
The Nonsense Laboratory

Allison Parrish,1 Jenny Goldstick,2 Tim Szetela3

1 New York University
2 Independent Researcher

3 Princeton University
aparrish@nyu.edu, mail@jennygoldstick.com, tim@timszetela.com

Abstract

We present the Nonsense Laboratory, a series of playful web-
based tools for manipulating the way words sound and the
way words are spelled. The Laboratory’s various playful in-
terfaces give users an opportunity to adjust, poke at, mangle,
curate, rearrange and elaborate the sounds of words in writ-
ten text. The project makes use of Pincelate, a code library
and machine learning model for phoneme-to-grapheme and
grapheme-to-phoneme tasks in English, trained on the CMU
Pronouncing Dictionary. The goal of the project is twofold:
first, to make possible new ways of manipulating spelling
(akin to playing a musical instrument or modeling with clay);
and second, to demystify machine learning by providing an
intuitive, friendly interface to a machine learning model. We
briefly describe the design and implementation of the Non-
sense Laboratory’s five interfaces, and situate the project in
our own research concerning design, literary studies, linguis-
tics, and machine learning.

Introduction
A vital component of language is the way words sound.
Works that exercise this desire for linguistic play include
nonsense poems like Lewis Carroll’s Jabberwocky, sound-
focused authors like Dr. Seuss, and imaginary languages
in the worlds of fantasy, science fiction and games—all of
which enjoy enduring popularity in contemporary pop cul-
ture. As author Ursula K. Le Guin states, “The sound of the
language is where it all begins and what it all comes back to.
The basic elements of language are physical: the noise words
make and the rhythm of their relationships. [...] Most chil-
dren enjoy the sound of language for its own sake. They wal-
low in repetitions and luscious word-sounds and the crunch
and slither of onomatopoeia; they fall in love with musical or
impressive words and use them in all the wrong places. . . .”
(Le Guin 2015).

The English language—with its rich vowel system and
crunchy phonotactics—affords especially expressive pho-
netic play. Perhaps counterintuitively, these affordances are
made more rich by the inconsistent spelling rules of English,
in which words are never spelled quite like how they sound.
To be sure, these rules are a source of constant frustration for
English learners (children and adults alike). But as English

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example poem from Compasses

readers and writers, the strategies we develop to bridge the
gap between sound and spelling are also a source of endless
creative possibility (Davies 1987). When we let ourselves
play loose with grade school rules, we can use the way words
are spelled to be expressive (“yaaaay!”), to inhabit personas
(“you’re a wizard, ‘arry!”), and to invent imaginary worlds
(“Bilbo Baggins” goes to “Rivendell”...).

The Nonsense Laboratory1 is a series of playful web-
based tools for manipulating the way words sound and the
way words are spelled. Powered by Pincelate—a code li-
brary and machine learning model to spell English words
from the way those words sound, and vice versa—the Labo-
ratory’s various playful interfaces give users an opportunity
to adjust, poke at, mangle, curate, compress and elaborate
the sounds of words in written text.

The Nonsense Laboratory is a continuation of our re-
search into creative manipulation of English spelling with
machine learning. This research culminated in the publica-
tion of several literary works, including Compasses (Parrish
2019) and 10,000 Apotropaic Variations (Parrish 2020). (See
figure 1 for an example of a poem from Compasses.) We
published descriptions and source code for the techniques
used to produce these works, with the goal of making the
techniques more accessible to poets and creative writers with
a non-technical background. However, we found that the
technical nature of the research—requiring an understand-
ing of computer programming, machine learning, and pho-
netics—presented too high a barrier for this audience. The

1Available online at https://experiments.withgoogle.com/
nonsense-laboratory

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

292

Nonsense Laboratory is an attempt to overcome these bar-
riers by offering a web-based interface that is friendly and
playful, but also makes available as much functionality from
the original code as possible.

