
A Hybrid Approach to Co-creative Story Authoring
Using Grammars and Language Models

Adam Riddle
Independent Scholar

realtimeriddle@gmail.com

Abstract
Large language models are powerful tools for story genera-
tion, but are difficult to control. Story grammars are a more
controllable tool for story generation, but require a large
amount of upfront work and tend to create predictable re-
sults. We present a story generation tool that combines the
positives of both methods using language models to aid in
writing a grammar, and using the output of that grammar to
generate controlled text from language models. Our approach
combines the structure of a grammar with the unexpectedness
of a large language model.

Introduction
Story grammars and large language models are two popu-
lar tools used in the co-creative computational generation
of stories. Though large language models can quickly cre-
ate grammatically appropriate text, their output is difficult
to control to the degree that authors can not easily use them
to express their preexisting ideas for the progression of a
story. Several tools for writing with large language models
currently exist, usually in the form of feeding some text into
a program and then having the model generate a chunk of
text which the author can ether approve of, modify, or dis-
card completely and regenerate a new block of text in hopes
of producing a more preferable result. With these tools the
author has little, if any, control over generation.

Story grammars, on the other hand, can easily be engi-
neered to conform to the author’s needs and expectations,
with the trade-offs of the grammar’s output being predictable
and an exponentially increasing amount of work that must
go into creating a complex grammar. Tools for creating story
grammars are also abundant, usually differing in the author-
ing style of the grammars, and with what systems the fin-
ished grammars are meant to interact. These tools focus on
generating random output from the grammars, with all of the
uniqueness, direction, and content coming from the work of
the author. Combining a grammar creation tool with an ex-
isting corpus of data is an option, but can be difficult to in-
corporate into a project as the author must ensure that all of
the data is appropriate and corresponds to their vision.

Our co-creative story authoring tool utilizes large lan-
guage models and story grammars in a way that emphasises

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

both methods’ strengths while softening their weaknesses
and guiding authors through the process of using both sets
of tools. Using language models to not only both generate
and classify text to aid the author in writing a grammar, but
also relying on language models to progressively generate
the final text, greatly decreases the workload of creating a
complex grammar. Simultaneously, using a grammar to di-
rect the output of language models gives the author the op-
portunity to funnel the generation process to one that fits
with their creative vision.1

Design
Using our tool, the author starts by creating a grammar with
the replacement grammar library Tracery (Compton, Kybar-
tas, and Mateas 2015). To aid in this process, the author has
access to both a zero-shot classifier model to identify appro-
priate material and a causal language model to both create
and inspire new text for creating a grammar. Upon comple-
tion of the grammar, the author can feed it’s output of partial
text into multiple language models, edit the resulting string,
append more partial text, and feed all of it back into the gen-
erating language models. That cycle continues until the story
is complete.

Our software provides two tools to aids in grammar cre-
ation. The first tool is a zero-shot classifier that can aid the
author in sorting out lists of possible words and sentences.
The classifier creates new sub-lists and gives the author the
ability to define their own tags and if multiple labels may
apply. Authors can also choose to specify a hypothesis tem-
plate, which lets the classifier model look at their labels as
a hypothesis, instead of just a word. Hypotheses templates
are always sentences that include {} to denote a blank space
where the possible label is supposed to fit in2.

The second tool gives the author the ability to generate
output sentences from a fine-tuned causal language model.
This tool lets the author input preceding text and then move
the outputs they deem acceptable to the proper grammar.
The author can now run the grammar until they receive an
output they approve.

1https://github.com/realtimeriddle/co-creative-authoring-tool
Video Demo: https://youtu.be/pUbJb09bzCQ

2An example hypothesis template: ”This label is an example of
{}.”

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

282

The output text is generated to a text editing box and con-
sists of words or phrases made mostly of relevant nouns,
verbs, adjectives, pronouns, and punctuation separated by a
special separation token <|sepofcond|>. The phrases in
between the separation tokens remain as they are throughout
the generation process, unless manually edited by the author.
The author can send the unprocessed text through two fine-
tuned language models in which the first adds words that are
not from parts of speech already in the string of text, and the
second which adds stop-words and removes the separator to-
kens creating finished text. The author can choose what text
to process by highlighting the text they would like processed
and pressing the Process button. The processed text will be
added to the text box. The author can now edit the processed
text and send the next batch of unprocessed text appended
to the newly edited text repeating the cycle until the story is
completely written.

Implementation
Grammar Creation
The user interface is implemented with PySimpleGUI. The
grammar is implemented with Allison Parrish’s python port
of Tracery, pytracery3.

Zero-Shot Classifier
The model used for zero-shot classification is Bart-
large (Lewis et al. 2019) fine-tuned on MultiNLI Data-set
(Williams, Nangia, and Bowman 2018). Zero-shot classifi-
cation is handled by the transformers library produced by
artificial intelligence company, Hugging Face.4

Conditional Text Generation
The model used for conditional text generation is GPT2-
XL (Radford et al. 2019). We fine-tuned the base model for 2
epochs with 10000 samples from the Reddit Writing Prompt
Dataset (Fan, Lewis, and Dauphin 2018). Each sample was
tokenized into sentences with Spacy (Honnibal and Montani
2017) and each word was tagged by the flair library (Ak-
bik, Blythe, and Vollgraf 2018). Any words not tagged as
adjectives, nouns, pronouns, proper nouns, verbs, punctua-
tion and words that were found in NLTK’s (Bird, Klein, and
Loper 2009) stop-words corpus were removed and replaced
with a special token, <|sepofcond|>, separating groups
of remaining words.

