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Abstract

Experience Management uses AI technologies to improve
people’s experiences within an interactive application by
changing the environment while the experience is underway.
Game-related research in this field has a trend where each ex-
perience manager is built in a way that is tightly integrated
with the environment that it can change. One consequence
of this integration is that it becomes difficult to compare
one manager to another in a single environment, or a single
manager to itself across multiple environments. With this pa-
per, we propose a solution for decoupling experience man-
agers from the environments that they can change, through
the use of an intermediate software platform. We describe the
structure of the platform, a protocol that facilitates commu-
nication between a manager and an environment, and how
normal communication happens. Moreover, we introduce the
Camelot Wrapper, software built to extend the interactive vi-
sualization engine Camelot and connect it to our platform.

1 Introduction
Experience Management is a subfield of Artificial Intelli-
gence (AI) that studies intelligent systems with the name of
“experience managers” (EMs), which improve people’s ex-
periences within an application according to one or more
given metrics. Riedl et al. (2008) first defined the term “Ex-
perience Management”. However, we describe it as Thue
did: the process of optimizing a player’s experience in an
interactive environment (e.g., a game) by changing that envi-
ronment while the experience is underway (Thue 2015). An
environment is described by three components: a collection
of states that players can observe, a set of actions that play-
ers can take, and dynamics that explain how player actions
in each state of the environment lead to new states arising.

Unfortunately, it is common among researchers to design
and develop EMs that are built directly into the games that
are used to evaluate them (Weyhrauch 1997; Mateas and
Stern 2003; Nelson et al. 2006; Riedl et al. 2008; Thue et al.
2007, 2011; Porteous, Cavazza, and Charles 2010; Ramirez
and Bulitko 2015; Robertson and Young 2019). The result
is that research in the field is fragmented and largely inde-
pendent, making it hard to draw conclusions that generalize
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well across the field (Roberts and Isbell 2008; Mori, Thue,
and Schiffel 2019). We identify three sub-problems.

First, since the results of testing EMs depend on the con-
text of the environment used (Roberts and Isbell 2008), test-
ing in a single environment gives insufficient data to ensure
that any findings will be replicable in a different environ-
ment. To obtain more generalizable results, it would be help-
ful to test an EM in a diverse set of environments and com-
bine that data to better understand how the manager works.
However, when an EM is tightly integrated with an environ-
ment, it is difficult to use that EM in another environment.
The platform that we present in this paper simplifies the pro-
cess of connecting an EM to different environments, thus
enabling the data gathering needed to gain insights into how
the EM works across different contexts.

Second, the tight integration of each EM and its environ-
ment makes it challenging to experimentally compare mul-
tiple EMs, since doing so requires separating n− 1 of them
from their initial environments and connecting them to the
nth EM’s environment for testing. An example is Ramirez
and Bulitko’s (2015) work, where they had to re-implement
the EMs of both the Automated Story Director (Riedl et al.
2008) and PaSSAGE (Thue et al. 2007) to use them in a
novel environment. This makes performing such compar-
isons difficult, discouraging researchers from undertaking
the work to do them, and making it challenging to know
whether any new EM advances the state of the art. Our plat-
form allows new EMs to be created in a way that keeps
them separate from the environment(s) in which they are
tested, avoiding the work of separating and reconnecting that
we explained above. By simplifying the process of compar-
ing multiple EMs, we aim to make such comparisons more
widely accessible and common.

Third, another barrier to comparing multiple EMs is that
very few are released after the publication of their related re-
search papers. When an EM is made to use our platform, it
becomes easier for later researchers to conduct experiments
using that EM (potentially in new environments), and we
hope that this potential for future comparisons will encour-
age more researchers to release their EMs.

In this work, we present EM-Glue, a software architecture
and platform that decouples EMs from environments while
facilitating communication between them. The platform en-
ables the exchange of messages in a standardized way so that
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different EMs and environments can work together using a
common architecture. We designed a communication proto-
col with two phases: initialization and regular communica-
tion. The initialization starts with a handshake, which sets up
the communication so that both parts can establish a working
exchange and have the data they need. After the initialization
process, the protocol manages the exchange of messages be-
tween the EM and the environment. Finally, we present the
Camelot Wrapper, software that extends the functionality of
Camelot (Shirvani and Ware 2020) to create the first envi-
ronment that can communicate with our platform.