Implementation
Model
The Nonsense Laboratory is implemented with a machine
learning model called Pincelate (Parrish 2021). Pincelate
consists of a pair of recurrent neural network models:
one that performs English language grapheme-to-phoneme
conversion, and another that performs English language
phoneme-to-grapheme conversion. Both models are trained
on the CMU Pronouncing Dictionary (Carnegie Mellon
Speech Group 2014). The primary goal of this model is to
facilitate artistic research in the poetics of nonsense words
and neologisms. Like the phonetic models in our previous
research (Parrish 2017), Pincelate represents phonemes not
as atomic values but as a set of distinctive phonetic fea-
tures (Halle and Chomsky 1968), each of which is assigned a
probability at every timestep. This architecture is intended to
make it possible for the model to produce plausible spellings
even when presented with blended or impossible phonemes,
which is important for the stated use case of the model. We
most directly exploit this architecture in the “Sequencer”
component of the Nonsense Laboratory, but its benefits are
visible in the other components as well.

Pincelate was originally developed in Python using
the TensorFlow (TensorFlow Developers 2022) and Keras
(Chollet et al. 2015) frameworks. For the Nonsense Labora-
tory, we ported the model to JavaScript using TensorFlow.js.
All model inference is performed on the client side. The site
itself is developed in JavaScript using the Svelte web frame-
work (Svelte Developers 2022).

Components
The Nonsense Laboratory is a web application that includes
five components, described below.

Mixer The Mixer (see figure 2) takes advantage of the
underlying vector representation of sound and spelling in
Pincelate, allowing users to apply the equivalent of a “blend”
or “crossfade” operation between words (based on their
sounds and spelling). Supplied with two (or more) words,
the interface invents a new word combining the sounds and
letters of the source words. Internally, the code uses the hid-
den state of Pincelate’s phoneme-to-grapheme model to rep-
resent the sound and spelling of a word, and then “injects”
the mean of the vector values into the model before decoding
orthography from the RNN. (This is the same technique we
used in Compasses.) Some example blends that the interface
produces:

• january + december = dismuery
• allison + parrish = palrison
• kitten + puppy = cuppey
• artificial + intelligence = intelificel

Figure 2: Mixer interface (mobile view)

Mouthfeel Tuner The Mouthfeel Tuner (figure 3) rewrites
a text so that the words feel different in your mouth. The in-
terface presents a text area for user input, alongside a num-
ber of sliders with impressionistic or onomatopoeic labels.
Adjusting these sliders transforms and respells the text so
that the phonetics of the words in the input are drawn closer
to those indicated in the label. For example, the phrase How
doth the little crocodile improve his shining tail with the
“mpbfmpb” slider turned up becomes Houf douft the lipple
propopyl improv phiph fhinemif pale. The phrase interactive
digital entertainment with the “ahhh” slider turned up be-
comes antaractive dagaital andortanement. Multiple sliders
can be engaged if desired.

The underlying code performs the equivalent of “logit
warping” in the output layer of the grapheme-to-phoneme
leg of the Pincelate model, emphasizing or attenuating the
probabilities associated with each phonetic feature before
decoding. For example, In the “mpbfmpb” example, the
phonetic features associated with the lips (i.e., the bilabial
and labiovelar) are emphasized. The “headcold” slider atten-
uates nasal phoneme features, while the “eee” feature boosts
phonetic features associated with high front vowels (as in
words like heat and keep).

Respeller The Respeller (figure 4) is the orthographic
counterpart of the Mouthfeel Tuner: it rewrites a text, try-
ing to retain its sound while omitting certain letters. The in-
terface presents a text area for user input alongside a list of
letters in the English alphabet. Tapping or clicking on those
letters toggles the active state of the letter. When the “Apply”

293

Figure 3: Mouthfeel Tuner interface (desktop view)

Figure 4: Respeller interface (desktop view)

button is activated, the text in the text area is rewritten, such
that any of the letters that are set as inactive are not used, but
the sound of the words is as close as possible to the original
words. For example, the phrase How doth the little crocodile
improve his shining tail, with all vowels (A, E, I, O, U) set to
inactive, becomes Hhw d’th th lyttl cr’ch-dy-dly ymprv hyss
shyn-kyng t’l. The phrase interactive digital entertainment
with only “T” set to inactive becomes inceraclive digidal
enerdanemen’.

The Respeller works in a manner very similar to the
Mouthfeel Tuner. In this case, the output layer of the
phoneme-to-grapheme model is modified at each timestep,
such that the probability of any deactivated letter in the in-
terface is set to zero. The model must therefore proceed as

best as it can to spell the word’s phonology as though the
graphemes in question did not exist.

