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Abstract

Mechanics involving the roll of multiple dice—a
“dice pool”—commonly appear in tabletop board games
and role-playing games. Existing general-purpose dice pool
probability calculators resort to exhaustive enumeration of
all possible sorted sequences of rolls, which can quickly
become computationally intractable. We propose a dynamic
programming algorithm that can efficiently compute prob-
abilities for a wide variety of dice pool mechanics while
limiting the need for bespoke optimization. We also present
Icepool, a pure Python implementation of the algorithm
combined with a library of common dice operations.

Introduction
Dice are a common feature in tabletop games, including both
board games and role-playing games (RPGs). In terms of the
formal rules of a game, dice can be seen as a mechanism for
sampling from a discrete probability distribution. Designers
may be interested in the probability distribution produced by
a dice mechanic in order to adjust the balance towards abso-
lute targets as well as relatively between choices available to
the players.

However, the question of what probability distribution is
produced by a dice mechanic is interesting not because the
designer’s first and only concern is sampling from a pre-
planned probability distribution. If it were so, the designer
could resort to the use of a look-up table or a computer.
Rather, the experience and appeal of rolling dice in a table-
top game is not just a matter of probability—it is a phys-
ical, tactile activity as well. Furthermore, a game designer
may not start with a specific probability distribution in mind.
They may have other considerations, including:

• Can the human players—the “hardware” on which the
game is run—evaluate the results of a dice roll easily,
quickly, and reliably? For example, a computer can easily
sample from a normal distribution at high precision; on
the tabletop, the human will likely settle for using the
sum of a few dice thrown at once.

*The author is currently employed by Google. However, this
work was done independently. All opinions are the author’s own.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• What physical dice does the mechanic require? Using
more common, off-the-shelf dice types, especially the
ordinary six-sided die, may make a game more finan-
cially and logistically accessible. On the other hand, non-
standard dice can attract attention to a game and give it a
unique flavor.

• Does the dice mechanic fit the designer’s aesthetic and
cultural vision for the game? For example, dice mechan-
ics may be inspired by aspects of a fictional setting, an
overt instance being the “d616” system of the Marvel
RPG (Forbeck et al. 2022), 616 being the number of the
primary continuity in that fictional multiverse.

As such, designers often start from these other consider-
ations to create a prospective dice mechanic, and then ask
what probability distribution is produced by that dice me-
chanic, iterating as desired. In turn, players may be inter-
ested in knowing the likely results of a given action in the
game so that they may come up with scenarios and strate-
gies. Utilities for computing dice probabilities such as Troll
(Mogensen 2009) and AnyDice (Flick 2012a) have emerged
in order to answer these questions.

Dice Pools While some dice mechanics determine the re-
sult from a roll of a single die, others have a player or players
rolling a “pool” of multiple dice. For most such mechanics,
all of the dice are thrown simultaneously and without order,
with the dice being treated as indistinguishable other than
the number they show. In other words, the roll of a pool is
fully described by a multiset. The in-game consequences of
the roll are then evaluated as a function of the multiset ac-
cording to the rules of the game.

Equivalently, we can consider the sorted sequence of rolls,
also known as order statistics. In some cases, the rules ex-
plicitly specify that the rolls should be sorted, such as RISK
(Lamorisse 1957) and RISK-like (Mogensen et al. 2016) me-
chanics, or games in which the players keep some number of
the highest individual results out of the multiset, such as the
RPGs Legend of the Five Rings (L5R) up to 4th edition (Car-
man et al. 2010) and Cortex Prime (Banks et al. 2020).

In other cases, sorting the rolls is convenient for eval-
uation even if the rules do not explicitly say to do so.
This includes poker-like game mechanics such as looking
for matching sets and/or straights, which appears in board
games such as Yahtzee (Lowe et al. 1996) and RPGs such as
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CthulhuTech (Grau 2010) and Legends of the Wulin (Ramos
2012).

Dice pools may even appear beyond the official rules
of the game. For example, one mechanic in Dungeons &
Dragons (Gygax and Arneson 1974; Mearls, Crawford et al.
2014) and similar RPGs is the random generation of ability
scores. The 5th edition (the most recent at time of writing)
calls for rolling four six-sided dice and summing the highest
three to generate each ability score, repeating the process
for each of six scores. Notwithstanding this official guid-
ance, player-invented ability score generation methods re-
main a perennial subject in the RPG community, e.g. (Sage
et al. 2018), with proposals ranging from simple modifica-
tions such as rolling seven scores and picking the highest
six, to more involved methods such as snake drafting. These
too may be analyzed as dice pools, with objectives including
targeting a particular average result or achieving some sense
of fairness between players.

