
Playing with the Strings:
Designing Puppitor as an Acting Interface for Digital Games

Nic Junius, Michael Mateas, Noah Wardrip-Fruin, Elin Carstensdottir
University of California, Santa Cruz

1156 High Street
Santa Cruz, California 95064

njunius@ucsc.edu, michaelm@soe.ucsc.edu, nwardrip@ucsc.edu, ecarsten@ucsc.edu

Abstract

Interactive drama has focused on how to allow the player
agency in influencing their experience through plot action. In-
teractive drama’s preoccupation with changing plot structure
bears little resemblance to theater’s emphasis on character ex-
pression and dramatic play. Dramatic play allows the player
to embody the character through actions, focusing on how
characters express themselves and react rather than on how
or even if that impacts the overarching sequence of events.
In this paper, we present Puppitor, a system for character
expression of emotion for interactive storytelling built using
acting practice and fighting games as the foundation for its
core design and describe its usage in conjunction with Ren’Py
to facilitate a novel interactive narrative experience as a case
study.

Introduction
Interactive drama has sought to tackle the question of how
to allow the audience to become a player in the narrative by
drawing heavily from theatrical practices and theory. For the
systems that explicitly describe themselves using this term,
the ability for a player to change the plot structure and direc-
tion through their choices (plot action) is a central compo-
nent of turning an audience member into a player. However,
when looking at the way theater itself is created, particu-
larly practices that surround acting and its relationship to a
script, this preoccupation with changing plot structure bears
little resemblance to the art of creating drama, described as
embodying and giving life to a literary character through ac-
tions on stage (stage action) (Levin and Levin 2002). Plot
action is concerned with the events of a story, what happens,
who is involved, what order do the events happen in. Stage
action is concerned with the details of the way those events
are enacted, how does a character say something, what is
the reaction to a movement, how does a character convey a
feeling. Interactive drama asks what characters should do in
a story. For theater, how characters act in a story is equally
important.

Therefore, the question of how characters express them-
selves and how interaction with characters is conducted by
the player, is significant to any study and development of AI

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

characters in interactive drama systems. Character expres-
sion and reaction is central to the feedback players use to
determine how to react and reason about AI characters and
shapes their expectations for the interaction. Further, the in-
terface and/or control scheme the players use to communi-
cate their intentions back to an AI character shapes their un-
derstanding and experience (Sali et al. 2010).

Many existing interactive drama systems’ approaches rest
on the assumption that constructing or altering plot structure
based on actions and events taking place during a simula-
tion is the way to include a player in a drama. For example,
Façade enforces a degree of plot structure using its underly-
ing reactive planner written in ABL (Mateas and Stern 2002)
to create a coherent and focused narrative while giving the
player a wide array of choice in how they act. That is not to
say that these systems lack expressivity for their characters.
Versu (Evans and Short 2014) takes a more distributed ap-
proach to storytelling by allowing characters’, whether AI or
player controlled, pursuit of their own goals to drive conflict
in the plot rather than enforcing a more structured experi-
ence and uses character’s subtle expressions as a core part
of interaction.

While these systems support expressivity for their char-
acters, their emphasis and focus on altering the plot tends
to turn this expressivity into another means for impacting
the plot progression rather than facilitating the exploration
of a story through dramatic play. Dramatic play allows the
player to embody the character through actions and in doing
so focus on how the characters express their emotional reac-
tion rather than how or even if that impacts the overarching
sequence of events. While both approaches have merit, the
exploration of player expressivity and play with AI charac-
ters in the context of dramatic play has been comparatively
under-explored.

In this paper, we present Puppitor, a system for character
expression of emotion for interactive storytelling. Puppitor
centers expressivity and dramatic play to allow players to
focus on interaction with AI characters rather than focus-
ing on plot action. Puppitor is a computational caricature
(Smith and Mateas 2011) of physical theatrical acting prac-
tice, that allows players to control the characters’ physicality
in a narrative space similarly to how they might control fight-
ing game characters in a combat context. Built on existing
acting practice (Levin and Levin 2002; Bogart and Landau

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

250



2005; Rimer, Yamazaki et al. 1984), Puppitor provides an
embedded domain specific language for specifying charac-
ter rules for how performing actions convey emotion. In this
paper, we describe Puppitor in detail, and showcase how it
enables varied dramatic character expression through a case
study of the visual novel Tracks in Snow.

Related Work
Interactive Drama
Interactive drama traces its roots back to Brenda Laurel’s
dissertation (Laurel 1986) and the development of inter-
active Aristotelian dramatic theory through the Oz project
(Mateas 1999) and Façade (Mateas 2001; Mateas and Stern
2002, 2005). Foundational to interactive drama is the idea
that plot must react to a player’s actions. In pursuit of more
simulation oriented approaches, psychology and sociology
were leveraged to develop and augment interactive drama
systems (Si, Marsella, and Pynadath 2005; McCoy, Mateas,
and Wardrip-Fruin 2009; McCoy and Mateas 2009; Evans
and Short 2014) such as Comme il Faut which draws from
Goffman’s social dramaturgy to guide its creation of modu-
lar social exchanges (McCoy and Mateas 2009). Other sys-
tems are not as steeped in the Aristotelian approach and draw
from a variety of sources (Szilas 2003; Cavazza et al. 2007;
El-Nasr 2007) such as the story engine from Madame Bo-
vary on the Holodeck explicitly using Gustav Flaubert’s in-
ventory of feelings to direct character goals (Cavazza et al.
2007). None of these systems, however, refute the core as-
sumption of the Aristotelian approach: that changing the plot
is core to interactive storytelling.