Sequencer The Sequencer (figure 5) spells a word from
virtual mouth movements that users put in sequence, simi-
lar to the interface of a drum machine. The interface con-
sists of a grid, where the columns are timesteps (i.e., indi-
vidual phonemes), and the rows are phonetic features. An
active grid square indicates that the given phonetic feature
should be present at the given timestep. Tapping or clicking
the “Play” button spells the word created by this sequence
of phonetic features. Although the underlying model tracks
several dozen phonetic features, we judged it to be cum-
bersome and intimidating to show all supported features to
users when they first arrive at the interface. To mitigate this
problem, the interface includes several “accordion” widgets
so that less intuitive and less common phonetic features are
hidden by default, and can later be revealed at the user’s dis-
cretion.

Pincelate’s phoneme-to-grapheme model is trained on en-
tries from the CMU Pronouncing Dictionary, where each
phoneme is represented with the values of a lookup table
that associates each phoneme with its set of phonetic fea-
tures. This amounts to a 2D array, where each timestep is
a column and each row is set to 1 if a phonetic feature is
present, and 0 otherwise. The code for the Sequencer inter-
face constructs a similar array to use as input for Pincelate’s
phoneme-to-grapheme model, using the data from the Se-
quencer’s grid. The model then decodes a spelling from that
array.

Word Explorer Finally, the Explorer (figure 6) presents
a Google Maps-like interface that encourages users pan

294

Figure 5: Sequencer interface (mobile view)

around an endless field of nonsense words, in which neigh-
boring words have similar phonetics. Some of the words on
the map are “real” words, and users can search for those
words in order to discover nonsense words that sound alike.
The “Jump” button moves the user to a random location in
this phonetic space.

To generate the Explorer word grid, we calculated the
RNN’s hidden state vector in Pincelate’s phoneme-to-
grapheme model for several hundred words, then used
a combination of umap-learn (McInnes et al. 2018) and
RasterFairy (Klingemann 2022) to map the vectors of those
words to a 2D grid where words with similar vectors will be
located near each other. We then used the same interpolation

code as used in the Mixer interface to generate new nonsense
words between those existing words on the grid, giving the
appearance of a continuous space of nonsense words. Be-
cause this process is computationally intensive, the grid data
for the Explorer is pre-calculated (rather than being gener-
ated on the client, as is the case for the other interfaces).

Visual Design and User Experience
The Nonsense Laboratory was developed for Google Arts
and Culture, whose stated audience is “anyone, anywhere.”
We entered the design process with a firm conviction that the
kind of language play that Pincelate facilitates is inherently
fun and intuitive, even to an audience with this scope. Never-
theless, we judged that this audience might have some trep-
idation when approaching both the subject of the tool (non-
sense words) and its implementation (machine learning),
both of which are technical and esoteric in nature. Our chal-
lenge, then, was to design an interface intuitive and inviting
enough to encourage quick experimentation, while also ex-
posing as much of the expressive potential of the model as
possible. Toward this end, all of the interfaces in the Lab-
oratory are either pre-populated with example input, or (as
with the Sequencer) have preset examples that the user can
select. Each interface shares a common design language that
helps to communicate to users how and where they can inter-
act (e.g., inputs, outputs, potential user actions, and hotspots
that activate help messages when tapped or hovered over).
Each interface also has a “Help” modal that describes in
plain language the function of the interface in more detail,
and offers some examples of things to try. (See figure 7 for
an example.)

The structure and organization of the Laboratory changed
dramatically during development. The original proposal was
a single-screen application that would show all of the inter-
faces simultaneously (see 8). We rejected this idea early in
the design process, for two reasons. First, we judged that
the design would not be viable on mobile devices, which
have a smaller amount of usable screen area. Second, we de-
termined after a round of prototyping that the single-screen
interface would require dramatically minimizing the amount
of visible user interface and explanatory text, which was ulti-
mately incompatible with our goal of making the Laboratory
feel intuitive and inviting. As a consequence, we decided to
implement each interface on its own page, with a common
menu interface widget to make it possible to switch between
interfaces. Each interface also was assigned an individual
color treatment to emphasize this distinction.