This Paper We propose a dynamic programming algo-
rithm that can efficiently compute probabilities for dice pool
mechanics, as long as they can be efficiently expressed as a
incremental calculation in the form of a state transition func-
tion. In some cases, this algorithm can compute the solution
to previously intractable problems at interactive speed. The
scope of bespoke optimization can be limited to minimizing
the state space; in most cases, the simplest description of
the dice mechanic in this form will suffice. Along with this,
we present Icepool, a pure Python implementation of the al-
gorithm combined with a library of common operations on
dice.

Prior Work
Multiset Enumeration: General but Not Fast
Troll Troll is a domain-specific language and dice roller
available both online and as source code. The accompanying
paper (Mogensen 2009) gives a mechanic used in L5R up to
4th edition as their example of a lengthy computation, which
we shall use as a case study here.

The dice pool mechanic of this game works as follows:

• Roll a pool of N 10-sided dice, whose faces are labeled
from 1 to 10 inclusive (“d10s”).

• For any dice that roll a 10, roll that die again and add it to
the result of that die. Repeat as long as you keep rolling
10s. This is sometimes referred to as an “exploding” die.

• The result is the sum of the M highest such dice.

The corresponding script given is

sum (largest M N#(sum accumulate x := d10
until x<10))

“where M and N depend on the situation. With M = 3, N =
5 and the maximum number of iterations for accumulate set
to 5, Troll takes nearly 500 seconds to calculate the result,
and it gets much worse if any of the numbers increase.” After
recompiling Troll and running it on a more modern Intel i5-
8400, this same computation took about 100 seconds. How-
ever, the final warning remains dire—increasing the number

of dice rolled N from 5 to 6 resulted in the computation tak-
ing over 6200 seconds. For reference, in the actual game, M
and N can each reach up to 10.

For purposes of comparison, we will continue using the
same iteration limit. In principle, the actual maximum num-
ber of iterations is unbounded. However, Troll outputs an
explicit enumeration of possible final outcomes and their
probabilities, which is a convenient format for the user; Any-
Dice also uses this format, and we have chosen to do so for
Icepool as well. The iteration limit is a response to the im-
possibility of actually outputting an infinite number of final
outcomes.

AnyDice At time of writing, AnyDice (Flick 2012a) is
perhaps the most popular online dice probability calcula-
tor. While AnyDice is not open-source, its API and perfor-
mance characteristics are consistent with enumerating multi-
sets. Like Troll, AnyDice uses its own domain-specific lan-
guage. Here is the same calculation as above in AnyDice
syntax:

set "explode depth" to 4
output [highest 3 of 5d[explode d10]]

Note that Troll counts the base d10 as an iteration while
AnyDice does not count it as part of the depth, so the ac-
tual number of iterations is the same in these two examples.

AnyDice is faster on this, taking only about 2 seconds
(running on unknown hardware). However, increasing the
number of dice rolled from 5 to 6 causes the script to exceed
AnyDice’s 5-second timeout. Indeed, in an accompanying
article (Flick 2012b), AnyDice itself also gives L5R as an
example of a difficult-to-calculate mechanic.

The Fundamental Inefficiency In general, any given dice
mechanic will correspond to some function over the roll of
a dice pool. If such a function is allowed to depend on the
entire ordered sequence of dice rolls, it would have to be
evaluated once for each possible such sequence, the number
of which is exponential in the number of dice in the pool.
If such a function only depends on the sorted sequence of
dice rolls, the number of possible sequences is polynomial
in the number of dice if the number of possible outcomes
per die is kept constant. However, this polynomial may be of
quite high order—for example, (Mogensen 2009) notes that
the number of possible sorted sequences of n d10s grows as
Θ
(
n9

)
, and this is without the “explosion” mechanic used

in the above example.

Convolution: Fast but Not General
Efficient convolution-based algorithms do exist for the spe-
cific above case of “roll n dice and sum the m highest”. That
the probability distribution of the sum of two dice can be
expressed as a convolution is a classical result in statistics,
and this can be repeated to sum multiple dice. (Huber 2016)
gives a convolution-based algorithm for dropping the single
lowest die, which was later extended by (Scheuer et al. 2020)
to drop multiple dice. Unlike multiset enumeration, these al-
gorithms are jointly polynomial with relatively low order in
all parameters: the number of faces per die, the number of
dice rolled, and the number of dice kept and summed. In fact,
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with the use of fast Fourier transforms, these are asymptoti-
cally faster than the algorithm we present here.