These interactive drama systems commonly have some
sort of emotional model as part of their character definitions,
from Madame Bovary’s inventory of feelings (Cavazza et al.
2007) to Versu’s emotional states based on Ekman’s typol-
ogy (Evans and Short 2014) to Mirage’s usage of Hap sup-
ported by an emotion model similar to FLAME (El-Nasr
2007; El-Nasr, Yen, and Ioerger 2000). When compared to
a system specifically designed as an emotional model, such
as GAMYGDALA (Popescu, Broekens, and van Someren
2014), the distinction between an emotional model and per-
formance model, such as Puppitor, becomes clear. First,
GAMYGDALA uses psychology as its theoretical foun-
dation while Puppitor uses theater. GAMYGDALA imple-
ments a specific model of emotion, OCC (Ortony, Clore, and
Collins 1990), and using the system requires use of that par-
ticular emotional model whereas Puppitor is designed for
use with multiple different theories within its framework
beyond the Stanislavsky, Nō, and Viewpoints domain de-
scribed in this paper.

Acting Practices
The primary influences for Puppitor’s design are
Stanislavsky’s Method of Physical Actions (Levin and
Levin 2002), Viewpoints (Bogart and Landau 2005), and
Nō theater (Rimer, Yamazaki et al. 1984). Each provides a
unique perspective on how to express emotions and charac-
ter through physicality. For a more detailed discussion for
how these practices relate to characters in digital games see

(Junius, Mateas, and Wardrip-Fruin 2019). We summarize
acting practice influences for Puppitor’s design specifically
below.

Over the course of his career, Stanislavsky iterated his
acting philosophy numerous times, the most well known of
which is the Method with its emphasis on analyzing char-
acter objectives (Levin and Levin 2002). The Method of
Physical Actions, a later iteration, emphasizes the connec-
tion through physical action between actors on stage (Levin
and Levin 2002). Puppitor draws from the latter to model
the way gesture conveys feeling. Central to the Method
of Physical Actions is the idea that actions on stage are
all performed with some amount of energy flowing from
somewhere within an actor towards someone else on stage.
Stanislavsky calls these actions and their changes over the
course of a sequence of performances an actor’s adjustments
(Levin and Levin 2002).

Like the Method of Physical Actions, the Viewpoints are
a reaction to the internal focus of Stanislavsky’s original
Method, stemming from innovations in choreography in the
1960s and 70s (Bogart and Landau 2005). Anne Bogart and
Tina Landau define the Viewpoints as a set of names given to
certain principles of movement through time and space, con-
stituting a language for talking about what happens on stage
(Bogart and Landau 2005). They use nine Physical View-
points separated into the categories of Time and Space. Pup-
pitor draws from the viewpoints to define the way gestures
can be held and repeated by players.

In his writings on Nō theater, Zeami focuses heavily on
the audience’s experience of a performance and how an
actor’s physicality can emphasize elements of a script but
the script importantly provides context for that physicality
(Rimer, Yamazaki et al. 1984). He describes this as “commu-
nicat[ing] first by hearing, then by sight” and describes how
actions preceding their context will have diminished read-
ability and weight (Rimer, Yamazaki et al. 1984). Rather, he
suggests that a person’s intentions give way to their behav-
ior and that the context the words of a script provide ground
those actions (Rimer, Yamazaki et al. 1984). Importantly,
the way an actor speaks and gestures should align both with
each other and with the text. Puppitor uses this inspiration to
guide the creation of its set of actions to be expressive and
fit a wide range of contexts.

Applications of Theater in Computational Media
The aforementioned acting practices have been used
in conjunction with prior computational media work.
Stanislavsky’s volitional objectives have been used as inspi-
ration for the character behavior system in Mirage (El-Nasr
2007) and his active analysis technique (an evolution of vo-
litional objectives) has been used as part of a framework for
crowd sourced social simulation training (Feng et al. 2016).
The Viewpoints have been used as part of allowing AI sys-
tems to interpret human gestures (Jacob, Zook, and Magerko
2013). While both Puppitor and the Viewpoints AI use Bog-
art and Landau’s Viewpoints as their foundation, each sys-
tem uses the acting practice for different ends. The View-
points are rules for interpreting live human gestures in the
Viewpoints AI (Jacob, Zook, and Magerko 2013). In con-

251



trast Puppitor uses the Viewpoints as part of the design of the
interface on a more standard game controller (the keyboard).
The use of masks in Nō theater as well as Stanislavsky’s
Method have been noted as inspirational for work in trans-
formative play (Tanenbaum 2011; Tanenbaum and Tanen-
baum 2015). While all of this work in computation does
draw from similar acting practices as the ones underpinning
Puppitor’s design, their primary goals are not character ex-
pressivity and they thus draw from different aspects of each
practice.

