
Step: A Highly Expressive Text Generation Language 

Ian Horswill 
Northwestern University 
ian@northwestern.edu 

 
 
 

Abstract 
Games often generate text from human-authored templates 
and adapt that text to relevant context.  Many systems have 
been developed to aid this process using techniques such as 
context-free grammars, randomization, logic programming, 
global state, and HTN planning. 
  In this paper, I present Step, a novel programming lan-
guage for text generation.  So far as I can determine, previous 
techniques can all be implemented within Step using a few 
lines of code.  This allows designers to mix-and-match fea-
tures as needed, without having to write an interpreter for a 
new language. 
  While extremely expressive as a programming language, 
Step is also intended to allow writers to add new text to an 
existing system with minimal markup and little knowledge of 
programming.  In a head-to-head comparison, the Step imple-
mentation was more compact than, and used less markup 
than, a Prolog implementation of the same generator. 

 Introduction    
Generating text from human-authored templates is a com-
mon task in games.  A number of specialized research sys-
tems (Compton, Filstrup, and Mateas 2014; Ryan, Seither, 
et al. 2016) and at least one commercial middleware system, 
SpiritAI’s CharacterEngine, have been developed for text 
generation.  These systems combine grammars with some 
subset of randomization, preconditions on rules, backtrack-
ing, argument passing, global state, report-outs of infor-
mation about the derivation, and escapes to raw code in the 
host language. 
  While the precise algorithms and capabilities of these 
systems are often unclear from the published descriptions, 
they all appear to be implementable using non-determinism, 
unification, and reflection.  This isn't surprising since con-
text-free grammar parsing/generation, definite clause gram-
mar parsing/generation, Prolog-style logic programming 
(Warren, Pereira, and Pereira 1977), and SHOP-style HTN 
planning (Nau et al. 1999) all use depth-first search of an 

 
Copyright © 2022, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

AND/OR tree.  They vary primarily in what state infor-
mation they track along the way. 
  In this paper, I present Step, a novel language for text 
generation that implements a robust generalization of this 
control structure, together with reflection primitives for rea-
soning about the derivations of a string.  So far as I can de-
termine, it can implement previous techniques with only a 
few lines of code. 
 Having one general system rather than many bespoke sys-
tems lowers the cost of experimentation.  Designers can mix 
and match techniques without having to modify the core sys-
tem.  If a technique turns out to be unworkable, considerably 
less effort was wasted.  It also allows more engineering ef-
fort to be devoted to tooling: Step supports syntax highlight-
ing, interactive debugging, stochastic sampling of deriva-
tions, and custom design-rule checkers. 
  While extremely expressive computationally, it is de-
signed to present minimal friction to writers.  Non-program-
mers may use libraries designed by specialist programmers, 
and add new text to an existing system with minimal markup 
and little knowledge of programming.   Step has been used 
for two years in an AI-based narrative class targeting both 
CS majors and non-STEM students. 
 Step is open source, and distributed under the MIT li-
cense. The Step interpreter and debugger may be found at 
https://github.com/ianhorswill/{Step,StepRepl}.  The syn-
tax highlighting package for Visual Studio Code is available 
for free in the VS Code Marketplace. 
 In the remainder of this paper, I describe Step and show 
how it can be used to emulate existing techniques.  I will not 
assume familiarity with Prolog, but will assume familiarity 
with unification and the general notion of non-deterministic 
algorithms. 

Related Work 
While Step is not an interactive fiction language per se, there 
are several interactive fiction languages that generate text, 

 

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

240



some of which use some variant of logic programming.  In-
form 7 (Nelson 2006), the oldest and best developed of 
these, uses an English-like syntax to allow authors to write 
deterministically pattern-matched rules for game logic.  
Versu (Evans and Short 2014) uses straightforward text tem-
plates, but its game logic is implemented in a novel logic 
programming language.  Both systems use template-based 
NLG, although Inform’s appears to be equivalent to a CFG.  
Martens’ Ceptre is a logic programming language for inter-
active narrative based on linear logic; Martens’ Quiescent 
Theatre compiles linear-logic narratives to Twine, using 
templated text (Martens 2015).   
 Another IF language, Curveship (formerly known as nn), 
uses a full natural language generation pipeline to transform 
symbolic structures into English surface text, allowing it to 
dynamically change grammatical tense and mood (Montfort 
2007).  More recently, NLG pipelines have been imple-
mented in a few research games.  SpyFeet (Reed et al. 
2011a, 2011b) can dynamically vary generation based on 
parameters such as character personality.  Bot Colony 
(Joseph 2012) generates English from logical forms, alt-
hough the authors’ paper focused primarily on NL under-
standing rather than generation. 
 MKULTRA (Horswill 2014) also generated surface forms 
from logical forms, however it did so using definite clause 
grammars, context-free grammars in which nonterminals 
can take parameters that bind through unification, rather 
than a full NLG pipeline.  More recently Lume (Mason et al. 
2019) has also used DCGs.  To make Prolog-language 
DCGs more usable by writers, it provided a bespoke tool to 
heuristically derive DCG rules from plain text. 
 Many systems use some variant of a context-free gram-
mar (CFG).  Tracery (Compton et al. 2014; Compton and 
Mateas 2015) is an extremely successful CFG-based gener-
ator designed for casual users.  It is by far the most widely 
used text generation system.  It augments the base CFG with 
the ability to call arbitrary JavaScript code.  Dunyazad 
(Mawhorter 2016) uses a CFG scheme to generate text from 
a logical form.  It includes a number of extensions to handle 
pronominalization and subject/verb agreement, and contains 
an interesting scheme for imposing a tree structure on the 
names of non-terminals, with wildcard matching of non-ter-
minals, implementing some of the functionality of DCGs.  
Improv (Dias 2020) is a also CFG-based system, similar to 
Tracery.  However, Improv is intended to base its text gen-
eration on game state, such as a world model.  It provides 
hooks to allow the programmer specify arbitrary JavaScript 
code to call when expanding a nonterminal.  The code can 
reorder or replace possible expansions based in game state. 
 The most widely used text-generation middleware system 
is Expressionist (Osborn et al. 2017; Ryan et al. 2015; Ryan 
et al. 2016; Ryan et al. 2016).  It augments CFGs with a 
tagging mechanism such that the input is a set of tags that 
must be generated and the output is a string plus a set of tags 