However, these convolution-based algorithms only handle
this particular class of dice pool mechanic. Here are some
dice pool mechanics that fall outside this class:

Keeping / Dropping Dice at Arbitrary Indexes In cer-
tain situations Cortex Prime (Banks et al. 2020) may call for
dropping both some number of the highest and some number
of the lowest dice. In general we may imagine counting dice
at particular indexes after sorting them. While in principle it
would be possible to extend the above algorithms to cover
these cases, the expressions become increasingly complex.

Mixed Dice Pools Dice pools may consist of mixed types
of dice. For example, in Cortex Prime, the pool may consist
of a mixture of d4s, d6s, d8s, d10s, and d12s.

Non-Additive Mechanics Not all dice mechanics sim-
ply add the dice together. As noted earlier, Legends of the
Wulin (Ramos 2012) and CthulhuTech (Grau 2010) call for
finding matching sets and/or straights in the roll of a dice
pool. RISK (Lamorisse 1957) and similar mechanics (Isak-
sen et al. 2016) involve rolling two opposing dice pools, sort-
ing the results of each pool, forming pairs of one die from
each pool, and determining a result based on which side had
the higher die in each such pair.

Graphical Models
The problem of computing the probability distribution of
a dice mechanic could be formulated as a weighted model
counting problem where we seek to determine all marginal
probabilities, or as an exact inference problem over a graph-
ical model. These can be expressed using a probabilistic
programming language such as Dice (Holtzen, Van den
Broeck, and Millstein 2020) or Figaro (Pfeffer 2016) respec-
tively. These languages are more expressive than Troll, Any-
Dice, or our own Icepool in the types of observations and
inference queries they support.

However, these languages are less well-suited for the dice
pool setting in a couple of ways. First, they tend to be con-
siderably more verbose than Troll or AnyDice in this setting;
taking the sum of 12d6 takes a few lines, and the L5R ex-
ample given earlier has no obvious expression short of per-
forming a full explicit sort. Second, the action of sorting the
dice pool creates a dense network of dependencies between
the variables representing the pre- and post-sort rolls. This
poses a scaling problem for treewidth-sensitive algorithms
such as variable elimination.

These approaches need not be mutually exclusive. Our al-
gorithm could potentially be used to solve a subproblem as
part of a larger probabilistic program, with other parts of
the program being solved using variable elimination or other
methods.

Towards a Fast, General Solution
Ilmari Karonen and Matt Bogosian proposed dynamic pro-
gramming and iterating over the outcomes of the dice, e.g.
10, 9, 8, ..., 1 for d10s rather than the first die, second die, ...;
then using binomial coefficients to weight the probability of

a particular number of dice rolling each outcome. They ap-
plied these to produce efficient solutions to Neon City Over-
drive (Karonen and Bogosian 2021; Russell 2020) and L5R
(Karonen and Bogosian 2020). Beyond the tabletop dice
pool setting, (Galgana et al. 2021) used similar ideas as part
of an efficient algorithm for evaluating the joint cumulative
distribution function of order statistics at a queried point.
Our algorithm builds on these ideas to efficiently compute
the full probability distribution of “single-pass” functions
over discrete order statistics, focusing on dice pool mechan-
ics often found in tabletop games.

Basic Algorithm
We begin with the basic algorithm, which is sufficient to
demonstrate the broad form of the inputs and outputs as well
as the core efficiency of the method.

Input: Dice Pool
The user provides two inputs: a dice pool to evaluate the
dice mechanic on, and a transition function representing
the dice mechanic.

In the most basic case, a dice pool is defined by:

• An individual die, defined as a totally ordered set of pos-
sible outcomes. Let ℓ be the cardinality of this set. We’ll
start by considering the basic case where all outcomes
are equally likely.

• The number of dice in the pool n.

Input: Transition Function
The transition function formulates the dice mechanic in
question as an incremental calculation. When evaluating a
particular roll of the dice pool, the transition function will
be called once for each possible outcome of the dice in the
pool. The arguments are the current state (or a null value at
the beginning, such as None in Python), the outcome, and
the number of dice in the pool that rolled that outcome. The
transition function then returns the next state.