Translating from Theater to Computation
Puppitor is the synthesis and translation of the three afore-
mentioned acting practices, the Method of Physical Actions,
the Viewpoints, and Nō, into a compuational system built
around the categories of actions and modifiers. Actions are
major changes in a character’s physicality which directly
carry emotional weight. Modifiers are small changes ap-
plied to actions which alter the relationship of actions to the
expression of emotions. Puppitor’s architectural decisions
and connection between actions and expression mostly draw
from the Method of Physical actions and Viewpoints while
the way the system relates to narrative and its approach to
using text to contextualize its library of actions draws heav-
ily from Nō.

The flow of energy and the concept of adjustments from
the Method of Physical Actions are what became actions
and modifiers respectively in Puppitor. The actions are based
on the three energy states that Stanislavsky describes: unre-
stricted flow of energy between partners (Levin and Levin
2002) became open flow in Puppitor, restraining energy to-
wards a partner (Levin and Levin 2002) became closed flow,
and pushing a partner away with energy (Levin and Levin
2002) became projected energy. Adjustments became the
general idea of modifiers, though the specific modifiers im-
plemented in our case study’s domain come from the View-
points.

As Puppitor doesn’t have a central component of space,
the Viewpoints of Time were the focus for its design. All
four, tempo; duration; kinesthetic response; and repetition
(Bogart and Landau 2005), exist in Puppitor in some form
but tempo, duration, and repetition are the ones most present.
Tempo became a set of modifiers: tempo up and tempo
down. Duration became the fundamental method of interac-
tion, a player performing an action and modifier for any de-
sired length of time by pressing and holding a button down.
Repetition, while less singular in its presence, is a necessary
part of building the core interaction model around a limited
set of actions and modifiers available. How all of these ac-
tions and modifiers relate to text and other non character el-
ements draws from Nō’s views on how scripts contextualize
action on stage.

Unlike The Method of Physical Actions and The View-
points, Puppitor’s usage of Nō elements is less focused on
the structure of the system itself and instead on how the sys-
tem fits with narrative text. Zeami views it as part of the nar-
rative text’s job to contextualize the actions of a performance
(Rimer, Yamazaki et al. 1984). Puppitor, with its necessar-
ily limited set of actions and modifiers, similarly relies on

the text surrounding it to add further specificity and weight
to the performance of each action. Tracks in Snow’s imple-
mentation of Puppitor adds an element of line reads to the
way a character performs by changing the typography of the
displayed line based on the expressed emotion of a character
when they began saying the line. This in turn further grounds
the physical actions the character is taking and allows play-
ers flexibility to play with contrasting and emphasizing the
emotional weight of any given line in a scene.

Fighting Game Characters
Theater practice does not provide a sufficient guide for de-
veloping the computational underpinnings of a system for
character expression. There is, however, an existing model
of computational physicality that shares some of the same
values as Puppitor: Fighting games.

Fighting games are an abstraction of martial arts (Miller
2020). At their core, fighting games rely on tracking a char-
acter’s state over time for each move they do using frame
data (Jett 2012): the information determining how long a
move takes to be able to damage an opponent, how long
it can damage an opponent, and how vulnerable it makes a
character when they miss, hit, or are blocked. This abstrac-
tion matches the level of detail to what was desired for Pup-
pitor’s relationship to theatrical acting as fighting games tie
a single action to a button press while allowing for those
actions to be modified, such as pressing a button making a
character punch but adding a specific motion allowing them
to throw a fireball instead.

Fighting game frame data usually specifies a sequence
of states: startup, active, recovery, roughly simulating the
physics of throwing a punch or kick. Frame data became the
basis for translating the relatively coarse actions and mod-
ifiers in Puppitor into more nuanced expressions of emo-
tion and going beyond each action being tied to a single
emotion. Puppitor allows for fluidly updating all of its emo-
tional affects with each performed action, roughly simulat-
ing Stanislavsky’s description of energy flowing out of inter-
nal movements.

Puppitor does not seek to replicate the exact technical
complexity of inputs found in fighting games like Street
Fighter IV (Capcom 2008), Tekken 7 (Bandai Namco 2015),
or Under Night In-Birth (French Bread and Ecole Software
2012) though it still takes direct inspiration for aspects of its
interface design. Tekken maps each of its four buttons onto a
specific body part and action combination: left punch, right
punch, left kick, and right kick, then lets each of those but-
tons be modified based on the direction of movement. For
example standing left punch is a completely different kind
of punch than forward left punch even if they both rely on
the character’s left arm. In contrast, Under Night simply la-
bels its buttons A, B, and C broadly mapped onto increasing
reach and damage, with A being the shortest, fastest moves
and C being the longest, slowest ones. What exactly A, B,
and C correspond to in Under Night is entirely character
specific, one character’s A might be a short kick, a punch
with a sword hilt for another character. Additionally, many
moves in Under Night require more complex individual in-
puts, when compared to Tekken, combined with a button

252



press to say, throw a projectile. Puppitor’s interface uses the
broader connection between button and action from Under
Night, mapping a button to a general category of action, such
as mapping N to the open flow action. The modifier keys act
more closely to directions in Tekken where combining open
flow with tempo up is an action with some different charac-
teristics than the neutral version.