that were generated.  The exact operation of the system isn’t 
described, and indeed many different versions have been 
written with different sets of features, including one version 
used in a commercial middleware tool, CharacterEngine 
(SpiritAI).  In this sense, Expressionist is perhaps best 
thought of as a family of related tools united by the combi-
nation of CFGs and tagging.  The argument of this paper is 
in part that Step would be a more productive implementation 
language for systems like Expressionist than JavaScript or 
C#. 
 Dear Leader’s Happy Story Time (Horswill 2016) used a 
higher-order HTN similar to Step, but was less general and 
implemented as an embedded language in Prolog, making it 
considerably less accessible.  StoryAssembler (Garbe et al. 
2019) combines a forward state-space planner with an HTN 
planner to generate branching choice-driven narratives.  A 
template system is then used for text generation. 

Syntax 
Step code consists primarily of declarations of task methods.  
A method declaration has the form: 

 
 TaskName arguments … : body 
 

Multiline methods end with [end].  A method with no body 
ends with a period rather than a colon.  Multiple bodiless 
methods can be loaded in tabular form from CSV files. 
 Following Ingold’s (Ingold 2015) dictum that writer-fac-
ing scripting languages should look like text with occasional 
code markup, not code with quoted strings, the body text is 
printed verbatim.  Hello World is simply: 

 
 HelloWorld: Hello	world! 

 
I will adopt the convention of proportionally-spacing text to 
be printed, and monospacing all other code. 
 Calls to other Step tasks can be placed in the body 
wrapped in square brackets to escape from text mode: 

 
 Story: [Beginning] [Middle] [End] 
 

Their output is substituted for the bracketed expressions. 
Argument expressions can be variables or constants.  Lo-

cal variables of a method are named starting with a ?: ?x, 
?foo, or just ?.  They behave as logic variables in logic pro-
gramming languages: initially unbound, then acquiring val-
ues through unification with other expressions. 

 Global variables are shared by all tasks and methods.  
Their names start with a capital letter: HelloWorld, 
Story, Beginning. 

241



Words beginning with a lower-case letter, such as 
string or this_is_a_string, are treated as string liter-
als.  Strings quoted with double-quotes, such as "quoted 
string", are represented internally as arrays of tokens 
(words).  True single string constants with embedded spaces 
can be typed either by escaping the space with a backslash 
or quoting it with vertical bar characters, as in: |quoted 
string|.  Quoted strings are stored in tokenized form to 
allow the output system to identify word and sentence 
boundaries during post-processing. 

Numeric literals are largely as in other languages. 
 Bracketed expressions within a call are treated as tu-

ples/lists.  The language is thus homoiconic: tuples can be 
used to represent calls to other code. 

Variable Substitution 
The body of a task is treated as text to be printed, with two 
exceptions: bracketed expressions to call subtasks, dis-
cussed above, and variables, whose values are substituted 
into the output.  The method: 

 
 Greet ?who: Hello,	?who! 
  

Prints the text “Hello,” followed by the value of ?who, and 
an exclamation point.  In particular, the appearance of a var-
iable here is treated as syntactic sugar for a call to the built-
in task, Mention: 

 
 Greet ?who: Hello,	[Mention ?who]! 
 

The default Mention implementation prints the value of its 
argument.  However, the user may provide a more sophisti-
cated system implementing pronoun substitution, special 
casing the first mention of a topic, or do whatever other 
clever processing is desired.  Since this can involve arbitrar-
ily sophisticated coding and grammatical knowledge, users 
generally use an off-the-shelf implementation of Mention. 

Although the default is for an interpolation to call the 
built-in task Mention, it can be used to call any other task.  
The construction ?variable/Task is sugar for [Task  ?vari-
able].  Thus: 

 
 Greet ?who: Hello,	?who/FirstName! 
  

Calls FirstName rather than Mention.  It’s equivalent to: 
 
 Greet: ?who: Hello,	[FirstName ?who]! 
  

but hopefully more readable.  The + operator can be used to 
call multiple tasks on the same variable: 
 
 ?who/FirstName+LastName 
 

will print first the FirstName and then LastName of ?who. 
 Finally, the / operator can be repeated to invoke binary 
relations.  The construction ?variable/Relation/Task is 
sugar for [Relation ?variable ?temp] [Task ?temp].  Thus, 
?who/Brother/FirstName, which is equivalent to 
[Brother ?who ?b] [FirstName ?b], i.e. “find 
?who’s brother ?b and then print his first name.” 