For example, when evaluating a particular roll of a pool
of d10s, the sequence of calls would look like this:

state = None
state = next_state(state, 1, num_ones)
state = next_state(state, 2, num_twos)
state = next_state(state, 3, num_threes)
# ...
state = next_state(state, 10, num_tens)

effectively performing a single pass over the sorted sequence
of individual dice, grouped by outcome. Typically the state
will contain some sort of running total. For example, this
transition function sums the dice in the pool:

def next_state(state, outcome, count):
if state is None:

return outcome * count
else:

return state + outcome * count

This is not particularly impressive by itself, as finding the
distribution of the sum of dice rolls can be done through re-
peated convolution as noted previously. The advantage here
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is that different transition functions can be used to represent
different dice mechanics. For example, this transition func-
tion produces the largest matching set in the pool and its
outcome, e.g. a roll of 4, 4, 4, 5, 8, 8, 8, 9, 9 would result in
(3, 8):
def next_state(state, outcome, count):

if state is None:
return count, outcome

else:
return max(state, (count, outcome))

(n.b. In Python, tuples are lexicographically ordered.)
Or, the length of the longest straight, i.e. the largest subset

consisting of consecutive numbers:
def next_state(state, outcome, count):

if state is None:
best_run = 0
run = 0
prev_outcome = outcome - 1

else:
best_run, run, prev_outcome = state

if count >= 1:
if outcome == prev_outcome + 1:

run += 1
else:

run = 1
best_run = max(run, best_run)

else:
run = 0

return best_run, run, outcome

The user may implement the optional final_outcome
method to do any desired finalization and/or cleanup
to the final states; for example, in the above case
they might marginalize out the now-extraneous run and
prev_outcome fields, leaving just best_run. Note that
final_outcome occurs outside of the memoization, as
all of these fields are necessary for computing future calls.

Output: Weight Distribution
The output of our algorithm is a distribution of weights
equivalent to evaluating the transition function on all pos-
sible rolls of the pool and counting how many ended up in
each final state. The output itself can be considered to be a
die.

The Underlying Algorithm
However, we don’t want to actually enumerate all possible
rolls of the dice pool; as noted before, the number of such
possibilities is a barrier to efficiency. Instead, the incremen-
tal formulation of the transition function allows us to use
dynamic programming. To find the output for a dice pool of
ℓ outcomes per die and n dice, the algorithm recursively uses
memoized solutions for dice pools of ℓ−1 outcomes per die
and 0 . . . n dice.

Specifically, in each call we pop the greatest outcome
from the die, and then for k = 0 . . . n:
• Compute how many ways there are for k out of n dice to

roll the current outcome. This is just the binomial coeffi-
cient

(
n
k

)
. These coefficients can be efficiently computed

and memoized using Pascal’s triangle.

• Recursively compute the solution for a pool with the cur-
rent outcome removed from the die, and n−k dice in the
pool.

• For each state in the recursive distribution, apply the tran-
sition function, giving the current outcome and k as the
other arguments. Then add the resulting state to the out-
put distribution with weight equal to its recursive weight
times the binomial coefficient.

If the last remaining outcome is popped, all n dice must
roll that outcome, leading to the base case of a die with an
empty set of outcomes and 0 dice in the pool. This is con-
sidered to produce a distribution consisting of just the state
None (Python’s null value) with weight 1.

Here is sample Python code for the basic algorithm:

@cache
def solve(die, n):

outcome, die = die.pop()
if len(die) == 0:

state = next_state(None, outcome, n)
return {state : 1}

result = defaultdict(int)
for k in range(n + 1):

tail = solve(die, n - k)
for state, weight in tail.items():

state = next_state(state,
outcome, k)

weight *= comb(n, k)
result[state] += weight

return result

An example call graph is shown in Figure 1:

• Vertexes are unique calls. Since the algorithm is mem-
oized, the state distribution at each vertex will be com-
puted exactly once.

• Edges are all calls. Each edge has weight equal to a bi-
nomial coefficient.

• Each path from a vertex to the sink (base case) corre-
sponds one-to-one with a possible sorted sequence of
dice rolls of the starting vertex’s dice pool. The product
of the weights of the edges on the path is the weight of
rolling that sorted sequence. This is equivalent to the de-
composition of a multinomial coefficient as the product
of binomial coefficients as given in (Knuth 1997):(

k1 + k2 + . . .+ kℓ
k1, k2, . . . kℓ

)
=(

k1 + k2
k1

)(
k1 + k2 + k3

k1 + k2

)
. . .