System Architecture

Puppitor is broken up into two primary modules, the Action
Key Map and the Affecter. First, the Action Key Map trans-
lates player or AI input into an action and modifier for a
character to express. The Affecter then uses this informa-
tion to update that character’s Affect Vector (their emotional
state) based on the Character Affect Rules, specified in a
JSON file. The Character Affect Rules describe the way ev-
ery action taken and modifier applied will change values in
an Affect Vector each update cycle. The action and modifier
expressed out of the Action Key Map and the values stored
in the Affect Vector can then be used outside of Puppitor’s
core modules to drive character animations, change facial
expressions, alter musical scores, and any other methods of
feedback a designer may want. Puppitor is intended to be a
library and used beyond the visual novel developed along-
side it. Therefore, the specifics of how the system’s outputs
are used to alter visuals, text, and audio is necessarily project
dependent.

As part of implementing feedback in the visual novel
Tracks in Snow (see the case study), the Python version
of Puppitor includes an animation system, designed for use
with standard frame by frame sprite animation. This system
not only enables dynamic visuals for the system, it serves
as an example of how Puppitor’s output can be used as part
of a storytelling experience and connected to elements be-
yond its own modules. Since animation pipelines are very
malleable and project specific, this functionality is generally
outside the scope of Puppitor’s core set of features (and out-
side the scope of this paper), even if the system is intended
to work in conjunction with animation systems.

Beyond being incorporated into external code bases and
tools like Ren’Py (Rothamel 2004), Puppitor is designed
to be fully customizable within its action, modifier, affect
framework. The fixed parts of the system are its general cat-
egories of actions and modifiers as well as the method used
to update its emotional state. All the specifics of what ac-
tions and modifiers are used, the domain of the emotional
state, and the relationship between actions and emotions are
all completely customizable. All examples in this paper use
actions derived from Stanislavsky’s Method of Physical Ac-
tions: open flow, closed flow, projected energy, and resting.
Modifiers are derived from the Viewpoints: tempo up, tempo
down, and neutral. The set of emotions are: joy, anger, sad-
ness, worry, fear, and love. We want to stress that each of
these sets, while heavily rooted in the acting practices in-
spiring Puppitor, are only one possible choice for using the
system. As an embedded domain specific language, Puppitor
supports arbitrary sets of actions, modifiers, and emotions.

Figure 1: Puppitor translates inputs from a human or AI
player (triangle) into expressive actions (circles) based on
a specified ruleset (diamond) through its core modules
(hexagons), which update the character’s emotional state
(rectangles) and serve as inputs to control character anima-
tions (pentagon).

Action Key Map
The Action Key Map module is where all of the direct input
to the system (and by extension a character) is processed.
Everything in the module revolves around the general cate-
gories of actions and modifiers, the exact details of which are
specified as part of the Puppitor’s domain specific language,
an example of which can be found in the case study. Actions
are gestures, anything that would dramatically change the
way a character holds or carries themselves. Modifiers on
the other hand are for smaller adjustments that change the
feel of those larger actions. A designer specified default ac-
tion and modifier gives Puppitor a way to return a character
to a baseline state from any emotional state they may find
themselves in. This organization by actions and modifiers
is a part of each of the three elements the Action Key Map
tracks: the mapping of keyboard keys to actions (key map),
the tracking of key states and their associated actions (pos-
sible states), and the expressed action and modifier for use
in other Puppitor modules and outside of the library itself
(prevailing states).

The key map element of this module associates Puppitor
actions and modifiers with arbitrary sets of keys correspond-
ing to inputs on a keyboard. Any number of keys may be as-
sociated with a single action or modifier with the exception
of the default action and modifier, which never have inputs
mapped to them as they are intended to be chosen when there
is no input. As it relates to external usage, the key map is
where the listeners connecting the entirety of Puppitor to the
keyboard are created. The key map then allows for Puppi-
tor’s actions and modifiers to be integrated more directly into
code handling player input, as the link between keyboard
and meaning of the inputs is handled internally rather than
requiring additional setup. For example the Stanislavsky and
Viewpoints based actions and modifiers can be mapped as:

open flow : N
closed flow : M

253



projected energy : B
resting : None
tempo up : C
tempo down : Z
neutral: None

The possible states track the key states of the associated
non-default actions and modifiers, allowing multiple keys to
be held down simultaneously. To continue the example from
the discussion of the key map, if both the N and M keys are
pressed, open flow and closed flow will be flagged as active
states.

