Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

Puck: A Slow and Personal Automated Game Designer

Michael Cook

School of Electronic Engineering and Computer Science
Queen Mary University of London
mike @possibilityspace.org

Abstract

In this paper we introduce Puck, a new automated game de-
sign system which combines continuous creativity with an
exhaustive approach to content generation. We explain the
motivation behind Puck, and in particular its focus on users
and small communities. Puck is, to our knowledge, the first
automated game designer that can be downloaded and indi-
vidualise itself through testing and design. We then describe
the engineering and structure of the system, detail some ini-
tial outputs and evaluation of the system, and future work.

Introduction

Automated game design (AGD) is the science and engineer-
ing of Al systems that model, participate in or support the
game design process. This can include systems which help
users explore game designs (Guzdial et al. 2019; Charity,
Khalifa, and Togelius 2020); models of game design theo-
ries or frameworks (Togelius and Schmidhuber 2008; Bar-
ros et al. 2019); and autonomous game-designing systems
(Khalifa et al. 2019; Summerville et al. 2019). It is still an
emerging field with no concrete definition, but is becoming
increasingly important as artificial intelligence is integrated
into more development tools, and the study of computational
creativity grows.

The broader field of game Al is inextricably tied to the
classical goals of computer science: resource efficiency, so-
lution quality, and high-end scalability. These goals are in-
herited wholesale by most new subfields in Al, like auto-
mated game design, as they provide tried and tested ways of
understanding scientific progress in a systems-focused disci-
pline. However, as fields establish themselves these metrics
become less useful, and it becomes productive to re-examine
them to ensure they are not steering us away from interesting
research questions.

In this paper we present Puck, an automated game de-
signer that extends ideas from AGD research (such as con-
tinuous design (Cook and Colton 2018)) and procedural
content generation research (such as exhaustive generation
(Sturtevant and Ota 2018)) and defines a different set of
goals for automated game design research, based around
community engagement and long-term creativity. Puck is

Copyright (©) 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

232

freely downloadable and designed for personal use, mak-
ing it the first publicly available autonomous videogame de-
signer of its kind, to our knowledge.

The remainder of this paper is organised as follows: in
Background we introduce the reader to some of the prior
work in automated game design and computational creativ-
ity which influenced this work, as well as the notion of ex-
haustive procedural content generation which we adapt here
for automated game design. In Motivation we talk about
the reasoning behind developing Puck and our philosophy
and design intent for AGD research. In System we provide
a fuller description of Puck’s underlying Al system and its
user-level interface. We then discuss the evaluation of a sys-
tem like Puck and link it to future work for the system.

Background
Automated Game Design

Al research into systems which modify game designs dates
back to at least the early 1990s, with Pell’s METAGAME
(Pell 1992), but the modern community began in the late
2000s, with projects such as Browne’s Ludi (Browne and
Maire 2010) (which focused on physical games), the Game-
o-Matic (Treanor et al. 2012) and projects by Nelson (Nel-
son and Mateas 2007) and Smith (Smith and Mateas 2010).
In the decade and a half since the field has expanded to
consider a wide variety of genres ((Cook, Colton, and Gow
2017), (Barros et al. 2019), (Togelius and Schmidhuber
2008), (Khalifa et al. 2019)) as well as attempts to reflect on
the nature of the field itself, particularly regarding the clash
of rules-as-design versus a more holistic approach (Cook
and Smith 2015).

While the boundaries of the field remain blurry, the last
decade has also seen increased interest in the development of
intelligent tools that participate in the design process such as
the Sentient Sketchbook (Liapis, Yannakakis, and Togelius
2013) or Tanagra (Smith, Whitehead, and Mateas 2010).
With the proliferation of machine learning we have seen
an increase in more active tools, such as research into co-
creative design tools (Guzdial et al. 2019). Regardless of the
exact boundary lines of automated game design as a field,
we can see a growth in Al systems developed to facilitate
the design and refinement of core systems and critical con-
tent within games.



Continuous Creativity and Presence

In (Cook and Colton 2018) we introduce the notion of con-
tinuously creative Al systems. Within computational cre-
ativity the prevailing paradigm for creative software is akin
to a vending machine - the user opens the software, pushes
a button requesting a creative artefact, which is eventually
dispensed to them. We argued that this misses out on op-
portunities to position creative systems more strongly in the
real world, and proposed that Al systems working in creative
domains be built as ‘always-on’ systems that move between
many different activities, only one of which is outputting
works.

While many areas of Al and creativity research empha-
sise the quality of a system’s outputs, or product, computa-
tional creativity emphasises the AI’s process, as described
in (Colton and Wiggins 2012), and what we called the AI’s
presence. Exposing the AI’s process is common within com-
putational creativity, using techniques such as framing to de-
scribe how the Al has made creative decisions. We define
presence as “the impact a computationally creative system
has on its environment, and the impact the environment has...
in return”. Building a system that has a purpose to exist in
the world besides vending content, for example by engaging
with its audience or developing its skills in private, improves
the audience’s perception of that system as creative.