2 Related Work
Roberts and Isbell (2008) performed a qualitative analysis
of different approaches to drama management (a kind of ex-
perience management focused on drama) based on a list of
desiderata. In their work, they shed light on two problems
with how drama managers are evaluated: dependency to the
content, and the tight integration between drama managers
and games. Our platform aims to address both problems.
First, we provide software that enables experience manage-
ment with detached EMs and environments, avoiding any
tight integration between the two. Second, our platform sup-
ports evaluating an EM in multiple environments, which
mitigates its dependency on the context during evaluation.

One of the first attempts to separate EMs and game envi-
ronments was Mimesis (Young et al. 2004). The authors’ ob-
jective was to provide conventional game engines with a way
to connect (via socket-based APIs) to intelligent compo-
nents that could create novel and effective action sequences.
Our approach differs from Young et al.’s because they al-
low only the Mimesis EM to connect to different potential
environments. Although Mimesis could be configured with
additional components to extend its functionalities, it does
not support a full replacement of its EM. Moreover, Young
et al. distinguished between the degrees to which game en-
gines and intelligent agents (such as EMs) are linked in their
design. They identified three categories: mutually specific,
which focuses on developing new features for a certain game
engine employing a specific set of intelligent reasoning ca-
pabilities; AI specific, for when a specific set of AI tools has
been created to work in several gaming environments; and
game-specific, for when an intelligent agent has been de-
veloped to work into a specific game engine. Our solution
can be thought of as generalizing the mutually specific ap-
proach, since we enable connections between a (potentially)
wide range of reasoning tools and a (potentially) wide range
of game engines. Our platform requires that the EMs and en-
vironments use an explicit declarative model of actions (see
Section 3 for more details).

Szilas et al. (2011) also sought to create a common archi-
tecture to separate environments from intelligent systems.
OPARIS, an architecture for Interactive Storytelling, pro-
vides a structure of modules that communicate via socket
APIs, toward facilitating the integration of various different
Interactive Storytelling components using a common archi-
tecture. The functionalities are divided into modules that are
independent software components that communicate with
the platform via a set of messages. Our approach differs

from theirs because OPARIS targets Interactive Storytelling
systems and it focuses on narratives, whereas our platform
focuses on EMs and aims to remain agnostic about the con-
tent of each environment.

One work that can be used to build an environment for
our platform is Camelot (Samuel et al. 2018; Shirvani and
Ware 2020), a visualization engine developed by the Narra-
tive Intelligence Lab at the University of Kentucky. Camelot
provides a sandbox to visualize and test different narrative
systems. It accepts as input a series of text commands, and
it visually presents a 3D environment with characters, loca-
tions, objects, and items that respond to the commands. It
allows researchers of EMs to build a simple testbed with-
out the need to start from scratch in creating a new en-
vironment. An example is the testbed developed by Ware
et al. (2022), where they used Camelot to create and facil-
itate an environment composed of four locations and three
NPCs. Since Camelot accepts a set of instructions that are
specifically designed for the software, developing an EM for
Camelot requires a high dependency on the Camelot com-
mands. With our platform, we want to drop this dependency,
allowing an environment to be used by many different EMs
(which Camelot supports already), while still allowing those
EMs to be tested using many different environments (which
Camelot makes difficult). Camelot supports the creation of
environments that have the theme and gameplay of a me-
dieval computer role-playing game, but it does not support a
complete change of game genre (e.g., to a spaceship game).

An example of a system that could be used as an EM
with our platform was made by Porteous, Cavazza, and
Charles (2010), in which a PDDL-based narrative replanner
is used to produce multiple variants of narratives and con-
trol story pacing. Connecting their system to our platform
could be achieved by decoupling it from its integrated 3D
visualization engine and implementing our communication
protocol. However, they use PDDL 3.0 in their system while
we use only PDDL in the current version of our platform. As
we mention in Section 6, we aim to support newer versions
of PDDL in a later version of the platform.

