
Never a Dull Moment: Believable Dynamic Character Beat Generation between
Game World Events

Kyle Mitchell, Camden Pettijohn, Joshua McCoy
University of California, Davis

1 Shields Ave
Davis, CA 95616

kdmitch@ucdavis.edu, cpettijohn@ucdavis.edu, jamccoy@ucdavis.edu

Abstract

This work presents a heterogeneous system using ABL, CiF,
and a virtual game world to demonstrate how moments be-
tween game world events can be made more believable. We
describe the individual components used in our system and
detail how each component contributes to the alignment of
physical and mental contexts of NPC agents, and thus pre-
serves believability across game events. Finally, we provide
a brief account of the demo experience showcasing our sys-
tem’s capabilities.

Introduction
Despite the admirable work from many researchers in for-
malizing and realizing believable agent-driven characters
in virtual worlds (Loyall 1997), (Mateas 1999), (Riedl and
Stern 2006), (Bogdanovych, Trescak, and Simoff 2015),
crafting such agents remains a difficult task. This difficulty
stems from the fact that believability is derived from many
layers of context, physical and mental, that should be mean-
ingfully integrated into the behavior or reasoning of such
agents. Moreover, each layer should be aligned with respect
to each other, and such alignment should be preserved not
only during moments of high player attention, but also dur-
ing the moments between events. We can generate dynamic
character beats during these interstitial moments to achieve
this preservation.

This work presents a heterogeneous system using A Be-
havior Language (ABL) (Mateas and Stern 2002), a C# ver-
sion of Comme il Faut (CiF) (McCoy et al. 2014), and a
game world constructed with the Unity engine to demon-
strate how such beats can be generated. We describe the
individual components used in our system and detail how
each component contributes to the alignment of physical and
mental contexts of NPC agents, and thus preserves believ-
ability across game events. Finally, we provide a brief ac-
count of the short playable experience showcasing our sys-
tem’s capabilities.

Technical Description
The architecture of our system, shown in Fig. 1, consists of
two programs that we will describe here: a Java proxy server

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that runs the ABL agent; and the game application itself,
which manages CiF and all other game logic.

The ABL agent and Java proxy server. ABL is a lan-
guage best suited for crafting virtual agents with strong real-
time reaction capability–a desirable quality for this work. In
addition to reactivity, however, we want our agents to plan
courses of action and change plans over arbitrary periods of
time–a task that is doable, but daunting, if using ABL alone.
We argue that CiF offers some mitigation to this problem,
which we discuss later in this work.

The GameAgent, our ABL agent, manages all NPCs in the
game world. We pursue a “hivemind” approach (Mateas and
Stern 2004) whereby the GameAgent runs a daemon (Weber
et al. 2010) that waits for new NPCs that the player encoun-
ters. It then spawns a root node from which that particu-
lar character is managed more specifically. Thus, we main-
tain one behavior library from which multiple characters can
draw and avoid incurring additional authorial burden. Spe-
cific character behaviors include: producing contextual di-
alogue; combat specific actions; and status-oriented anima-
tion. The output of all character behaviors is aligned with
respect to the most recent copy of the character’s CiF state,
enclosed within the character’s blackboard memory system.
Any behavior producing an effect in the game world is deliv-
ered as an agent action to the game application via the proxy
server.

Applications built with Unity are not natively compati-
ble with the ABL runtime. Given this constraint, we wrote a
custom Java program that serves a dual purpose: to run the
GameAgent, and manage TCP/IP traffic between itself and
the game application. This proxy server transforms actions
produced by the GameAgent into data structures that can be
interpreted by the game application, and it also transforms
messages from the game application into working memory
elements (WMEs) that are interpretable by the GameAgent.
Outgoing data structures contain information like what ac-
tion should be taken, which character should perform the
action, and which character should be acted upon, if any.

CiF and the game world. While ABL can be described as
goal-driven, CiF can be described as goal-setting (McCoy
2012). CiF allows us to implement and modify long-term
plans for NPCs in a way that is less complex than doing
the same solely with ABL. For instance, using our system,

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

279



Figure 1: System architecture composed of three main en-
tities: the ABL agent (GameAgent), CiF, and game logic.
Solid arrows indicate the flow of state, while dashed arrows
indicate the flow of decision-making.

the GameAgent may direct a NPC to produce a piece of di-
alogue when the player moves close to them. This behav-
ior can then be modified by CiF so that it fits the charac-
ter’s long-term goals and current social state. We argue that,
while CiF may not reduce authorial burden outright, writ-
ing rules in CiF to maintain a long-term, contextually-aware
plan, coupled with small ABL behaviors chained together to
accomplish the execution of the plan, is an easier task than
trying to use ABL alone. By using both systems in appropri-
ate ways, we can continually respect short-term context over
longer periods of time without the incursion of undue autho-
rial burden that may stem from the inherent complexity of
ABL.