(
k1 + . . .+ kℓ

k1 + . . .+ kℓ−1

)
where k1 + . . . + kℓ = n. The edge weights on each
path from top to bottom are exactly these binomial coef-
ficients from right to left.

Thus, the incremental formulation allows us to consider
only each edge (times some number of states) rather than
each path.

Running Time
The total number of edges in the graph (= total calls) is
Θ
(
ℓn2

)
. If the number of states in each distribution is
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Figure 1: Call graph for 3d3. The vertexes (unique calls) are
labeled with the dice pool using “d” syntax; for example,
“3d2” means three dice with two sides each. The edges (all
calls) are weighted with binomial coefficients. The dashed
calls may be elided and redirected to the base case ∅.

O (s) then the transition function will be evaluated O
(
sℓn2

)
times. The overall running time can be bounded by multi-
plying this by the mean time accounted to each evaluation
of the transition function. Contributors to this are evaluating
the transition function itself; dictionary and memoization
management (e.g. hashing); and multiplying and accumulat-
ing weights. Our Icepool implementation uses exact integer
weights, paying an extra cost compared to floating-point in
exchange for obviating any concerns about precision. If the
total weight (see next section) per die is W , the denominator
of n dice is Wn, and it takes O (n logW ) bits to represent
each weight. If the Karatsuba algorithm (Karatsuba and Of-
man 1962) is used for integer multiplication, as is done in
the default implementation of Python (Craig, Peters et al.
2002), each multiplication takes O

(
(n logW )

1.585
)

time.

For best efficiency, the state should store the minimum
amount of information needed to compute the result, as the
time needed to compute the full weight distribution could be
up to linear in the number of possible states. In the extreme
case, we could store the entire sequence of rolls inside the
state, in which case we could see the entire sequence at the
end, but this would effectively enumerate all possible mul-
tisets and thus provide no efficiency advantage. Effectively,
our algorithm allows the transition function to selectively
forget information in exchange for efficiency.

Extensions
With the basic algorithm in hand, we can start extending
it to cover additional types of game mechanics. Except as
noted otherwise, all of these extensions are mutually com-
patible. Furthermore, apart from the provision for multiple
pools, the transition function interface remains unchanged,
allowing these extended pool definitions to be flexibly com-
posed with different transition functions.

Non-Uniform Weights
What if not all outcomes are equally weighted? In this case,
for an outcome of weight w, the binomial coefficients

(
n
k

)
must be replaced with

(
n
k

)
wk. Fortunately, it is easy to com-

pute a weighted Pascal’s triangle: before adding the previous
row to a copy of itself shifted to the right by 1, multiply the
shifted copy by w.

Keeping / Dropping Dice
Returning to our common example of dropping some num-
ber of the lowest dice from the pool, we can solve this by
augmenting the pool definition with a count-list of length n,
with the element in the ith position specifying whether the
die in the ith sorted position should be counted. For exam-
ple, “roll 5 dice and count the 3 highest” would correspond
to the count-list [0, 0, 1, 1, 1]. Whenever we decide that k
dice rolled the current outcome, we pop k elements off the
end of the count-list, count how many are true, and send that
as the “count” to the transition function.

This leads to some further extensions with no extra work:

• Dice can be kept at arbitrary sorted positions rather than
just taking them from one end or the other; for example,
[0, 1, 0, 1, 0] would drop the lowest, median, and highest
dice out of five. This can be useful for e.g. evaluating
mechanics where players take turns drafting rolls from a
common pool.

• There’s nothing special about booleans: we could count
an individual position multiple or even negative times.
For example, [-1, 0, 0, 0, 1] combined with the summing
transition function would produce the difference between
the highest and the lowest die. In principle we could even
attach arbitrary data to each sorted position, though so
far we have not found practical use for anything beyond
integers.

Optimization: Pruning Zeros This optimization is
adapted from (Karonen and Bogosian 2020). If, at some
point in the call graph, all of the remaining elements of the
count-list are zero, then none of the remaining dice will be
visible to the transition function—it will see a count of zero
for all remaining outcomes regardless of the rolls of the re-
maining dice. We can therefore pre-emptively remove all
dice from the pool in exchange for the product of the weights
of the remaining dice in the pool. This prunes columns from
one side of the call graph, which results in a significant
speedup if most of the lowest or highest dice are dropped.