Puppitor requires that a single action and modifier be per-
formed at any given time which is where its final element,
prevailing states, comes in. This element takes the informa-
tion provided by the possible states and determines which
action and modifier to select as prevailing. Importantly, Pup-
pitor itself does not determine the priority of each action
and modifier, as the prevailing states’ update behavior sets a
specified action or modifier to active and makes every other
action or modifier to inactive. How this update behavior is
integrated into external programs is up to the developer us-
ing it. For example, when both open flow and closed flow are
active according to possible states, if prevailing states is first
told to set open flow to active and then is told to set closed
flow to active, only closed flow will be active.

Affecter
The Affecter is the core of Puppitor’s emotional expression
capabilities. The module is built around the idea of charac-
ters having rules that connect the actions they perform (as
stored in the Action Key Map) to particular expressions of
emotions. A character’s emotional state is represented by a
mapping of emotional affects to their corresponding float-
ing point values (the Affect Vector). Rulesets are made up
of series of entries in a JSON file that define the update
value each action applies to a character’s emotional state,
the multiplier each modifier applies to those update values,
the adjacency and edge weights of other emotions, and the
equilibrium point for the emotion to return to when the de-
fault action is performed. The rules are then loaded into the
Affecter itself and applied to the Affect Vector each update
cycle based on the action and modifier specified by the Ac-
tion Key Map.

For example, if the affects joy, anger, sadness, worry, fear,
and love are a Puppitor domain’s set of emotions, each will
have a corresponding entry in each character’s affect vector
and ruleset. The values in the Affect Vector default to the
equilibrium point specified in a ruleset, so an initial Affect
Vector could look like:

joy : 0.35
anger : 0.1
sadness : 0.54
worry : 0.77
fear : 0.54
love : 0.28

When updating an Affect Vector, the update value of an
affect is multiplied by the modifier value, then added to

the corresponding affect entry before the value in the Af-
fect Vector is clamped between a designer specified floor
and ceiling value. If no buttons are held, the default action
and modifier will be performed and move affect values to-
wards their corresponding equilibrium value rather than the
floor or ceiling value. Without clamping, each affects values
could grow or shrink to the point it would be nearly impos-
sible for characters to express certain emotions. Continuing
the example using closed flow as the active action, the up-
date values in joy, anger, sadness, worry, fear, and love’s af-
fect rules corresponding to each affect’s closed flow value
would be multiplied by 1.0 (as no modifier is being applied)
then added to the Affect Vector’s values. Using the below
affect rule entry fragment as an example, the joy value in the
above example Affect Vector would be 0.3495.

"joy" : {
"actions" : {

"resting" : -0.0003,
"open_flow" : 0.00004,
"closed_flow" : -0.0005,
"projected_energy" : 0.0005

},
"modifiers" : {

"tempo_up" : 1.14,
"tempo_down" : 0.5,
"neutral" : 1.0

},
"adjacent_affects" : {

"love" : 90,
"worry" : 10

},
"equilibrium_point" : 0.35

},

The adjacency lists in a ruleset specify a directed,
weighted graph of a character’s associations between emo-
tional affects, where higher weights are stronger associa-
tions. These lists take the form of percentage values mapped
to their corresponding emotional affect. Within Puppitor, the
adjacency lists play a small role as part of the system’s pro-
vided methods for picking the highest valued affect in a
character’s Affect Vector. As multiple affects can potentially
reach the ceiling value, the currently expressed affect is pri-
oritized. If the currently expressed affect is no longer one of
the highest valued affects, one of its adjacent affects is ran-
domly selected based on its weight value (a weight of zero
is ignored, if all adjacencies are zero, then an unweighted
selection is performed). If there are no adjacencies available
to pick, a simple random choice of any of the highest valued
affects is made. This selection process allows the emotional
state represented in the affect vector to be converted to a dis-
crete value, a character’s prevailing affect, for use outside
of Puppitor, should a single value be preferable to the entire
emotional state.

Where Puppitor’s adjacency lists provide much more
power and expressivity is when an AI system is puppeteering
a character, as they can be used to allow an AI character to
interpret another character’s expression of emotion (see the
case study for a more in depth explanation). This interpre-

254



Figure 2: Chiara (left) tells Rika (right) that she’ll give her
space if she wants. The tones of each version of the scene
pictured, angry Chiara and joyful Rika above and afraid
Chiara and angry Rika below, are drastically different in the
moment as well as how each scene was played before to cre-
ate these two moments in Tracks in Snow.

tation can be accomplished by using Puppitor’s adjacency
lists to set the goal of an AI algorithm (for example greedy
search) to be the AI’s character’s associated affect based on
what a different character is expressing. Using the updated
Affect Vector above as an example for a player character,
worry is expressed as it has the highest value at 0.77. To de-
cide how to respond, the AI character looks at the adjacency
list in the worry entry of its ruleset and sees it can either
respond by performing sadness or fear, each with a weight
of zero, so a random choice will be made (if the selection
follows the same logic as Puppitor’s internals).