Exhaustive PCG

In (Sturtevant 2013) Sturtevant introduces the notion of ex-
haustive procedural content generation. Reasoning that stor-
age is now no longer the bottleneck it once was for comput-
ers, Sturtevant argues that it makes sense to explore exhaus-
tive generation of some types of content rather than trying
to search through the space. This not only circumvents the
need for search heuristics and operations which transform
our position in the search space (which may be hard to de-
fine) but also allows for the creation of richer tools that use
their exhaustive understanding of the space to visualise the
design space in greater detail.

Sturtevant and others have since expanded this idea and
applied it to level design for several puzzle games including
Fling!, The Witness and SnakeBird. In all cases, constraints
are set for the space (such as the level size in Fling!) and then
all possible permutations of content within that space are
generated. This is aided by two properties of the games stud-
ied: they are known in advance (meaning specialised solvers
can be implemented, and constraints can be selected to fo-
cus the design space); and they are typically lightweight (a
level is usually represented as a two-dimensional array, and
the primary analysis of the level is to find a single solution).

Motivating Puck
Related Work in AGD

Two trends are evident in the current direction and applica-
tion of automated game design research. One trend is the
support of mixed-initiative game design tools, often as a
way to lower barriers to game development as a creative
form. Recent examples of this include Germinate, a casual
game creator aimed to support the creation of rhetoric-driven

233

games (Kreminski et al. 2020), and Mechanic Maker, a me-
chanical design tool driven by visual examples (Saini and
Guzdial 2020). Some supportive systems are designed for
expert or more experienced users — Anhinga is an example
of this, where the tool is best used by someone with a high
level of domain knowledge, able to take advantage of the
tool’s insights (Sturtevant et al. 2020). In both cases, the Al
aims to solve and support design tasks, keeping a human in
the loop at all times. This branch of AGD research has clear
value both to everyday and expert creators.

The other trend is towards autonomous, independent
AGD systems which work alone, which Puck is an exam-
ple of. Other examples of systems like this include Ludi
(Browne and Maire 2010), which focuses on the design
of boardgames but uses similar approaches to videogame-
focused AGD systems, and our previous work on AN-
GELINA (Cook, Colton, and Gow 2017) which used com-
putational evolution applied to several different genres and
platforms. While the goals of mixed-initiative AGD are clear
(providing Al support to game designers), the purpose of au-
tonomous systems is not as well-explored, and their poten-
tial role in a future creative society is not discussed. Often,
one stated goal for such systems is the creation of games of
a similar quality to human expert designers.

Related Work in HCI & Design

Reviewers noted the similarity between our approach with
Puck and the slow technology movement, first proposed in
(Hallnés and Redstrom 2001). Hallnés and Restrom present
slow technology as an agenda for design explicitly opposed
to a trend towards speed and efficiency in technological de-
velopment. The movement has expanded and better defined
areas of concern in the years since. In a workshop in 2012,
Odom et al. identify the key themes of ‘designing for slow-
ness’, ‘designing for [use] across multiple generations’ and
‘designing for... less consumptive lifestyles’ (Odom et al.
2012), all of which relate very closely to our goals for Puck,
and the broader social issues we have previously identified
in game Al research (Cook 2021).

Slow technology, and the idea of reflective systems, has
influenced game Al researchers in the past. Smith, in her ex-
ploration of procedural generator design philosophy, poses
that ‘a reflective design process’ might be a good contrast-
ing value to existing trends in commercial procedural gener-
ation (Smith 2017). Kreminski and Mateas explore the role
of reflection in the context of mixed-initiative systems in
(Kreminski and Mateas 2021), and suggest a number of de-
sign patterns which, while intended for support tools, have
parallels with Puck if we consider the audience to be analo-
gous to a ‘user’.

Infinite Rembrandts

Scientific research is affected by the general perception we
have of a problem or field, and vice versa (The Royal Soci-
ety 2018). Outside of AGD research, creative Al today are
often portrayed as Infinite Rembrandt Machines, by which
we mean their ultimate goal is to produce a system that can
produce an endless amount of masterpiece-quality work, on
demand, usually instantly, and for zero cost. This narrative



can be clearly seen in the presentation of DALL-E 2, for in-
stance. This tells us something about how the people who
work on these systems think about creativity and wish to
frame its role in the world.

We believe that alternative narratives and goals are im-
portant, to provide competing visions for what Al can do
for society. Puck is designed as a creative Al system, but our
goal is not for it to effortlessly create perfect output. Instead,
we are interested in building a system that can become a par-
ticipant in a creative community. In order to achieve this, we
had a few guiding principles in mind when designing Puck:

1. Human-Scale Puck is slow. Although we optimise
Puck and intend to make it faster at doing certain tasks, our
aim is for Puck to remain operating at human-like scales of
creativity. This means that working on a full game might
take days, weeks or even months or work. If Puck were to
become drastically faster at making games, we would simply
redesign the system so that it spent more time doing other
things (such as playing other games, giving feedback, and
so on) rather than making games much faster.

