that can be easily
used by game designers, like a plugin to be integrated di-
rectly into the game engines. They will then be able to eas-
ily declare their ontologies without the need for declarative
logic programming knowledge.

We are currently in a research collaboration with a game
studio for the creation of a commercial video game. The stu-
dio’s developers have no experience in declarative logic pro-
gramming, so we will be able to see how well they master
the approach and correct any difficulties they encounter.

It will also be a great opportunity to test the approach
against the demands of a commercial game. Namely, the
presence of several NPCs that may have, depending on the
type of game, relatively long action plans. All the more so as
these action plans will have to be generated within a time-
frame that respects the real time constraints of most games.
Faced with the constraints of material resources, the calcu-
lations for the AI will also have to consume as few resources
as possible. It will allow to push the limits of our prototype
and truly exploit the potential of our approach.

Finally, a real commercial game will allow us to have
feedback from real players on the quality of the AI’s de-
cisions and to have potential new leads for improvement.

Acknowledgments
This research was funded by the French National Research
Agency (ANR) and the European Regional Economic De-
velopment Fund (FEDER). Jan Wielemaker, the lead main-
tainer of SWI-Prolog, is acknowledged for his helped with
the use of the WFS.

1C# Interface: https://github.com/SWI-Prolog/contrib-swiplcs
2C++ Interface: https://github.com/SWI-Prolog/packages-cpp

305



References
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The se-
mantic web. Scientific american, 284(5): 34–43. Publisher:
JSTOR.
Borg, M.; Garousi, V.; Mahmoud, A.; Olsson, T.; and Stal-
berg, O. 2020. Video game development in a rush: A survey
of the global game jam participants. IEEE trans. games,
12(3): 246–259.
Brogan, R. 2021. The Digital Sweatshop: Why Heightened
Labor Protections Must be Implemented Before Crunch
Causes the Backbone of the Video Game Industry to Col-
lapse. Social Science Research Network.
Calimeri, F.; Germano, S.; Ianni, G.; Pacenza, F.; Perri, S.;
and Zangari, J. 2018a. Integrating Rule-Based AI Tools into
Mainstream Game Development. In Benzmüller, C.; Ricca,
F.; Parent, X.; and Roman, D., eds., Rules and Reason-
ing - Second International Joint Conference, RuleML+RR
2018, Luxembourg, September 18-21, 2018, Proceedings,
volume 11092 of Lecture Notes in Computer Science, 310–
317. Springer.
Calimeri, F.; Germano, S.; Ianni, G.; Pacenza, F.; Perri, S.;
and Zangari, J. 2018b. Integrating Rule-Based AI Tools into
Mainstream Game Development. In RuleML+RR.
Ceri, S.; Gottlob, G.; and Tanca, L. 1990. Logic program-
ming and databases. Surveys in computer science. Berlin
Heidelberg: Springer. ISBN 978-3-642-83952-8.
Colmerauer, A.; and Roussel, P. 1996. The Birth of Prolog,
331–367. New York, NY, USA: Association for Computing
Machinery. ISBN 0201895021.
Epic Games. 2022. Unreal Engine: The most powerful real-
time 3D creation tool. Accessed may 2022.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Pots-
dam Answer Set Solving Collection. AI Commun., 24(2):
107–124.
Gelfond, M.; and Lifschitz, V. 1988. The Stable Model Se-
mantics for Logic Programming. In Kowalski, R. A.; and
Bowen, K. A., eds., Logic Programming, Proceedings of the
Fifth International Conference and Symposium, 1070–1080.
MIT Press.
Horswill, I. 2015. MKULTRA (Demo). Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 11(1): 223–225.
Jackson, P. 1999. Introduction to expert systems. Interna-
tional computer science series. Harlow, England ; Reading,
Mass: Addison-Wesley, 3rd ed edition. ISBN 978-0-201-
87686-4.
Lifschitz, V. 2019. Answer set programming. Springer
Berlin.
Millington, I. 2019. AI for games. Boca Raton: Taylor &
Francis, a CRC title, third edition edition. ISBN 978-1-138-
48397-2.
Nilsson, U.; and Maluszynski, J. 1995. Logic, Programming,
and PROLOG. New York, NY, USA: John Wiley & Sons,
Inc., 2nd edition. ISBN 0-471-95996-0.

Pereira, F. C. N.; and Warren, D. H. D. 1980. Definite clause
grammars for language analysis—A survey of the formalism
and a comparison with augmented transition networks. Ar-
tificial Intelligence, 13(3): 231–278.
Russell, S. J.; and Norvig, P. 2021. Artificial intelligence:
a modern approach. Pearson series in artificial intelligence.
Hoboken: Pearson, fourth edition edition. ISBN 978-0-13-
461099-3.
Schmalz, M. 2015. Limitation to Innovation in the North
American Console Video Game Industry 2001-2013: A Crit-
ical Analysis. In Electronic Thesis and Dissertation Repos-
itory.
Simonov, A.; Zagarskikh, A. S.; and Fedorov, V. 2019. Ap-
plying Behavior characteristics to decision-making process
to create believable game AI. Procedia Computer Science.
Unity Technologies. 2022. Unity Real-Time Development
Platform — 3D, 2D, VR & AR Engine. Accessed may 2022.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Journal
of the ACM, 38(3): 619–649.
Van Roy, P. L. 1990. Can Logic Programming Execute
as Fast as Imperative Programming? PhD Thesis, EECS
Department, University of California, Berkeley. Issue:
UCB/CSD-90-600.
Wielemaker, J.; Schrijvers, T.; Triska, M.; and Lager, T.
2010. SWI-Prolog. CoRR, abs/1011.5332.
Wright, I.; and Marshall, J. 2000. RC++ A Rule Based Lan-
guage for Game AI. In International Journal of Intelligent
Games & Simulation - IJIGS, 42–.
Yannakakis, G. N.; and Togelius, J. 2018. Artificial Intelli-
gence and Games. Cham: Springer International Publishing
: Imprint: Springer, 1st ed. 2018 edition. ISBN 978-3-319-
63519-4.

306