Semantics 
Tasks can have multiple methods that handle overlapping 
cases, with the system trying each at run-time.  Step is a non-
deterministic language: calls and methods are allowed to fail 
and the system performs a backtracking search to find an 
execution path in which all selected methods are successful. 

For example, the program: 
 
Run: [A] [B] 
A: [C] 
A: [D] 
B: [E] 
B: [F] 
 

defines one Run method that executes A followed by B,  each 
of which have two methods, calling either C or D, or E or F, 
respectively.  A call to Run thus has four possible execution 
paths: Run A C B E, Run A C B F, Run A D B E, and 
Run A D B F.  If any of the methods in a path fails, the 
system backtracks and tries another method.  If all methods 
for a call fail, the call itself fails and the method containing 
it backtracks. 

Importantly, any changes to the execution state (output 
text, variable bindings, cool downs) made by a method are 
rolled back if that method is backtracked.  When execution 
completes, it appears as though the system had only exe-
cuted the operations of the successful path.  In most cases, 
the designer can ignore the details of the search and assume 
the system will do some version of the right thing. 

Pattern-Directed Invocation 
Like Prolog, Step uses pattern-directed invocation, meaning 
methods can require specific values for specific arguments 
or require specific arguments be identical.  Caller arguments 
are matched to method argument patterns using unification.  
The method fails and is ignored if they do not match.  In the 
fragment: 

 
 Greet john: Oh,	God.		You	again! 
 Greet ?who: Hello,	?who! 
 

The system prints “Oh, God.  You again!” when the argu-
ment is the string john, otherwise it prints “Hello, ?who!”, 
whatever ?who might be. 

242



Sequencing and Randomization 
Also like Prolog, methods are tried in the order they appear 
in the source.  This can be changed by tagging a task [ran-
domized], in which case each call uses a different weighted 
shuffle of the methods.  Methods can also be tagged as sin-
gle-use.  The example: 

 
 [randomized] 
 Greet: [once] Dude. 
 Greet: Hi. 
 [2] Greet: Hello. 
  

lets Greet try the methods in any order, with stipulation that 
the first should be used only once per run, and that the last 
should be chosen twice as often as the others. 

Search Control 
The default semantics for a Step task differ from logic pro-
gramming languages such as Prolog.  By default, a Step task 
is required to succeed exactly once.  It is an error for it to 
fail, and once it succeeds, it’s done: the system will not rerun 
the task should it backtrack later.  This makes debugging 
easier, since standard logic programming semantics can un-
intentionally hide error conditions by silently backtracking 
over errors or produce infinite loops when a task intended to 
succeed only once is written in such a way that it can keep 
generating new solutions. 

Standard logic programming semantics are enabled on a 
task-by-task basis by tagging a task with [predicate]: 

 
 [predicate] 
 Familiar john sarah. 
 Familiar sarah shelly.  
 Greet ?who: [Familiar Speaker ?who] Dude. 
 Greet ?who: Hi. 
   

Here, Familiar is a predicate and so calls to it are allowed 
to fail.  Greet then uses it as a guard on its first method to 
ensure it’s used only when the speaker, stored in the global 
variable Speaker, and the addressee, ?who,  are on familiar 
terms.  The call [Greet sarah] will print “Dude” when 
Speaker=john,  In all other cases, the call to Familiar 
will fail, and the first method will also fail.  The system will 
then use the second method, which prints “Hi.” 

Mutable State 
Like most programming languages, Step allows the manip-
ulation of mutable state: text output, assignments to varia-
bles, etc.  However, it guarantees that mutations are undone 
when a call is backtracked: text is “unwritten” and variables 
“unset.”  Upon completion of a program, it is as if the system 
had only ever executed the final, successful path. 

 In addition to text output and unification of local varia-
bles, Step supports explicit mutation of global variables: 
 
 [set Speaker = jane] 
 
behaves exactly like assignment statements in C or Python, 
however the update is undone upon backtracking. 
 Step also supports mutable predicates, which is useful for 
symbolic planning.  The annotation [fluent] declares that 
a predicate can be dynamically set true or false for particular 
ground values at runtime using the now statement.  Rules 
can still be specified for the predicate, but now assertions 
override them when the arguments match. 
 For example, the following fragment defines a Shoot 
task that marks a character as dead: 
 
# All characters are alive by default 
[fluent] 
Alive ?. 
 
# Shoot ?character 
# Kills ?character 
Shoot ?c: You	shot	?c. [now [Not [Alive ?c]] 

 
The [function] annotation marks a predicate as being 
mutable, but also that its last argument is unique given the 
values of its previous arguments.  Therefore asserting [On 
a c] would implicitly retract [On a b], since the two 
cannot be true simultaneously. 
 
# On is a mutable predicate whose second  
# argument is unique given its first 
[function] 
On a b. 
 
# Move ?x to ?y 
# Retracts ?x’s old position and 
# asserts [On ?x ?y] 
Move ?x ?y: [now [On ?x ?y]] 

 
As with other mutations, these are automatically undone 
when backtracked. 

Higher-Order Operations 
Step supports higher-order tasks – tasks that take code as an 
argument.  Tuple data structures look like calls and so can 
be treated as code and passed as an argument to a task.  The 
task can use the Call primitive to execute it.  This can be 
used to write looping constructs, metadata, design-rule 
checkers, and so on. 