3 Overview of the Platform
We aim to facilitate communication between an EM and an
environment. To do so, we need them to agree on a protocol

PlatformExperience 
Manager What changed in the environment

(‘new’, ‘at(bob, alchemyshop.chest)’)

What the manager wants to change
move(bob, alchemyshop.table)

Environment
Message to the EM

(‘new’, ‘at(bob, alchemyshop.chest)’)

Message from the EM
move(bob, alchemyshop.table) DB

Communication
Module

Figure 1: An overview of our platform’s design. The Experi-
ence Manager (EM) and the Environment are external mod-
ules. The Environment sends a tuple to update the EM with
what is happening in the environment and the EM sends the
action that it wants to apply.
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for communication. For this reason, we designed an archi-
tecture that can be used as a middle layer between the two,
which routes the messages from one side to the other using a
set of common APIs. The platform is open source and avail-
able on GitHub1. Figure 1 shows a high level overview of
how the platform is designed.

The design has two main parts: external modules and the
platform itself. The external modules include EMs and en-
vironments. Examples of the things that an EM can do in-
clude placing an item in a chest or changing a Non-Player
Character (NPC). The environment has two goals: visual-
ize the experience while allowing interaction with the user,
and keep track of what is happening in the experience using
a high level state representation. The state representation is
important because the messages that are exchanged through
the platform describe how the state changes after each event
happens in the environment.

The platform contains a module that facilitates communi-
cation between EMs and environments. It includes the soft-
ware that transfers messages from one end of each connec-
tion to the other and maintains a protocol that allows a struc-
tured and ordered transmission. While facilitating this con-
versation, the communication module also stores a history of
all of the messages that are exchanged between the external
modules. This history can be useful for comparing differ-
ent EMs, because one can use it to reconstruct the sequence
of events that occurred in any player’s experience. For ex-
ample, if a player killed an important character for a story,
from the history of messages one could check how the EM
responded to that event. We describe the design and devel-
opment of the communication module in Section 4.

For EMs and environments to understand each other, a
common language is needed. The messages that are ex-
changed need to contain a high level overview of what is
happening in the environment, so that the EM can inter-
pret a message and understand the current state to act upon
it. The EM also needs to have a set of possible actions to
choose from, described with any conditions that need to be
met for correct execution as well as the effects that each ac-
tion has on the state once they are executed. The literature
offers many different languages that can be used to repre-
sent these aspects of the experience (McDermott et al. 1998;
Love et al. 2008; Martens 2015; Perez-Liebana et al. 2016;
Chen and Guy 2018; Ware et al. 2022), each of them solving
problems of representation that other languages have.

For this platform, we decided to use the Planning Do-
main Definition Language (PDDL) (McDermott et al. 1998).
PDDL was designed for describing problems in the field
of automated planning, which is notably different from
our context. Nevertheless, PDDL is well-known across the
field and it has been used with EMs in the past (Porteous,
Cavazza, and Charles 2010; Thue et al. 2016; Diamanti and
Thue 2019; Porteous et al. 2021). Moreover, learning PDDL
is supported by many online resources, which helps to main-
tain the accessibility of our platform. In Section 6, we dis-
cuss the limitations of using PDDL in our setting. Since the
design of the platform’s software and communication pro-

1https://github.com/liogiu2/EM-Glue

tocol are independent from the language that the EMs and
environments use, it would be straightforward to exchange
PDDL with another language. We are open to collaborating
with the community to find another specification language
that might be better suited for this application.

4 Communication Module
The purpose of the communication module is to facilitate
the conversation between EMs and environments. It is com-
posed of two main parts: the software structure and the com-
munication handshake protocol.

To begin developing this module, we surveyed the space
of possible technologies for communication, prioritizing
easy inclusion of new external modules like EMs and envi-
ronments. We first analyzed the standard input/output com-
munication method, which is used by Camelot (Shirvani and
Ware 2020). We found that this technique does not work well
with concurrent requests. For example, if we need to write a
message at the same time that we are waiting for a message
to arrive, we become stuck in a deadlock situation. This is a
problem that we faced while developing the Camelot Wrap-
per, as we discuss in Section 5.