Progressive Text Generation
The two models used for progressive text generation (Tan
et al. 2020) were two large Bart models both fine-tuned for
2 epochs on 10000 samples from the Reddit writing prompt
corpus prepared similarly to the last section. The only dif-
ference was only stop-words were excluded from both the
output of the first model and input of the second Bart model.
The output of the second Bart model contained unaltered
text from the corpus. During generation the input string, for-
matted again as described in the previous section was fed

3https://github.com/aparrish/pytracery
4https://github.com/huggingface/transformers

into the first Bart model, whose output was decoded and fed
into the second Bart model. The resulting output is fully re-
alized text.

Related Work
Researchers from Columbia University conducted an ex-
ploratory user study examining how four published novelists
interacted with generative language models when such mod-
els were introduced into their workflow. (Calderwood et al.
2020) The researchers found that ease of use, a rapid iter-
ation cycle, and little overhead in interacting with language
models are important in co-authoring tools. Researchers also
found that the unpredictability of language models can be a
strength as the model will challenge the preconceived no-
tions of what the author was planning, but there should be at
least some constraints as to ensure the outputs of language
models tend more toward the author’s intended use. Our co-
authoring tool follows these guidelines by controlling the
output of language models with a grammar with the ability
to classify the author’s intent, and easy editing of both the
input and output texts.

Two other co-authoring tools that attempt to aid authors
in writing using large language models are a tool from the
researchers a the University of Hamburg that focuses on
an agent acting as a teammate with a group of human au-
thors (Wiethof, Tavanapour, and Bittner 2021), and Word-
craft, a co-authoring tool that uses a single language model
to aid the author in multiple tasks including continuation,
in-filling, elaboration, and rewriting of text. Both tools suf-
fered from the common downsides of large language models
previously discussed, but using human-like agents and dia-
logue models fine-tuned for multiple tasks could be useful
in future iterations of our tool, aiding the in the co-authoring
process by not only controlling the language model, but also
communicating with it.

While other co-creative authoring tools do exist, none we
found attempt to combine large language models and gram-
mars as we have. Two surveys done of recent work in au-
thoring tools, one focusing on the cognitive needs of writ-
ers (Gero et al. 2022), and another focusing more on gaps in
the creative process not currently seeing much support from
current co-creative authoring tools (Kreminski and Martens
2022). Both surveys cover problems with many existing so-
lutions such as, highly constrained methods to aid in writing,
or simply getting writer unstuck, as well as problems with
little to no current solutions like, aiding in expressing intent,
or turning an outline into prose. Our tool could be a good
first step in improving solutions to already solved problems
and creating solutions for unsolved ones, such as expressing
intent and an outline in a grammar and using that grammar
to direct a language model. Using this approach, our tool has
the benefit of better solved problems to tackle the less firmly
solved.

Acknowledgements
Adam Riddle thanks Max Kreminski for their invaluable as-
sistance and guidance in the creation of this work.

283

References
Akbik, A.; Blythe, D.; and Vollgraf, R. 2018. Contextual
String Embeddings for Sequence Labeling. In COLING
2018, 27th International Conference on Computational Lin-
guistics, 1638–1649.
Bird, S.; Klein, E.; and Loper, E. 2009. Natural language
processing with Python: analyzing text with the natural lan-
guage toolkit. ” O’Reilly Media, Inc.”.
Calderwood, A.; Qiu, V.; Gero, K. I.; and Chilton, L. B.
2020. How Novelists Use Generative Language Models: An
Exploratory User Study. In HAI-GEN + user2agent @ IUI.
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Trac-
ery: an author-focused generative text tool. In Interna-
tional Conference on Interactive Digital Storytelling, 154–
161. Springer.
Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hierarchical
Neural Story Generation. arXiv:1805.04833.
Gero, K.; Calderwood, A.; Li, C.; and Chilton, L. 2022. A
Design Space for Writing Support Tools Using a Cogni-
tive Process Model of Writing. In Proceedings of the First
Workshop on Intelligent and Interactive Writing Assistants
(In2Writing 2022), 11–24.
Honnibal, M.; and Montani, I. 2017. Natural language un-
derstanding with Bloom embeddings, convolutional neural
networks and incremental parsing. https://spacy.io. Ac-
cessed: 2022-06-02.
Kreminski, M.; and Martens, C. 2022. Unmet Creativity
Support Needs in Computationally Supported Creative Writ-
ing. In Proceedings of the First Workshop on Intelligent and
Interactive Writing Assistants (In2Writing 2022), 74–82.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2019. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. arXiv:1910.13461.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAI blog, 1(8): 9.
Tan, B.; Yang, Z.; AI-Shedivat, M.; Xing, E. P.; and Hu, Z.
2020. Progressive Generation of Long Text with Pretrained
Language Models. arXiv:2006.15720.
Wiethof, C.; Tavanapour, N.; and Bittner, E. 2021. Imple-
menting an intelligent collaborative agent as teammate in
collaborative writing: toward a synergy of humans and AI.
In Proceedings of the 54th Hawaii International Conference
on System Sciences, 400.
Williams, A.; Nangia, N.; and Bowman, S. 2018. A Broad-
Coverage Challenge Corpus for Sentence Understanding
through Inference. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), 1112–1122. Association for Compu-
tational Linguistics.

284