243



Reflection 
Reflection allows a program to query itself as a data object.  
In static reflection, a program queries its own source text.  In 
dynamic reflection, it queries its execution state. 

Step supports static reflection via higher-order primitives 
such as TaskSubtask, which tests whether a task has a 
method that calls another task.  This allows programmers to 
write bespoke static analysis tools, such as checking that 
every precondition in an HTN formalization appears in the 
add list of some task or operator.  For example, if Beat is a 
predicate that identifies tasks intended as story beats, then: 

 
[Beat ?b] [Not [TaskSubtask ? ?b]] 
 

identifies beats that are not called by any other code. 
Step supports dynamic reflection through higher-order 

primitives such as PreviousCall, which unifies its argu-
ment with a call in the current execution path: 

 
CalledBeat ?b: [Beat ?b] [PreviousCall [?b]] 
Storybeats ?beats: 
   [FindUnique ?t [CalledBeat ?b] ?beats] 

 
Here CalledBeat finds beats used in the current execution 
path and Storybeats finds a list of all beats generated thus 
far in the story.  This is used in the profiler for Dear Leader’s 
Happy Story Time to find beats that are used too frequently, 
infrequently, or not at all.  It samples one million random 
stories and computes beat and plot-point usage statistics. 
 The UniqueCall higher-order primitive executes its ar-
gument but backtracks over any calls that unify with previ-
ous calls in the execution path.  This is useful for choosing 
beats or plot points that have not already been used.  It’s also 
useful for story casting. The fragment: 
 
Cast ?role: [UniqueCall [Character ?role]] 

 
might be used to call Character to bind ?role to some 
character not already cast in the execution path. 

Implementation and Tooling 
The Step interpreter is written in C#.  It is a stand-alone DLL 
that can be used in any C#/.NET/CLR application, including 
Unity games.  The language is designed for versatility over 
efficiency: while it is more than fast enough for its intended 
use cases, it would not be an appropriate language for hard 
search problems. 
 A great deal of effort has been put into tooling for the lan-
guage.  An interactive debugger, StepRepl, supports interac-
tive execution, breakpointing, single-stepping, etc.  Com-
bined with syntax highlighting support for Visual Studio 
Code, it forms an effective development environment.  

StepRepl also provides primitives for developing custom 
samplers and profilers, and automatically generates a refer-
ence manual of built-in primitives. 
 There is also a tutorial and course materials for targeting 
CS and non-STEM majors, as well as a simple autograder. 

Emulating Existing Systems 
Standard text-generation techniques can be written directly 
in Step in a few lines.  We survey some examples here. 

Logic Programming 
Predicates in logic programming are emulated by Step tasks 
marked [predicate] that output no text.   However, Step 
does not implement Prolog’s cut operator or its syntax for 
linked lists. 

Context-Free Grammars 
Nonterminals in a CFG are modeled as parameterless tasks.  
The Tracery (Compton et al. 2014) grammar: 
 
{ 
  "origin": "#greeting#, #noun#!", 
  "greeting": ["Howdy", "Hello"], 
  "noun": ["world", "solar system"] 

} 
 
can be written in Step as: 
 
Origin: [Greeting], [Noun]! 
Greeting: [randomly]	Howdy	[or]	Hello	[end] 
Noun: [randomly]	world	[or]	solar	system	[end]	

Definite-Clause Grammars 
DCGs add parameters and unification to CFGs.  DCG non-
terminals are emulated in Step as parameterized tasks with 
that output text.  The Greet example from the previous sec-
tion on pattern-directed invocation was a DCG. 

Pronoun Substitution 
Discourse context can be tracked by adding state variables.  
Since Step automatically retracts variable updates upon 
backtracking, the variables always represent the values for 
the selected execution path. 
 As one very simple example, we can generate personal 
pronouns by defining Mention to track the most recent ref-
erents for each pronoun, substituting the pronoun when the 
item to print matches, and updating the referents when new 
items are printed.  Here is a schematic example: 

 
Mention LatestThey: they 
Mention LatestShe: she 

244



Mention LatestHe: he 
Mention ?who: 
  [Say ?who] [PreferredPronoun ?who ?pro]  
  [Update ?who ?pro] 
[end] 
Update ?who he: [set LatestHe ?who] 
Update ?who she: [set LatestShe ?who] 
Update ?who they: [set LatestThey ?who] 
Say ?x: [Not [Mentioned ?x]] [SayFirst ?x] 
[now [Mentioned ?x]] 
Say ?x: [Write ?x] 

 
This is admittedly a simple-minded scheme, but it’s the 
scheme most used in games.  More complex versions imple-
menting other kinds of anaphors are natural extensions. 

Planning 
Step is not intended for sophisticated planners, but does 
make it easy to add simple planning to a system.  Since Step 
is a generalization of SHOP-style HTNs, HTN planning is 
easy.  Space precludes a more substantive example of other 
styles, but the following simple library function can be used 
to add means/ends analysis to a Step program. 
 We assumes a predicate, [Achieves ?goal ?task], that 
is true when ?goal is a postcondition of ?task.  Achieves 
could be written to find the task either by static reflection, 
or the programmer could manually add Achieves methods 
to tag tasks according to the goals they achieve.  For exam-
ple, a blocks world planner might declare: 
 
 Achives [On ?a ?b] [Move ?a ?b]. 
 