We also analyzed sockets, the fundamental technology
that enables network communication. An important down-
side of using sockets is that the learning curve is steep. We
wanted a technology that is easy to understand and use, so
that others can develop external modules using our platform
with minimal added complexity to their system. Given these
considerations, we decided to use a modern evolution of
sockets that has become commonly used: web APIs (Tan
et al. 2016). One of the most used Python libraries to im-
plement web APIs is FastAPI (Ramı́rez 2022). It is straight-
forward to implement in a codebase and it allows a high-
performance exchange of messages. Communicating with a
web API only requires sending an HTTP request, which can
typically be done with a few lines of code.

The exchange of messages using the web API works as
follows. The platform hosts a server where the functional-
ity of the API operates, and it is constantly waiting for re-
quests to activate that functionality. When one of the external
modules (e.g., an EM) needs to send a message to another
external module (e.g., an environment), it makes an HTTP
POST request to the platform using a URL dedicated to re-
ceiving messages from that module (e.g., /add em message).
The module attaches the content of the message to the body
of the HTTP request. The platform receives the request on
the specific URL, ensures that the content of the message
is formatted correctly, and stores the message in a database.
For an external receiving module to read an incoming mes-
sage, it must keep polling the URL for incoming messages
with GET requests (e.g., /get messages for env). When an
incoming message is available, the platform sends it as a re-
sponse to the most recent of such requests.

Errors have a different path compared to normal mes-
sages, because if an error occurs in the environment it might
be of such gravity that the experience breaks. So, if an error
occurs, the EM might need to take immediate action to solve
it. In the case of Camelot and our wrapper (which we discuss
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(1) Start of communication: Name

(2) Inizialization completed. Wait preparation environment

(5) Request PDDL domain and problem

(7) PDDL domain and problem

(8) Received. Request links for normal communication

(10) Input: /add_EM_message Output: /get_messages_for_EM

Phase 4

Phase 3

Phase 1

EM

(3) Start of communication: Name

(4) Inizialization completed. Request for initial state of environment

(6) PDDL Domain and Problem

(9) Received. Start communication on links 
input: /add_env_message output: /get_messages_for_env

Phase 2

Phase 4

Phase 3
ENVPLATFORM

Figure 2: A summary of the steps of our platform’s handshake protocol. (#) indicates the order of the steps of the protocol,
where each step involves one message. Each coloured area represents a phase of the protocol. “EM” stands for experience
manager and “ENV” stands for environment.

in Section 5), we attempt to avoid errors by validating every
message before sending it to the environment.

One drawback of web APIs is that the server cannot di-
rectly send a message to a client; it can only respond to a
request that comes from a client. Fortunately, resolving this
problem is relatively straightforward; one way is to develop
a service in the client that periodically sends GET requests
to the URL for incoming messages (e.g., every 0.2 seconds).
Another possible solution would be to allow the client to
send a GET request and then have it wait until there is an
update available. In the current version of the platform, we
decided to not support this solution because it would involve
the use of multi-threading in the client to obtain a smooth
operation. Our goal is to keep the engineering of new man-
agers as simple as possible, and multi-threading would add
complexity to that work. However, in a later version of the
platform, we plan to support both options so that developers
can choose to use what they prefer.

4.1 Handshake Protocol
Our platform’s handshake protocol is a standardized set of
messages that connect an EM and an environment to each
other through the platform. It was inspired by the TCP/IP
three-way handshake protocol (Feit 2000). Figure 2 shows a
diagram of the steps that are needed to successfully initialize
the communication between an EM and an environment.

This handshake protocol involves the EM, platform, and
environment simultaneously. It is divided in four phases, and
each phase is used to handle a different part of the initial
communication. It starts with phase 1 assuming that the plat-
form is up and running, because we need the API server to be
ready to receive new requests in the initialization link for the
EM (/inizialization em). Once the the platform is ready, it
launches the EM process automatically. The platform knows
which EM and environment to use based on a JSON file (Pe-
zoa et al. 2016) that holds the paths for their executables.