With this, we can consider the equivalent of the opening
example with 6 dice:

d10.explode(max_depth=4).keep_highest(6, 3)
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Problem Troll AnyDice Icepool
12d6 12 < 100 3 +60
L5R roll 5 keep 3 100 000 < 2 100 16 +60
L5R roll 6 keep 3 6 200 000 - 17 +60
L5R roll 10 keep 5 - - 37 +60
RISK 3d6 vs. 3d6 370 < 1 000 4 +60
RISK 4d6 vs. 4d6 10 800 - 7 +60
RISK 5d6 vs. 5d6 390 000 - 12 +60
RISK 10d6 vs. 10d6 - - 95 +60

Table 1: Comparison of execution times (in ms). Troll and
Icepool were run on an Intel i5-8400. Troll does not report
internal computation time; the figures for Troll include an
estimated 10 ms of startup time. It takes about 60 ms to start
Python and import icepool, indicated as “+60”. Any-
Dice is hosted on a remote server with unknown hardware
and an execution time limit of 5 000 ms, so we have only
an upper bound (for computations that don’t time out) or a
lower bound (for computations that do). L5R refers to ex-
ploding d10s with at most 4 explosions, as introduced in the
Prior Work section. The RISK mechanic computes the dif-
ference in the number of pairs won by each side, as given in
Section 3.1 of (Isaksen et al. 2016), with the Troll and Any-
Dice programs being taken from (Mogensen et al. 2016).

(Note that, unlike Troll but like AnyDice, the max_depth
parameter in Icepool does not count the initial roll.) This
takes 17 milliseconds, which is over 300 000× as fast as
Troll. Even if we increase the pool to roll 10 keep 5, the
execution time is only 37 milliseconds. See Table 1 for a
summary of timings.

Multiple and Mixed Pools
Some dice pool systems, such as RISK (Lamorisse 1957)
and Neon City Overdrive (Russell 2020), involve rolling
multiple independent pools of dice. In other cases, the me-
chanic may call for multiple types of dice with different
weights for outcomes. These can be handled by simply gen-
erating independent counts for each pool and taking the joint
distribution. The transition function then receives a count for
each pool or a total of counts as appropriate. While rela-
tively expensive (the running time grows exponentially with
the number of pools), the number of pools is usually a small
constant, so this suffices for most cases.

For example, a RISK-like transition function might look
like this:

def next_state(state, outcome, a, b):
net_score, advantage = state or (0, 0)
if advantage > 0:

net_score += min(b, advantage)
elif advantage < 0:

net_score -= min(a, -advantage)
advantage += a - b
return net_score, advantage

with the outcomes being seen in descending order.
advantage is the number of unpaired dice that rolled a
previous (higher) number. If positive, it favors side A; if neg-
ative, it favors side B. At each step we pair these off with any

2d8
2d6

2d7
2d6

1d7
2d6

0d7
2d6

4d63d62d6

4d53d52d51d50d5
...

...
...

...
...

(
2
0

)(
2
1

)
(
2
2

)

Figure 2: Partial call graph for mixed right-truncated dice,
starting with a pool of two eight-sided dice and two six-
sided dice (“2d8 and 2d6”). The call graph takes on a stair-
case rather than a rectangular shape, but otherwise works the
same as the non-mixed case. The call at “0d7 and 2d6” may
be elided, instead redirecting to “2d6”, though guarantee-
ing consecutive outcome order may be convenient for some
transition functions, such as finding straights.

newly-rolled dice of the disadvantaged side.
The above dice mechanic is the same as that of Section

3.1 of (Isaksen et al. 2016). Compare the number of evalua-
tions done by various algorithms on a contest of 5d10 versus
5d10:

• 1010 = 10 000 000 000 unsorted sequences

•
(
14
9

)2
= 4 008 004 pairs of multisets

• Our algorithm: < 9 000 state transitions (the exact num-
ber depends on whether pools of 0 dice are elided)

Mixed Right-Truncated Dice
If the dice in a pool differ only by right-truncation, then it
is possible to compute the result without paying the penalty
of using multiple pools. This covers the most common case
of a mixture of standard dice: d4s, d6s, d8s, d10s, and d12s.
We take advantage of the fact that, conditional on not rolling
an 12 or 11, a d12 is no different than a d10; conditional on
not rolling a 10 or 9, a d10 is no different than a d8, and
so forth. If the call graph proceeds from the greatest to the
least outcome, at each call all of the dice we pop an outcome
from are identical, and the binomial weighting is still valid.
An example call graph for a pool of two eight-sided dice and
two six-sided dice is shown in Figure 2. In code, this could
be expressed as

Pool([d6, d6, d8, d8])[-2:].sum()

263



where the [] operator on a pool is used to set the count-list,
and the sum() method runs the summing transition func-
tion over the pool.