We also assume a fluent predicate, TryingToAchieve, 
that is used to detect looping (a goal leading to itself as a 
subgoal).  We can now write a task, [Achieve ?goal], that 
does nothing if ?goal is already true, otherwise it makes it 
true by looking up a task with its postcondition and execut-
ing it: 
 
[predicate] 
Achieve ?goal: [Call ?goal] 
Achieve ?goal: 
[Not [TryingToAchieve ?goal]] 
[now [TryingToAchieve ?goal]] 
[Achieves ?goal ?task] [Call ?task] 
[now [Not [TryingToAchieve ?goal]]] 

[end] 
 
The first method tests the ?goal using Call.  If false, the 
second method checks that we are not already trying to 
achieve the goal.  If not, it marks the goal as currently being 
attempted.  The it uses Achieves to find an ?task that can 
achieve it, then executes it. 

 Tasks can then then written in the form: 
 
Task args …: 
  [Achieve [Precondition]] … 
  [now added [Not deleted]] 
[end] 

Expressionist-style Tagging 
Tagging is one of Expressionist’s marquee features (Ryan, 
Seither, et al. 2016).  This can be emulated in Step using 
calls to a placeholder, [Tag tag], to tag a method.  We can 
determine the tags used in the current derivation using: 
 
 [FindAll ?t [PreviousCall [Tag ?t]] ?all] 
 
This will bind ?all to a list of all the tags used in the current 
execution path.  We can force derivations to use a particular 
tag by calling [PreviousCall [Tag tag]] after genera-
tion.  Tags can be arbitrary data, removing Expressionist’s 
need to encode data as complex strings and parse them after 
the fact.  Tags can also be computed at run-time. 

Example Applications 
Although space makes it impossible to include source code, 
we mention here some small but non-trivial applications of 
Step. 

Dear Leader’s Happy Story Time 
We have reimplemented the party game Dear Leader’s 
Happy Story Time (Horswill 2016) in Step.  Dear Leader 
uses a higher-order HTN to generate stories that incorporate 
narrative devices such as callbacks and montages.  The Step 
version is a direct translation of the original, with more flu-
ent text generation, as well as sampling and profiling tools. 
 This gives us the opportunity to directly compare Step 
with a previous system.  The Step version is considerably 
more compact: 845 lines vs. 1319 lines of Prolog code, a 
35% reduction despite increased functionality. 
 While readability is more subjective, it’s instructive to 
compare implementations of the same story beat.  The ver-
sion for the original Prolog-based HTN reads: 
 
beat(married_life(P, L, bed) : 
  { setting: home }, 
  $text( 
    "[P] and [L] read in bed together")). 
 

By contrast, the Step version is: 
 
MarriedLife ?P ?L bed: [Setting home] 
   ?P	and	?L	read	in	bed	together	[Beat] 

 

245



The Step version is noticeably shorter and, I would argue, 
easier to read and write.  Taking punctuation characters as a 
proxy for the complexity of code markup, the Step version 
requires 9 punctuation characters vs. the original 21, a 57% 
reduction. 

Story Sifting 
Step has been used to implement story sifting (Ryan 2018) 
in both Ryan’s Talk of the Town (ibid), and a simple “new-
paper” generator for the commercial game City of Gangsters 
(Zubek and Viglione).  City of Gangsters involves over 1000 
NPCs at any given time, so the player can’t track events 
through gameplay alone.  Sebastian Perez-Delgato’s news-
paper generator lets players explore events in their city by 
mining save files.  For example, the first line of the method 
below detects dead NPCs with surviving children, the rest 
generates a brief obituary for them: 

Obituary:  
[Dead ?p ?e] [Child ?p ?m] [WillDie ?m ?] 
In	loving	memory	?p,	?p/Born/FullDate	–	?e/FullDate.	
No	one	who	met	?p/FName	forgot	their	?p/PTrait	per-
sonality	 and	 infectious	 passion	 for	 ?p/FavActivity.	
They	are	survived	by	?m/Child/FName.		Funeral	ser-
vices	will	be	held	?p/FuneralDate/FullDate	at	noon	in	
Old	St.	Patrick's	Church.		

[end] 

TTRPG Scenario Generation 
With permission of the authors, we’ve implemented the 
published scenario generator for the queer, anticapitalist, ta-
ble-top role playing game iHunt: Killing Monsters in the 
Gig Economy (Hill and Young 2019) as a Step program.  It 
allows GMs to quickly generate scenarios and choose the 
one they like best.  The code is given in the appendix. 
 The published generator is 9 pages of tables and English 
text.  The Step version includes all the cases of the original, 
but filters nonsensical combinations and generates narrative 
descriptions of the scenarios.  The authors are now working 
to develop new content for the game directly in Step. 

Conclusion 
Current text generation systems can be emulated by a small 
basis set of features: non-determinism, pattern-directed in-
vocation, reflection, controlled randomization, and higher-
order procedures.  Previous systems can be seen as partial 
implementations of this basis.  A full implementation forms 
a natural and powerful scripting language on which to build 
whatever application-specific tricks one needs. 
 Step demonstrates that full implementations of the basis 
set do not require more engineering effort: Step is 12K lines 

of C# code + 3.6K for StepRepl, compared to 73K lines Py-
thon, JavaScript, and JSON for Expressionist. 
 While Step is not the only possible implementation, it pro-
vides a congenial syntax that allows more compact expres-
sion with less markup than Prolog in a head-to-head com-
parison.  It has been used successfully by both programmers 
and non-programmers to write generators for a variety of 
applications. 