When started, the EM creates a request to the initialization
link with the name of the EM as a parameter (step 1). After
receiving the initial message from the EM, the platform adds
the received data to the database (DB). The platform reads
the message and replies to this request with the confirmation
that the initialization is completed, and that it is waiting for
the environment to be ready (step 2). In the meantime, the

platform starts the environment and waits for a request to ar-
rive from the environment to start phase 2. When started, the
environment sends a new request on the environment’s ini-
tialization link (/inizialization env) with the parameter rep-
resenting its name (step 3). The platform reads this message
and replies to the environment with a message saying that
the initialization is completed and that it is requesting the
domain and initial state of the environment (step 4). Then,
the EM prepares a request on the link (/inizialization em)
to start phase 3 and sends a message to request the PDDL
domain and problem (step 5). The environment creates a re-
quest on the URL (/inizialization env) to reply to the previ-
ous request of the platform by providing a domain and ini-
tial state, attaching the PDDL domain and problem (step 6).
Once the platform receives the message from the environ-
ment, it keeps the environment on hold (by waiting to send
back the reply), and replies to the request of the EM with
the PDDL domain and problem received from the environ-
ment (step 7). It is important to keep the environment wait-
ing until the platform confirms the successful transmission
of the PDDL data, because initialization should halt if there
is an error. When the EM receives the data, it starts phase 4
by creating a new request on the URL (/inizialization em) to
confirm that it correctly received the PDDL data and asks for
the URLs for normal communication (step 8). The platform
then confirms the correct receipt of the data to the environ-
ment and sends the URLs for normal communication (step
9). Finally, the platform replies to the EM by sending the
normal communication URLs to it as well (step 10).

We designed this handshake protocol in a way that ac-
counts for the drawback of this type of web APIs that we
discussed earlier in Section 4. Specifically, the external mod-
ules must always make the first request, to allow the platform
to respond with the data that is needed. In addition, another
aspect that we considered during the design process is that
it can easily be adapted to languages other than PDDL. This
allows the platform to be updated later with a different lan-
guage for representing experience management tasks, which
helps to future-proof the protocol.

In practice, the order of phases 1 and 2 could be inter-
changeable. We decided that the EM should go first to allow
the EM or the platform choose which environment to use,
when more than one environment is available.
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4.2 Normal Communication
During normal communication between an EM and an envi-
ronment, two types of messages are exchanged.

First, each message from an EM to an environment rep-
resents an action that the environment must execute. This
message is composed of the name of the action and the
entities that are involved in the action. This information
must correspond to the description of an action that comes
from the domain. For example, in “openfurniture(bob, alche-
myshop.chest)”, “openfurniture” is the name of the action
and “bob” and “alchemyshop.chest” are the entities involved
in the action.

The second type of message is one that goes from an envi-
ronment to an EM. This message describes all of the updates
that happen to the world state of the environment, and is a
tuple of two elements. The first element is a string that indi-
cates how to handle the second element of the tuple, and the
second element can be a relation or a new entity. An exam-
ple of such a tuple is: (‘new’, ‘at(bob, alchemyshop.chest)’).
The first element can have one of three values: new when
the second element is a new relation that the world state did
not have before, changed_value when the second ele-
ment is a pre-existing relation whose value is changing (e.g.,
from true to false or vice-versa)2, and new_entity. The
new_entity value is used when the environment responds
to an EM action that instantiates a new entity in the game;
the second element is the name of the entity. This message
tells the EM that the new_entity action was executed
with success. Player actions are not directly reported; the
environment only communicates the relations that change
while the game is being played. However, we are planning
to add a message type to report player behaviour explicitly
in the future, as we discuss in Section 6.

5 Camelot Wrapper
We used Camelot (Samuel et al. 2018; Shirvani and Ware
2020) to create an environment for the first prototype of our
platform. For an environment to work with our platform, it
should have the following characteristics: it must have an
explicit declaration of the actions that can be executed (with
preconditions and effects), it must share information about
the state of each player’s experience within the environment,
and it must accept instructions that can change the environ-
ment’s content or progression during a player’s experience
(e.g., move an NPC or create a new item). To the best of
our knowledge, Camelot is the only visualization engine that
meets these requirements while also being able to connect to
multiple different EMs. However, we could not use Camelot
as-is for three reasons.

First, as introduced in Section 2, Camelot requires a
highly specific set of instructions to work, while our plat-
form uses PDDL to exchange information between each en-
vironment and EM to increase its generality. We thus needed
a way to translate between Camelot instructions and our
platform’s PDDL-based instructions.