Descending Outcome Order
If all the dice in the pool are the same, presenting the out-
comes to the transition function in descending order is triv-
ial by symmetry. While many dice pool mechanics could be
computed using either ascending or descending order, some-
times one direction is more convenient when writing the
transition function, e.g. the RISK case above where the dice
are paired in descending order; and/or more efficient, e.g.
due to the zero-pruning optimization. A more troublesome
case is when descending outcome order is combined with
mixed right-truncation. In this case we can make the algo-
rithm iterative instead of recursive, and evaluate vertexes in
the call graph from top to bottom rather than bottom to top.
However, this is less amenable to memoization across mul-
tiple queries since call trees tend to be more similar closer to
the empty pool (bottom left in the figures).

Cards
A similar strategy can be used for dealing hand(s) of cards
from a deck, i.e. sampling without replacement, albeit this
formulation is perhaps relatively less congruent to typical
card game mechanics. In this case, each weighted binomial
coefficient

(
n
k

)
wk is replaced with

(
K
k

)
, where K is the num-

ber of cards in the deck showing the outcome under con-
sideration. Truncation as described here is not applicable to
card deals, but card deals can employ a count-list, they can
be evaluated jointly with each other and/or dice pools, and
they have the same considerations regarding iteration order.

Limitation: Post-Roll Decisions
Our algorithm does not handle many cases where the player
makes decisions after the pool is rolled. For example:

• Legend of the Five Rings 5th Edition (Brooke et al. 2018)
uses different dice than its predecessors, with each die
having several possible symbols. Particular symbols may
be more or less desirable depending on the situation and
on the other rolls in the pool, making the choice of which
dice to keep non-trivial.

• Cortex Prime (Banks et al. 2020) may have the player
choose an “effect die” from the pool after rolling. That
die cannot be counted as part of the total, but choosing a
larger effect die can increase the benefits of a won con-
test. Thus the player may be forced to choose between a
better chance of winning the contest and getting a bigger
win if they do win.

While such post-roll decisions could be approached using
e.g. Markov decision process techniques, the tabletop setting
poses several special challenges:

• The optimal choice may not be an explicit part of the
game rules; it may depend on the specific context in
which the roll is made and/or on individual player pref-
erences.

• Declaring an explicit policy (“if I roll X then I will
choose Y”), or even a utility function, may be difficult
for the user.

• Even with a policy in mind, it may not be efficiently
expressible in a single pass over the sorted sequence of
rolls.

The Icepool Python Package
We have implemented this algorithm as part of the Icepool
Python package. In addition, Icepool implements common
operators and methods of dice: arithmetic, comparisons,
rerolling, exploding, substitution of outcomes, and so forth;
as well as provisions for multidimensional and non-integer
outcomes. Icepool is available on PyPi, with source code
provided at https://github.com/HighDiceRoller/icepool.

Along with the source code, we also present a selection of
interactive webpages and over twenty example JupyterLite
(Tuloup et al. 2022) notebooks. These demonstrate solu-
tions to a variety of dice pool mechanics found in published
games, dice questions posed by users across the Web, and
all of the RISK-like mechanics proposed in (Isaksen et al.
2016). In particular, the notebook for the last recomputes the
entire collection of tables from that paper in under 2 seconds,
including replacing Monte Carlo simulations with exact so-
lutions.

In turn, these are powered by Pyodide (Droettboom et al.
2019), which allows Python scripts to be run in a web
browser with ample performance for this purpose.

Conclusion
We have presented a general and fast algorithm for comput-
ing the probabilities of dice pool mechanics, along with Ice-
pool, a pure Python implementation of the algorithm com-
bined with a library of common dice operations. The effi-
ciency and interoperability of this package enables a wider
variety of game mechanics to be analyzed and applications
to be developed. We hope this will be a useful tool for play-
ers, designers, and analysts of tabletop games alike.
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