Appendix: Extended Example 
The following is an example of a non-trivial Step program.  
It generates quests for the iHunt tabletop RPG based on the 
published dice-based quest generator.  This differs from the 
previous examples in the paper in that it is not algorithm-
heavy; it gives a sense of a writer’s view of the language. 

Job generator.step 
This is the generator itself.  A gig (a quest) consists of a cli-
ent hiring you to kill a monster (the mark) because of a trou-
ble they caused.  The generator presents two suggested 
hangups (complications) for the GM to confront the players 
with, and an aftermath (also a complication). 
 The generator filters nonsensical combinations that were 
possible in the original dice-based version, such as corpora-
tions falling in love, marks being simultaneously good and 
evil, or characters who are already dead taking actions later 
in the story.  This is done by adding calls to the predicates 
Individual, GoodGuy, and Alive/Dead to methods that 
require those properties.  They’re updated using now, when 
a method narrates a change to them in the story world. 
  The text uses the following utilities defined in Men-
tion.step; space precludes including their source code: 
 

• Obj (invoked using ^Variable/Obj) 
Same as Mention, but generates pronouns in object 
case.  

• Mention (invoked using ^Variable) 
Prints variable’s value and generates subject-case 
pronouns as appropriate.  Tracks plurality for conju-
gating auxiliary verbs.  Full phrases are printed for 
first mention, and a short form is used thereafter. 

• Poss (invoked using ^Variable/Poss) 
Same as Mention, but generates in possessive case, 
i.e. either “Variable’s” or a possessive pronoun. 

• Is (invoked using [Is]) 
Generates “is” or “are”, depending on the plurality 
of the subject. 

• Has (invoked using [Has]) 
Same, but for the verb has. 
 

In the code below, lines have been wrapped in order to 
save space and stay within the two-column format.  The 

246



text has also been edited to be less profane than the origi-
nal game. 
 
# Generate a gig 
Gig: 
# Choose client and mark 
[PossibleClient ?client] 
[now Client = ?client] 
[PossibleMark ?mark] [now Mark = ?mark] 
 
You	are	hired	by	^Client	to	take	out	^Mark.	
 
# Print random trouble, hangups, etc. 
[TroubleCausedByMark] 
[NewParagraph] 
[Hangup] [Hangup2] 
[NewParagraph] 
[Aftermath] 

[end] 
 
# 
# Storyworld state 
# These track facts that may have been 
# established in previous plot points 
# in order to prevent future ones from 
# contradicting them. 
# 
 
# Was the character killed? 
predicate Dead ?who. 
# Does the character want to live? 
predicate ResistingDeath ?who. 
# Is the character good or evil? 
predicate GoodGuy ?who. 
 
[predicate] 
Alive ?who: [Not [Dead ?who]] 
 
# Pick a random mark 
# 1/8 chance of it being a group. 
[randomly] 
[7] PossibleMark ?monster: 
   [Monster ?monster] 
PossibleMark [group ?monster]: 
   # Pick a monster to make up the group 
   # It must not already be a group 
   [Monster ?monster] [Singular ?monster] 
 
# 
# Possible troubles for the mark to cause 
# 
[randomly] 
TroubleCausedByMark: 

^Mark	[Is]	actually	good,	but	^Client	wants	^Mark	
dead.	[now [GoodGuy Mark]] 

# The Individual test here blocks this from  
# being used when the client is a group or 
# corporation. 
TroubleCausedByMark: [Individual Client] 
  ^Mark	hurt	someone	very	dear	to	^Client. 
TroubleCausedByMark: 
  ^Mark	[Has]	been	terrorizing	the	community. 
TroubleCausedByMark: 
  ^Mark	stole	something	very	important	to	^Client. 
TroubleCausedByMark: 
^Client	has	found	evidence	that	̂ Mark	[Has]	been	kill-
ing	dozens	of	people.	

TroubleCausedByMark: 
^Mark	 did	 something	 that	 seriously	 embarrassed	
^Client/Obj.	

TroubleCausedByMark: 
[Individual Client] ^Mark	 stole	 ^Client/Poss					
[randomly]	boyfriend	[else]	girlfriend	[end].	

TroubleCausedByMark: 
  ^Client	just	really	hates	^Mark/Plural. 
TroubleCausedByMark: 
^Mark	didn't	do	anything	wrong,	^Client	is	just	a	jerk. 

 
# 
# Possible first problems for the players 
# to encounter 
# 
[randomly] 
Hangup: [Individual Client] 
somebody	killed	^Client/Obj.		This	may	complicate	
getting	paid	... [now [Dead Client]] 

Hangup: 
  when	you	find	^Mark/Obj,	it	turns	out	to	actually	be		 
  [UniqueCall [PossibleMark ?realMark]]  
  ?realMark [now Mark = ?realMark]. 
Hangup: when	you	finally	find	^Mark/Obj,	the	area	is		
																				swarming	with	cops.	
Hangup: ^Mark	[Is]	in	the	middle	of	a	crowd. 
Hangup: killing	^Mark/Obj	requires	some	very	hard	to		
																				come	by	supplies.	
Hangup: ^Mark	[Has]	a	pretty	good	argument	why	
																				you	shouldn't	kill	them.	 
                 [now [ResistingDeath Mark]] 
Hangup: ^Client	really	just	want[s]	you	to	kill		
																				^Mark/Obj	so	^Client	can	do	^Client/Poss		
																				own	evil. 
Hangup.     # No hangup! 
 