Expression with Puppitor: a Case Study of
Tracks in Snow

Puppitor’s primary outputs are a character’s action, modi-
fier, and prevailing affect. In Tracks in Snow (Junius 2021;
June et al. 2021), a visual novel about two women flee-
ing their home during Passover and designed in conjunction
with Puppitor, the system’s actions and modifiers are used to
allow characters to dynamically change their poses and pre-
vailing affects are used to change characters’ facial expres-
sions. Each character’s prevailing affect also changes the ty-
pography of their lines when displayed. Finally, each char-
acter has a corresponding instrument in the musical score
which uses their prevailing affect to dynamically switch be-
tween tracks to further emphasize their expression of emo-
tion.

Character Through Actions and Modifiers
The two characters in Tracks in Snow’s cast were designed to
contrast with each other narratively, visually, and most im-
portantly systemically using Puppitor to support and empha-
size the other two aspects. Rika and Chiara share some of the
complexity of fighting game characters as part of their ex-
pressiveness. Fighting game characters feel different to play
based on the kinds of inputs they use as well as how their
animations and frame data all connect to create an expres-
sive character (Core-A Gaming 2016). Puppitor allows for
a similar degree of characterization when combining char-
acter poses, facial expressions, all linked together using the
system. Both Rika and Chiara use the same buttons on the
keyboard to gesture when being played by a human, though
which parts of the interface they emphasize is as much a
part of their personalities as their hairstyles, poses, or ways
of speaking.

Rika is a more flamboyant and mercurial character who
can access most of her emotional range by changing her ges-
tures without needing to rely on modifying any of those ges-
tures’ tempos. Her ruleset is mainly focused on using larger
actions to quickly switch between expressing different emo-
tional affects, as each action has a strong positive connection
to two affects and a strong negative connection to at least
two other affects. In this case briefly performing an inter-
mediate action to change Rika’s emotional state is the most
reliable way of moving her towards expressing a desired af-
fect. For example, if a player wants Rika to express anger
after she has had her feet up performing open flow for some
time (as in figure 2), first having her perform closed flow
will reduce her expression of joy and love, as both of these
affects are positively associated with the open flow action
and negatively associated with the closed flow action. A few
moments of being closed can then move into having her per-
form the projected energy action, which increases both anger
and love. Since Rika performed closed flow, love’s magni-
tude in her Affect Vector has been reduced, allowing anger
to then be expressed as desired.

Chiara on the other hand is a more subdued character
with a very wide worry streak who constantly has to ac-
tively overcome that worry to express other emotions. To
emphasize this anxious part of her personality using Puppi-
tor, as well as to provide a very different tactile experience
from playing Rika, Chiara almost always must modify her
actions to access the rest of her emotional range. Rather than
having two affects strongly associated with each action by
default, every unmodified action primarily increases worry.
Her modifiers then are designed to be both the only way of
shoving her worry aside by having each modifier and action
combination correspond to a strong expression of a single
affect as well as any modified action reducing worry’s over-
all value using a negative multiplier. For example, for Chiara
to even get angry (as she is in figure 2), she not only needs
to perform the projected energy action, she must specifically
modify it with tempo down. If she does not she will sim-
ply worry more. If she instead uses the tempo up modifier,
she will become joyful as joy is the affect with the highest
modifier multiplier and action value using the combination
of tempo up and projected energy.

255



When setting up either Rika or Chiara to be performed by
a human player, first their actions: open flow, closed flow,
and projected energy are mapped to the keyboard keys of:
‘N’, ‘M’, and ‘B’ respectively in the key map dictionary of
Action Key Map, allowing those keys to be listened for in
Ren’Py’s event handler. As part of the same process, their
modifiers: tempo up and tempo down are mapped to the keys:
‘C’ and ‘Z’ respectively. The default action of resting and
default modifier of neutral are passed into the Action Key
Map. Now when any of those keys are pressed, their cor-
responding action in the possible states dictionary will be
set to true. In the event no key is pressed, resting and neu-
tral will be true as the respective default action and modifier.
Finally, the possible states are used to determine which ac-
tion and modifier are expressed in the prevailing states dic-
tionary. The exact priority that prevailing states uses is de-
termined as part of connecting Puppitor to other system’s
update functionality. In Tracks in Snow’s case, this priority,
from highest to lowest, is: open flow, closed flow, and finally
projected energy.

Interpretation Using Affect Adjacencies
The AI actor in Tracks in Snow uses a greedy search to eval-
uate each of the action and modifier pairs it could perform
each frame and chooses the combination that will add the
highest value to the affect it is given the goal of performing.
By itself the search has very little ability to reason about
what is put in front of it, which Puppitor’s features can ad-
dress. Each affect in a Puppitor ruleset can be given adjacen-
cies to other affects within the domain, ultimately building a
weighted, directed graph of how emotional affects relate to
each other. In other words, the the associations a character
has about each affect.