In this work, a 3D game built with Unity serves as a
testbed virtual world. Given that the smallest common unit
over which any ABL agent reasons is a WME, we construct
a one-to-one C# WME class. Each NPC has access to their
own WME, which contains information like a unique iden-
tifier and their current CiF state. Similar to the Java proxy
server, the game application manages the TCP/IP connection
between itself and the server. At frequent intervals through-
out the game, WMEs for each active NPC and the player are
generated, transformed, and sent to the Java proxy server.
In addition, the game application listens to incoming mes-
sages from the Java proxy server that may contain actions
that should be executed in the game world.

System in Play: Oops! All Bards Demo
As a piece of companion software to this submission, we
designed a short game demo with sufficient complexity so
as to highlight the capabilities of our system. We envision
Oops! All Bards (O!AB) as a 3D role-playing game (RPG)
in which the player can inhabit the persona of a bard living in
a medieval fantasy world currently under siege by a malefi-
cent entity. To illustrate how NPCs act and react in consistent
ways across scenarios, the demo features Quinton: a semi-
retired, grizzled bard who manages entertainment at a tavern
called The Thirsty Whale. Quinton is a NPC who can be re-
cruited to the player’s party and will aid the player in the
demo.

The demo features two scenarios: exploration and combat,
which are staple gameplay loops of classic and modern com-
puter RPGs. The player is first introduced to the exploratory
scenario, wherein they can engage in dialogue with NPCs
and learn more about the world of the game. After recruiting
Quinton, the player begins the combat scenario. In combat,
we highlight how all the components described in our sys-
tem work together. Certain behaviors of the GameAgent are
gated by CiF state values. If the affinity between Quinton
and the player is high enough, behaviors will be selected and
modified such that Quinton will act in more helpful ways.
Quinton may also become critically injured, which applies a
subsequent CiF status “Requires Assistance.” For any NPC
in combat with this status, the GameAgent will direct the
character to reactively call out for help. Following the com-
bat scenario, Quinton’s “Requires Assistance” status will ei-
ther have been removed because the player helped him in
some way, or will transform via CiF into a “Left Hanging”
status–the result of the player ignoring Quinton’s plea. In the
resolution of the demo, Quinton will approach the player dif-
ferently in both physical demeanor and dialogue depending
on the presence of the “Left Hanging” status.

Takeaways
In this work, we have presented a system consisting of an
ABL agent, a virtual game world, and a C# version of CiF.
We have described two main architectural components: (1)
the Java proxy server that runs the ABL agent, transforms
data sent by the game application into interpretable WMEs,
and sends the output of ABL behaviors as actions to be ex-
ecuted by the game; and (2) the game itself, which handles
all gameplay logic, packages game and CiF state into in-
terpretable WMEs, and executes actions based on informa-
tion provided by the Java proxy server. Our system allows
agents to react appropriately in real-time given physical con-
text via ABL, as with Quinton’s calls for help during combat.
It also allows agents to form longer-term plans that cohere
with their mental context via CiF, as with Quinton protect-
ing the player during combat, and approaching the player in
different ways depending on how the player treated them.
Combined, this system offers a way to generate dynamic
NPC beats that help to preserve believability across game-
play events in a way that continually respects the NPC’s
physical and mental context.

280



References
Bogdanovych, A.; Trescak, T.; and Simoff, S. 2015. Formal-
ising Believability and Building Believable Virtual Agents.
In Chalup, S. K.; Blair, A. D.; and Randall, M., eds., Arti-
ficial Life and Computational Intelligence, 142–156. Cham:
Springer International Publishing. ISBN 978-3-319-14803-
8.
Loyall, A. B. 1997. Believable Agents: Building Interactive
Personalities. Ph.D. thesis, Carnegie Mellon University.
Mateas, M. 1999. An Oz-Centric Review of Interactive
Drama and Believable Agents, 297–328. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-540-48317-5.
Mateas, M.; and Stern, A. 2002. A Behavior Language for
Story-Based Believable Agents. Intelligent Systems, IEEE,
17: 39– 47.
Mateas, M.; and Stern, A. 2004. A Behavior Language: Joint
Action and Behavioral Idioms, 135–161. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-662-08373-4.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Social Story Worlds With
Comme il Faut. IEEE Transactions on Computational Intel-
ligence and AI in Games, 6(2): 97–112. Conference Name:
IEEE Transactions on Computational Intelligence and AI in
Games.
McCoy, J. A. 2012. All the World’s a Stage: A Playable
Model of Social Interaction Inspired by Dramaturgical
Analysis. Ph.D. thesis, University of California, Santa Cruz.
Riedl, M. O.; and Stern, A. 2006. Believable Agents and
Intelligent Story Adaptation for Interactive Storytelling. In
Göbel, S.; Malkewitz, R.; and Iurgel, I., eds., Technologies
for Interactive Digital Storytelling and Entertainment, 1–12.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-540-49935-0.
Weber, B. G.; Mawhorter, P.; Mateas, M.; and Jhala, A.
2010. Reactive planning idioms for multi-scale game AI.
In Proceedings of the 2010 IEEE Conference on Computa-
tional Intelligence and Games, 115–122.

281