# 
# Possible second problems 
# These depend on the first problems 
# 

247



[randomly] 
Hangup2: ^Mark	offer[s]	you	a	better	deal	to	leave		
																							them	alone.	
Hangup2: [Individual Client] Then,	^Mark	
																							offer[s]	you	a	ton	of	money	to	kill	^Client.	
Hangup2: [DeeperThreat] now	you	have	a	much	
																							bigger	problem.	
Hangup2: You're	actually	being	framed;	^Client	
																							actually	just	wants	to	screw	you	over.	
Hangup2: When	 you	 finally	 find	 ^Mark/Obj,	 they're		
																								already	dead.		Sucks	to	be	you.	
Hangup2: When	you	find	^Mark/Obj,	there's	

[randomly]	another	hunter	[or]	an	amateur	
[else]	a	seriously	clueless	cop	[end]		also	on	
the	job. 

Hangup2: [PotentiallyHot Mark] When	you	find		
^Mark/Obj,	 they	 turn	 out	 to	 be	 extremely	
gorgeous.		What	will	you	do?	

Hangup2: [Not [ResistingDeath Mark]]	^Mark		
set	the	whole	thing	up	as	an	elaborate	form	
of	suicide.	

Hangup2.     # no hangup! 
 
# The mark wasn’t the real threat! 
DeeperThreat: 
[Not [GoodGuy Mark]]	Little	does	^Client	know,	
the	^Mark	is	really	being	directed	by	an	archdemon	
[now Mark = archdemon]. 

 
# 
# Possible aftermaths 
# These create continuing challenges for 
# the players, generally economic ones. 
# 
[randomly] 
Aftermath: 
In	the	end,	things	seemed	to	work	out	okay.		That's	dis-
turbing.	

Aftermath: 
[Alive Client] [Individual Client] Then	
^Client	underpaid	because	[randomly]	they're	actually	
kind	of	broke	[or]	because	they	didn't	like	the	way	you	
did	the	job	[else]	they're	a	jerk	[end].	

Aftermath: 
[Alive Client] [Individual Client] 
[randomly]	suddenly	^Client	is	nowhere	to	be	found	
[else]	^Client	has	a	tantrum	and	refuses	to	pay[end]. 

Aftermath: 
Fighting	 ^Mark/Plural	 is	 expensive.	 	 Your	 expenses	
are	going	to	eat	most	of	your	profits. 

Aftermath: Someone	close	to	you	got	caught	up	in	it. 
Aftermath: 
^Mark	[Has]	friends;	they	won't	forgive	you. 

Aftermath: 

Now	 your	 boss	 at	 your	 day	 job	 is	 pissed	 at	 you	 for	
missing	work.	

Aftermath: 
[Alive Client] now	^Client	has	another	 job	 for	
you,	a	really	hard	one,	and	they	want	you	to	start	right	
now.	

Monsters.csv 
This is a spreadsheet file defining three predicates: Mon-
ster, the set of monsters, PluralForm, a binary relation 
giving the plural form of each monster, and Potential-
lyHot, a unary predicate defining whether a monster is a 
potential player love interest. 
 

Monster @PluralForm Potentially-
Hot? 

hungry dead hungry dead No 
vampire vampires Yes 
wizard wizards Yes 
werewolf werewolves Yes 
demon demons Yes 

PotentialClient.csv 
This also defines a three predicates: Client, the set of pos-
sible clients, ShortForm gives a more compact form for re-
ferring to the client (the long form is only used for the first 
mention of the client), and Individual, which indicates a 
client is a person and not an institution. 
 

Client @ShortForm Individual? 
corporate client corporation no 
wealthy individual client yes 
overwhelmed execu-
tor 

executor yes 

upwardly mobile 
professional 

yuppy yes 

curious party client yes 
poor community community no 
mysterious benefac-
tor 

client yes 

Acknowledgements 
I would like to thank the reviewers for their patience, testing, 
and helpful comments.  I would also like to thank Rob 
Zubek, Matt Viglione, Hecate Robison, Olivia Hill, and Fil-
amena Young for feedback and encouragement;  and Diana 
Smith, Andrea Nolla, Sebastian Perez-Delgado, Le Fang, 
Yiran Zhang, and the students and TAs of CS 295 and CS 
396 for beta testing. 