Second, Camelot requires almost everything that happens
in a player’s experience to be controlled by a connected EM;

2A relation that is not explicitly recorded is assumed to be false.

Game 
Controller

Camelot
World
State

PDDL to 
Camelot 
translator

PDDL to Camelot
Camelot items

Camelot characters
Camelot places
Camelot actions

JSON Description

Input 
Multiplexer

Camelot 
Sender

Camelot
Receiver

API 
Connector

Error 
Manager

PDDL 
Domain and

Problem

Camelot Wrapper

Message to Camelot
Start WalkTo(Bob, alchemyshop.table)

Message to Camelot Wrapper
succeeded WalkTo(Bob, alchemyshop.table)

Camelot

Platform
Message from the EM
move(bob, alchemyshop.table)

Message to the EM
(‘changed_value’, ‘at(bob, alchemyshop.table’)

Figure 3: A schematic diagram of the Camelot Wrapper’s
main components. Double boxes indicates that the compo-
nent is executed in a separate thread. The arrows indicate the
flow of information between components.

this includes responding to most player inputs (e.g., inter-
acting with NPCs or objects) as well as moving and animat-
ing all NPCs; only fine-grained player movement is enabled
directly by Camelot. In effect, the majority of a Camelot
environment’s dynamics must be implemented outside of
Camelot itself. As a result, comparing two EMs in a single
Camelot environment becomes difficult, as both EMs would
need to consistently implement the same dynamics. It would
also then be difficult to test those EMs in a different envi-
ronment that implemented more of its own dynamics (e.g., a
commercial role-playing game).

The third reason is that Camelot is designed to not keep
track of the state of the environment’s world (Shirvani and
Ware 2020). In our platform, we need the state of the envi-
ronment to be shared with the EM using a common language
(PDDL) to allow the managers to make decisions about what
needs to happen in the environment.

To overcome these three concerns, we implemented a
wrapper to act as a middle layer between the platform and
Camelot. This wrapper is open source and available on
GitHub3. It translates from PDDL instructions to Camelot
instructions, it handles more of the environment’s dynam-
ics and low-level interactions than Camelot does on its own,
and it keeps track of the current state of Camelot’s world.
Figure 3 describes the design of the Camelot Wrapper,
which spans ten different components and is implemented
in Python v3.9.1 (Van Rossum and Drake 2009). We briefly
discuss each component in turn.

5.1 External Communication
We begin with the components that facilitate external com-
munication: the API connector, the Camelot receiver thread,
the Camelot sender thread, and the input multiplexer thread.
When dealing with I/O operations, there is a problem of
possibly long waits when standing by for new messages to
come. For this reason, all of the components that deal with
communication run on separate threads or processes. This

3https://github.com/liogiu2/Camelot-Wrapper
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choice adds complexity to the wrapper’s code because it
requires concurrency and queues for the exchange of mes-
sages, but the final result benefits from a smoother operation.

API Connector. As we introduced in Section 4, this com-
ponent is a service that allows communication via HTTP
with the web API that is running in the platform. It makes
HTTP requests on the link provided with the communica-
tion protocol every 250 milliseconds to check for new mes-
sages. When it needs to pass a new message to the platform,
it makes an HTTP request on the link for sending environ-
ment messages, and shares the changes to the world state.

Camelot Receiver and Sender Threads. Camelot com-
municates with EMs (or, in this case, our wrapper) via stan-
dard I/O. A problem with using this type of communica-
tion is that writing and reading are mutually exclusive. This
means that if the wrapper is waiting for a message from
Camelot to arrive, it cannot send any messages to Camelot,
nor vice-versa, and this can result in deadlocks. One solu-
tion might be to interrupt the read operation after a cer-
tain amount of time, but this would require operating sys-
tem level calls that not all operating systems support (e.g.,
Microsoft Windows does not allow it). Instead, our solu-
tion uses two threads and manages concurrency using thread
locks and thread events.

Input Multiplexer Thread. The objective of this compo-
nent is to sort the messages that come from Camelot into
specific queues to handle each type of message in a different
way. It can sort the messages into five categories: success, lo-
cation, input, error, and other, according to the criteria listed
in Appendix B. For each category, the game controller deals
with the message differently. If there is an error message, the
error manager takes charge of the message.