In Tracks in Snow, the AI actor uses the adjacency lists as
primary method of allowing interpretation of what the hu-
man controlled character is doing. When the human player
performs any affect, the AI receives this and then chooses
an affect it wants to perform based on a weighted random
selection of an affect out of the adjacencies to that received
affect in its ruleset. A single adjacency will make for a fairly
calm performance from the AI using this approach as it only
has one association. By adding more associations, the AI
will commit less to trying to perform a single affect. When
used in conjunction with the weight values, the feel of these
changes can create different performances. To return to the
example in figure 2, if the AI is performing as Chiara and
Rika just started expressing joy, Chiara’s adjacencies for joy
are:

love : 90
worry : 10

Approximately ninety percent of the time the AI will try
to perform to express love back to Rika. The remaining ap-
proximately ten percent of the time the AI will try to per-
form worry back. The time it takes for emotions to change
means the AI will likely never be able to actually express
worry with this weighting, but it will make for a mostly sta-
ble performance with the occasional adjustment as the quick

attempts to express worry pop up. With a more balanced
weighting, such as:

love : 60
worry : 40

the performance will get more fidgety even with the
weighting still favoring love, worry may creep up every so
often and be fully expressed.

Puppitor’s adjacency lists provide a way for AI charac-
ters to interpret other characters’ performances through their
own associations with each emotional affect as well as pro-
vide an additional way to tune an AI’s performance within
the domain specific language itself. By design, most of Pup-
pitor’s language focuses on the way a character expresses
themselves, but with the adjacency lists, there is a built in
way for characters to make choices about how they want to
respond to other characters’ performances as well.

Through its implementation in Tracks in Snow, Puppitor
enables dynamic character expression either by a human or
AI player. These dynamic poses and facial expressions help
shape the tone of a scene alongside other sources of feed-
back like a reactive musical score and typography. All of
this feedback is realtime and continuous. As a result of this
layered approach, shadows of previous emotions can remain
as scenes progress and flashes of others can surface as char-
acters change what they are trying to express. Being a linear
narrative using Puppitor, Tracks in Snow has an emphasis
on interpretation and reflection as described by Junius et al
(Junius, Kreminski, and Mateas 2021), though the loop of
acting and reflecting is much more dependent on a player’s
desire to than built directly into the structure of the game.
One significant area of improvement is enabling the AI char-
acters to further reason about Puppitor’s state to make more
interesting acting choices.

Conclusion
Puppitor is a system for character expression of emotion
built as a computational caricature of theater acting practices
(Levin and Levin 2002; Bogart and Landau 2005; Rimer, Ya-
mazaki et al. 1984), and allows players to control the char-
acters’ physicality in a narrative space similarly to how they
might control fighting game characters in combat. Specifi-
cally, Puppitor maps actions and modifiers to keyboard in-
puts and based on this mapping applies rules about how
emotions are expressed, all specified using an embedded
domain specific language. Puppitor facilitates a wide range
of expression for both human and AI players to perform
characters, which we demonstrate through the case study of
Tracks in Snow. Puppitor provides means of systematically
exploring dramatic play and stage action, which the field of
interactive drama has left relatively under explored in favor
of plot action. Through emphasizing dramatic play, Puppitor
allows us to expand the study of AI character design and in-
teraction paradigms for interactive storytelling experiences,
and more broadly AI characters as they are utilized in inter-
active narrative and beyond. With Puppitor we hope to both
inspire further investigation of systems for supporting dra-
matic play as well as providing a new domain for work with
character performance.