248



References 
Compton, Kate, Benjamin Filstrup, and Michael Mateas. 
2014. “Tracery : Approachable Story Grammar Authoring 
for Casual Users.” Papers from the 2014 AIIDE Workshop, 
Intelligent Narrative Technologies (7th INT, 2014) 64–67. 
Compton, Kate, and Michael Mateas. 2015. “Casual 
Creators.” Proceedings of the Sixth International 
Conference on Computational Creativity June. doi: 
10.1074/jbc.M409039200. 
Dias, Bruno. 2020. “Improv.” github.com/sequitur/improv.  
Accessed: 8-11-22. 
Evans, Richard, and Emily Short. 2014. “Versu - A 
Simulationist Storytelling System.” IEEE Transactions on 
Computational Intelligence and AI in Games 6(2):113–30. 
Garbe, Jacob, Max Kreminski, Ben Samuel, Noah Wardrip-
fruin, and Michael Mateas. 2019. “StoryAssembler : An 
Engine for Generating Dynamic Choice-Driven Narratives.” 
P. August in Foundations of Digital Games (FDG). San 
Luis Obispo, CA, USA: ACM Press. 
Hill, Olivia, and Filamena Young. 2019. IHunt: Killing 
Monsters in the Gig Economy. Calumet City, IL: Machine 
Age Productions. 
Horswill, I. D. 2016. “Dear Leader’s Happy Story Time: A 
Party Game Based on Automated Story Generation.” in 
AAAI Workshop - Technical Report. Vol. WS-16-21-. 
Horswill, Ian. 2014. “Architectural Issues for 
Compositional Dialog in Games.” in AAAI Workshop - 
Technical Report. Vol. WS-14-17. 
Ingold, Jon. 2015. “Adventure in Text: Innovating in 
Interactive Fiction.” in Game Developer’s Conference. San 
Francisco, CA: UBM Techweb. 
Joseph, Eugene. 2012. “Bot Colony – a Video Game 
Featuring Intelligent Language-Based Interaction with the 
Characters.” in Workshop on Games and NLP (GAMNLP). 
Raleigh, North Carolina, USA: AAAI Press. 
Martens, Chris. 2015. “Programming Interactive Worlds 
with Linear Logic.” Carnegie Mellon University. 
Mason, Stacy, Ceri Stagg, Noah Wardrip-fruin, and Michael 
Mateas. 2019. “Lume: A System for Procedural Story 
Generation.” in The Fourteenth International Conference 
on the Foundations of Digital Games (FDG ’19). San Luis 
Obispo, CA, USA. 
Mawhorter, Peter. 2016. “Artificial Intelligence as a Tool 
for Understanding Narrative Choices: A Choice-Point 
Generator and a Theory of Choice Poetics.” University of 
California, Santa Cruz. 
Montfort, Nick. 2007. “Generating Narrative Variation in 
Interactive Fiction.” University of Pennsylvania. 
Nau, Dana, Yue Cao, Amnon Lotem, and Hector Munoz-
Avila. 1999. “SHOP: Simple Hierarchical Ordered 
Planner.” Pp. 968–73 in Proceedings of the 16th 
international joint conference on Artificial intelligence. 
Stockholm, Sweden: Morgan Kaufmann Publishers Inc. 
Nelson, Graham. 2006. “Natural Language, Semantic 
Analysis, and Interactive Fiction.” in IF Theory Reader, 
www.ifarchive.org/if-archive/books/IFTheoryBook.pdf.  
Accessed 8-11-22. 

Osborn, Joseph C., James Ryan, and Michael Mateas. 2017. 
“Analyzing Expressionist Grammars by Reduction to 
Symbolic Visibly Pushdown Automata Analyzing 
Expressionist Grammars by Reduction to Symbolic Visibly 
Pushdown Automata.” in Intelligent Narrative 
Technologies (INT). Snowbird, UT: AAAI Press. 
Reed, Aaron A., Ben Samuel, Anne Sullivan, Ricky Grant, 
April Grow, Justin Lazaro, Jennifer Mahal, Sri Kurniawan, 
Marilyn Walker, and Noah Wardrip-fruin. 2011a. “A Step 
Towards the Future of Role-Playing Games : The SpyFeet 
Mobile RPG A Step Towards the Future of Role-Playing 
Games : The SpyFeet Mobile RPG Project.” in Artificial 
Intelligence and Interactive Digital Entertainment (AIIDE). 
Reed, Aaron A., Ben Samuel, Anne Sullivan, Ricky Grant, 
April Grow, Justin Lazaro, Jennifer Mahal, Sri Kurniawan, 
Marilyn Walker, and Noah Wardrip-fruin. 2011b. 
“SpyFeet : An Exercise RPG.” in Foundations of Digital 
Games. Bordeaux, France. 
Ryan, James. 2018. “Curating Simulated Storyworlds.” 
University of California Santa Crus. 
Ryan, James, Michael Mateas, and Noah Wardrip-fruin. 
2016. “Characters Who Speak Their Minds : Dialogue 
Generation in Talk of the Town Characters Who Speak 
Their Minds : Dialogue Generation in Talk of the Town.” in 
Artificial Intelligence and Interactive Digital Entertainment 
(AIIDE). Burlingame, CA: AAAI Press. 
Ryan, James Owen, Andrew Max Fisher, Taylor Owen-
milner, Michael Mateas, and Noah Wardrip-fruin. 2015. 
“Toward Natural Language Generation by Humans.” in 
Intelligent Narrative Technologies (INT). Santa Cruz, 
California: AAAI Press. 
Ryan, James, Ethan Seither, Michael Mateas, and Noah 
Wardrip-fruin. 2016. “Expressionist : An Authoring Tool 
for In-Game Text Generation Expressionist : An Authoring 
Tool for In-Game Text Generation.” Pp. 221–33 in 
International Confedrence on Interactive Digital 
Storytelling (Lecture Notes in Computer Science). 
Warren, D. H. D., L. M. Pereira, and F. Pereira. 1977. 
“PROLOG - The Language and Its Implementation 
Compared with LISP.” Pp. 109–15 in Symposium on AI and 
Programming Languages. Vol. 12. ACM. 
 

249