5.2 Translation
The platform uses six components to translate between
PDDL and Camelot: the game controller, the PDDL Do-
main, the PDDL Problem, the Camelot world state, the
PDDL to Camelot translator, and the error manager.

Game Controller. The game controller hosts the main
loop of the Camelot Wrapper, and its job is to control the
environment from start to finish. When an environment is
started, the game controller starts all the other components
of the Camelot Wrapper and handles the startup process.
This process parses the PDDL domain and problem files and
sends instructions to Camelot.

PDDL Domain. The domain file describes all of the pos-
sible PDDL actions that the game designer wants to allow
to happen in the environment, along with the Camelot in-
structions that are necessary to realize each action. For ex-
ample, if the game designer wants to have an action called
fight (that is not currently in the available actions that
Camelot allows), they can do so by including this action
into the PDDL domain file and adding an entry into a JSON
file (pddl actions to camelot) with all the Camelot-specific
instructions that should happen when this PDDL action is

performed (e.g., ready a weapon, and attack the targeted en-
emy). When an EM sends a message to execute the action
fight, the PDDL to Camelot translator will look into the
JSON file mentioned above, and the game controller will
send Camelot all of the Camelot instructions that are speci-
fied for that action in the JSON.

PDDL Problem. The problem file defines the initial state
of the Camelot environment. The initial state of the envi-
ronment may be incomplete, in a sense, since we allow
actions to create new entities as described in Section 4.2.
The problem file will include the virtual locations that the
environment requires, how they are connected (using the
adjacent predicate), the characters and their attributes,
and the objects in the world and their attributes.

The game controller’s startup process continues by send-
ing Camelot the instructions that were generated from the
parsed initial state. These instructions are generated using
the PDDL to Camelot translator component (described later
in this section). During the initialization process, the wrap-
per also starts the communication with the platform using
the protocol explained in Section 4.1. Once the startup pro-
cess is finished, the game controller hosts the main loop of
the Camelot Wrapper, where it executes the methods to han-
dle different aspects of the game. For example, when it re-
ceives a success message from the input multiplexer, it ap-
plies the effects of an action to the Camelot world state.

Camelot World State. This component keeps track of the
world state of the Camelot environment. It has methods
that allow initializing the world state and applying an ac-
tion to change the world state. To initialize the world state,
it transforms the parsed PDDL domain and problem into a
PDDL data framework that we developed (see Appendix A),
which simplifies updating the world state as the truth values
of PDDL relations change. When the Camelot world state
component receives an action to apply from the PDDL to
Camelot translator, it changes the relations that the “effect”
part of the action says to change. This process happens only
when a success message is received from Camelot that cor-
responds to an action that was sent. This way, if an action
fails, we do not need to revert back to the previous state.

PDDL to Camelot Translator. This component trans-
lates from PDDL to Camelot instructions in two situa-
tions: to initialize the world state, and to convert PDDL
actions to Camelot instructions. To initialize the world
state, the translator receives a parsed PDDL domain and
problem from the game controller, and it transforms the
initial state specified in the problem into Camelot enti-
ties and objects. For example, if the PDDL problem file
declares an “object” as AlchemyShop - location,
it translates this declaration into the Camelot instruction
CreatePlace(alchemyshop, AlchemyShop). It
does this transformation both for the “objects” and “init”
part of the PDDL problem file.

The translation from PDDL actions to Camelot in-
structions is facilitated by a JSON-based dictionary (Pe-
zoa et al. 2016). Each key in the dictionary is the name
of a PDDL action that can be applied, and each value
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is a list of commands that are the Camelot instruc-
tions (formatted as action_name and action_args)
that should be executed when the PDDL action is ap-
plied. For example, suppose that an EM asks to apply
the PDDL action openfurniture. The JSON entry for
the key openfurniture lists the following Camelot
Actions: "OpenFurniture", "DisableIcon" and
"EnableIcon", which open the furniture and configure
the player interface accordingly. So, when an EM asks for
openfurniture to be executed, the Camelot Wrapper
sends Camelot the instructions to open the furniture and to
change the interface text and icon from “open” to “close”.