256



References
Bandai Namco. 2015. Tekken 7. [Arcade; PlayStation 4;
Xbox One; PC Digital Download Steam], Japan: Capcom.
Bogart, A.; and Landau, T. 2005. The Viewpoints Book: A
Practical Guide to Viewpoints and Composition. Theatre
Communications Group.
Capcom. 2008. Street Fighter IV. [Arcade; PlayStation 3;
Xbox 360; PC Digital Download Steam], Japan: Capcom.
Cavazza, M.; Lugrin, J.-L.; Pizzi, D.; and Charles, F. 2007.
Madame bovary on the holodeck: immersive interactive sto-
rytelling. In Proceedings of the 15th ACM international con-
ference on Multimedia, 651–660.
Core-A Gaming. 2016. Analysis: How to Pick a Char-
acter. https://youtu.be/AGHGEttNjyo. Video accessed on
7/31/2022.
El-Nasr, M. S. 2007. Interaction, narrative, and drama: Cre-
ating an adaptive interactive narrative using performance
arts theories. Interaction Studies, 8(2): 209–240.
El-Nasr, M. S.; Yen, J.; and Ioerger, T. R. 2000.
Flame—fuzzy logic adaptive model of emotions. Au-
tonomous Agents and Multi-agent systems, 3(3): 219–257.
Evans, R.; and Short, E. 2014. Versu - a Simulationist Sto-
rytelling System. IEEE Transactions on Computational In-
telligence and AI in Games, 6(2): 113–130.
Feng, D.; Carstensdottir, E.; Carnicke, S. M.; El-Nasr, M. S.;
and Marsella, S. 2016. An active analysis and crowd sourced
approach to social training. In International Conference on
Interactive Digital Storytelling, 156–167. Springer.
French Bread and Ecole Software. 2012. Under Night In-
Birth. [Arcade; PlayStation 3; PC Digital Download Steam],
Japan: Aksys Games.
Jacob, M.; Zook, A.; and Magerko, B. 2013. Viewpoints AI:
Procedurally Representing and Reasoning about Gestures.
In Proceedings of DiGRA.
Jett. 2012. Universal Fighting Game Guide: How to Read
Frame Data. https://thirdpersonblog.wordpress.com/2012/
04/18/universal-fighting-game-guide-how-to-read-frame-
data/. Blog post accessed on 7/31/2022.
June, N.; Murray, R.; Marshall, C.; Duplantis, T.; Karth, I.;
and Kreminski, M. 2021. Tracks in Snow. [PC Digital
Download itch.io], USA.
Junius, N. 2021. TRACKS IN SNOW: A DIGITAL PLAY
ABOUT JUDAISM AND HOME. Master’s thesis, UNIVER-
SITY OF CALIFORNIA SANTA CRUZ.
Junius, N.; Kreminski, M.; and Mateas, M. 2021. There Is
No Escape: Theatricality in Hades. In Proceedings of the
16th International Conference on the Foundations of Digital
Games.
Junius, N.; Mateas, M.; and Wardrip-Fruin, N. 2019. To-
wards Expressive Input for Character Dialogue in Digital
Games. In Proceedings of the 14th International Confer-
ence on the Foundations of Digital Games.
Laurel, B. K. 1986. TOWARD THE DESIGN OF A
COMPUTER-BASED INTERACTIVE FANTASY SYSTEM
(DRAMA, PLAYWRITING, POETICS, EXPERT SYSTEMS,
THEORY). Ph.D. thesis, The Ohio State University.

Levin, I.; and Levin, I. 2002. The Stanislavsky Secret. Col-
orado: Meriwether Publishing.
Mateas, M. 1999. An Oz-centric review of interactive drama
and believable agents. In Artificial intelligence today, 297–
328. Springer.
Mateas, M. 2001. A preliminary poetics for interactive
drama and games. Digital Creativity, 12(3): 140–152.
Mateas, M.; and Stern, A. 2002. A behavior language for
story-based believable agents. IEEE Intelligent Systems,
17(4): 39–47.
Mateas, M.; and Stern, A. 2005. Structuring Content in the
Façade Interactive Drama Architecture. In AIIDE, 93–98.
McCoy, J.; and Mateas, M. 2009. The Computation of Self
in Everyday Life: A Dramaturgical Approach for Socially
Competent Agents. In AAAI Spring Symposium: Intelligent
Narrative Technologies II, 75–82.
McCoy, J.; Mateas, M.; and Wardrip-Fruin, N. 2009.
Comme il faut: A system for simulating social games be-
tween autonomous characters. Digital Arts and Culture.
Miller, P. 2020. Why fighting games are hard.
https://pattheflip.medium.com/why-fighting-games-are-
hard-7d6d423028ff. Blog post accessed on 7/31/2022.
Ortony, A.; Clore, G. L.; and Collins, A. 1990. The cognitive
structure of emotions. Cambridge university press.
Popescu, A.; Broekens, J.; and van Someren, M. 2014.
GAMYGDALA: An Emotion Engine for Games. IEEE
Transactions on Affective Computing, 5(1): 32–44.
Rimer, J. T.; Yamazaki, M.; et al. 1984. On the Art of the
Nō Drama: The Major Treatises of Zeami; Translated by J.
Thomas Rimer, Yamazaki Masakazu. Princeton University
Press.
Rothamel, T. 2004. Ren’Py. [PC Digital Download], USA.
Sali, S.; Wardrip-Fruin, N.; Dow, S.; Mateas, M.; Kurni-
awan, S.; Reed, A. A.; and Liu, R. 2010. Playing with
words: from intuition to evaluation of game dialogue inter-
faces. In Proceedings of the Fifth International Conference
on the Foundations of Digital Games, 179–186. ACM.
Si, M.; Marsella, S. C.; and Pynadath, D. V. 2005. Thes-
pian: Using multi-agent fitting to craft interactive drama. In
Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, 21–28.
Smith, A. M.; and Mateas, M. 2011. Computational cari-
catures: Probing the game design process with ai. In Work-
shops at the Seventh Artificial Intelligence and Interactive
Digital Entertainment Conference.
Szilas, N. 2003. IDtension: a narrative engine for Interactive
Drama. In Proceedings of the technologies for interactive
digital storytelling and entertainment (TIDSE) conference,
volume 3, 1–11.
Tanenbaum, T. J. 2011. Being in the story: readerly pleasure,
acting theory, and performing a role. In International Con-
ference on Interactive Digital Storytelling, 55–66. Springer.
Tanenbaum, T. J.; and Tanenbaum, K. 2015. Empathy and
Identity in Digital Games: Towards a New Theory of Trans-
formative Play. In FDG.

257