The original design also included an interface called the
“Phonetic Editor” (also visible in figure 8), which had the
combined functionalities of what became the Respeller and
the Mouthfeel Tuner. Both the Respeller and the Mouthfeel
Tuner make use of the same underlying function call in the
Pincelate model software, a fact which conditioned the orig-
inal design. However, during testing with users, we discov-
ered that the presence of both orthographic and phonetic was
overwhelming to users, making the interface less approach-
able. Our solution was to split the interface into two: one
interface (the Respeller) for modified spelling, and another
interface (the Mouthfeel Tuner) for modified phonetics. In

295

Figure 6: Explorer interface (desktop view)

Figure 7: Screenshot of a “Help” modal dialog

our judgment, this solution is a good compromise: no func-
tionality is lost, and the split allows for more user interface
elements and explanatory text specific to the functionality in
question.

Our guiding principle for the visual design was “playful,
but not childish.” The primary design cues we drew from
were mid-20th century analogue control panels and synthe-
sizers. We tempered the hi-tech feeling of these influences
with bright colors, bold lines, generous spacing and sizing
of the user interface elements, and subtle motion design that
responds to user interaction. The end result, in our estima-
tion, is a visual design that resembles neither a child’s toy
nor a highly technical tool, yet still invites play while not
foreclosing on more practical uses. In designing for play-
ful tools, we also looked to game design as inspiration. De-
signer Will Wright describes the potential of games and toys
“like the way a telescope or microscope recalibrates our eye-
sight”—or more simply “an amplifier for the player’s imag-
ination” (Wright 2007). In Nonsense Laboratory, we aim to
encourage a similar sort of creativity in exploring language
and the way words sound.

Conclusion
We present the Nonsense Laboratory as an example of cre-
ating a playful tool for working with a specialized machine
learning model, intended for a general audience. We hope
that it can serve as a model for other tools that are not nec-
essarily aimed at straightforward applications of AI in the
arts and media, but at making it possible for a general audi-

296

Figure 8: Initial visual design proposal for the Nonsense Laboratory

ence to explore the affordances and poetic possibilities that
a particular machine learning model offers.

Acknowledgements
We thank Google Arts and Culture and Artists + Ma-
chine Intelligence for providing funding and logistical sup-
port for this work. Our special gratitude is given to Holly
Grimm, who performed the initial work to port Pincelate to
JavaScript, and Hannah Andrews, our tireless producer at
Google Arts and Culture.

References
Carnegie Mellon Speech Group. 2014. The CMU Pronounc-
ing Dictionary 0.7b. http://www.speech.cs.cmu.edu/cgi-bin/
cmudict. Accessed: 2022-08-01.
Chollet, F.; et al. 2015. Keras. https://keras.io. Accessed:
2022-08-01.
Davies, E. E. 1987. Eyeplay: On Some Uses of Nonstandard
Spelling. Language & Communication, 7(1): 47–58.
Halle, M.; and Chomsky, N. 1968. The Sound Pattern of
English. Harper & Row.
Klingemann, M. 2022. RasterFairy-Py3. https://github.com/
Quasimondo/RasterFairy. Accessed: 2022-06-03.
Le Guin, U. K. 2015. Steering the Craft: A Twenty-first-
century Guide to Sailing the Sea of Story. Houghton Mifflin
Harcourt. ISBN 978-0-544-61161-0.
McInnes, L.; Healy, J.; Saul, N.; and Großberger, L. 2018.
UMAP: Uniform Manifold Approximation and Projection.
Journal of Open Source Software, 3(29): 861.
Parrish, A. 2017. Poetic Sound Similarity Vectors Using
Phonetic Features. In AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 8.

Parrish, A. 2019. Compasses. Andreas Bülhoff.
Parrish, A. 2020. 10,000 Apotropaic Variations. Bad Quarto.
Parrish, A. 2021. Pincelate. https://github.com/aparrish/
pincelate/. Accessed: 2022-06-02.
Svelte Developers. 2022. Svelte. https://github.com/sveltejs/
svelte. Accessed: 2022-06-03.
TensorFlow Developers. 2022. TensorFlow. https://www.
tensorflow.org/. Accessed: 2022-06-03.
Wright, W. 2007. Spore, Birth of a Game. https://
www.ted.com/talks/will wright spore birth of a game. Ac-
cessed: 2022-08-08.

297