Error Manager. Finally, the error manager is the compo-
nent that handles any errors that come from Camelot. When
Camelot generates an error, the error manager performs a
first analysis of the error and sends a report to the API con-
nector to send it directly to the EM. Moreover, the error man-
ager handles errors that come from the Camelot Wrapper if
it intercepts minor problems that do not require EM inter-
vention to be solved. For example, if there is a letter case
mismatch in an entity part of a relation, the error manager
automatically corrects this problem.

6 Discussion and Future Work
We developed the software presented in this paper as a way
to explore the challenges involved in decoupling EMs from
environments and to test the feasibility of our solutions. As
can be seen in the software itself, we developed a basic EM
to verify the platform’s functionality, connecting the EM to
Camelot through our platform and the Camelot Wrapper.
This verification offers the first evidence that our solutions
are feasible, in that we can successfully set up and sustain
functional communications between an EM and an environ-
ment with only loose integrations between them.

In future versions of the platform, we plan to support an
increasing number of use cases that are not currently sup-
ported. One example is to allow the environment to pro-
vide the EM with arbitrary domain-specific information,
sent alongside the updates of the world state. This addition
would expand the potential set of EMs that could work with
the platform, because environment authors could include
supplementary metadata that an EM might use to guide its
reasoning (e.g., to execute certain types of actions only when
the main character has enemies).

Another potential addition includes support for narrative
intervention (Riedl, Saretto, and Young 2003), where an EM
can intervene before a player action has any chance to affect
the environment’s state. For example, if the player was about
to shoot a critical NPC, an EM could cause the gun to jam.

We also plan to change how the environment reports
player actions to experience managers. As described in Sec-
tion 4.2, in the current version of the platform, the environ-
ment does not directly report when a player action occurs. If
the EM wants to know which player action was executed, it
must infer it from the changes in the world state. In the next
version of the platform, we plan to change this behaviour
by adding a message that allows each environment to send
player actions directly to the EM.

When choosing to use PDDL in its basic form, we were
aware of its limitations, such as its inability to represent ac-
tions whose effects are long-lasting, poor support for num-
bers, and more. If we decide to use a different language,
the platform can be easily adapted as there is no connection
between which language is used and the ways that the plat-
form exchanges messages between environments and EMs.
We cannot say the same for the Camelot Wrapper, however,
since part of its core functionalities work using PDDL. Many
of PDDL 1’s limitations have been solved in later versions
of PDDL (Fox and Long 2003; Gerevini and Long 2005), so
it might be useful to update the Camelot Wrapper to support
a later version of PDDL. We are also keen to collaborate in
identifying or developing a language that would better suit
the needs of experience management tasks.

Looking forward, we plan to test the platform further by
connecting more EMs to the platform (either new or pre-
existing) and integrating environments that target more di-
verse genres of games. Such tests will help us further explore
the strengths and limits of our approach, and improve how
we decouple experience managers from their environments.

A PDDL Framework
Figure 4 shows the structure of the PDDL data framework
that we use to represent the state throughout the project with
all the components needed. Most of the components are de-
rived directly from the PDDL specification files, and they
are described in the Planning Wiki (Adam et al. 2022).

B Criteria for Sorting Camelot Messages
The Camelot Wrapper’s input multiplexer sorts Camelot
messages based on the following criteria:

• A success message is one that starts with succeeded.
Camelot sends this message when an action previously
sent by the platform is executed with success.

• A location message is one that starts with input
and continues with one of the following sub-
strings: started walking, stopped walking,
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Type
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RelationValue ActionDefinition
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Action

WorldState Domain

- Name - Name
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- Name
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Figure 4: A diagram showing how we structured the PDDL
data framework that we use to represent the state of the
Camelot environment, within the Camelot Wrapper.
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arrived, or exited. Camelot sends these messages
when a character moves in the environment.

• An input message is one that starts with input and
is not a location message. An input message is sent by
Camelot when the user clicks on an entity that can accept
inputs (e.g., a chest that can open).

• An error message is one that starts with one of the follow-
ing words: error, failed, or exception. This type
of message is generated when an error occurs in Camelot.

• Another type of message is when a Camelot message
starts with anything that is not the things listed above.
Those are messages that the wrapper does not support,
and they are stored in a queue to help debug the platform.
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