Our goal is to develop a system that works on timeframes
comprehensible to people. For Puck to participate in a com-
munity of game developers it should work like them, allow-
ing time for feedback and sharing. Similarly, for Puck to de-
velop an audience as a designer, it must give that audience
time to engage with and anticipate its work as it develops.
Although we think of technology as something getting faster
and more efficient all the time, to do so in the case of cre-
ative work is to ignore and ultimately do away with certain
processes that are at the core of what it means to be creative.

2. Open We make no attempt to hide Puck’s artificiality,
or obscure access to its data (except where it impacts the
system’s individuality). For example, when generating text
to describe a game or report information to the user, we tag
parts of the text based on how we generated it (e.g. grammar
templates, live data). The user can reveal these tags to better
understand our contribution to Puck’s ‘voice’. We hope this
builds trust between us and the user that we are not pretend-
ing Puck is capable of things it is not.

Similarly, Puck’s created games and associated data are
stored as plain-text JSON files in the user’s file system. This
allows the user to view Puck’s work and even edit files (to
the point of breaking Puck, even). Our aim here is to expose
as much of the system as possible, partly to help the user
feel that the system can be understood, and partly to fos-
ter a more homebrew, open relationship with the software.
This is also a response to modern software trends towards
closed systems, cloud-based computation that is invisible
to the user, and inaccessible data and decision-making. We
want the system to feel as open, customisable and locally-
editable as possible.

3. Individual Although, as we describe below, we cur-
rently provide Puck with approximate objective functions
with which to score games, our primary aim is not to de-
sign ‘good’ games (although this is still a good outcome).
Instead, we are keen for Puck to develop an individual cre-
ative practice and grow as a designer. To achieve this, Puck

234

retains information about every playtesting session, game
design and user interaction, which provides a unique his-
tory for each instance of Puck from the first minutes. We
call this approach eventually exhaustive design — it adopts
Sturtevant et al.’s approach to exhaustive data retention, but
we do not expect to ever achieve exhaustion, and instead use
partial data to draw conclusions about the design space.

This full history of its actions allows Puck more flexi-
bility to make mistakes (since it can go back and revisit
them), contextualise its actions meaningfully by referenc-
ing the past, and have reasons to hold subjective but con-
sistent beliefs about games. We are not interested in build-
ing a game design oracle which has every answer. Instead,
we seek to build a system that can hold bad opinions about
games but do interesting things with them — like all good
game designers we know do.

The motto of the Glorious Trainwrecks development com-
munity, which has been running for over fifteen years,
is ‘Make Games Constantly Forever’. They explain ‘it
doesn’t matter if you’ve got talent, so long as you’ve got
gusto’(Penner 2007). We have been inspired by many small
game-making communities in the creation of Puck, and owe
a lot to our own circles of game developer friends who have
inspired us, challenged us, and helped us to grow. We want
to develop Al with gusto.

System Description

Puck does not have a linear process, but instead moves be-
tween different activities or focuses, which we call moods.
Each mood has a specific focus, such as inventing brand new
game designs, and uses a core set of capabilities to achieve
this. In this section we describe the structure of Puck’s de-
sign space, Puck’s various moods, how it evaluates games,
how it generates new games, and how the user-facing part of
the system functions.

Game Structure

Puck is engineered as a flexible platform for AGD research.
Evaluation, visualisation and game-playing functionality are
entirely modular, meaning they can be switched out with
ease. This modularity extends to the type of game being
designed. In this subsection we describe the current design
space Puck can work in, but we will extend this in the future
so that Puck can cover multiple domains at once, opening up
new research questions relating to cross-genre work.

Puck currently designs games that are played on a grid of
up to 8x8 squares. Each square can contain zero or one game
pieces, of which there can be any number of types (although
practically we limit it to eight types at most). The board size
limitation means we can use a 64-bit integer as a bitmask
for pieces on the board, and then use one such integer as
a mask for each piece type (which we call a ‘layer’, inter-
nally). Checkers, for example, is represented by three lay-
ers: one for white pieces, one for black pieces, and one layer
which represents all pieces (every game has this layer).

Game rules are expressed using a modular component
system, where rules exist as self-contained chunks of game
logic that subscribe to event messages sent out by the



game itself. For example, a rule that allows the current
player to place a piece onto the board might listen for the
BOARD_TAP event and then add a new piece to the board
at the tapped location. Modules can be customised to trig-
ger off of different events, and some modules have custom
parameters (for example, a Match- X win condition can take
varying values for X).

The current system has 11 events, including Game Start
and End, Turn Start and End, Destroy, Create or Move Piece,
and Gain Score. We have provided Puck with a set of 25
game modules, some of which are entirely self-contained
(such as a module which ends the turn) and others which
do not have much of an effect on their own but can combine
with other modules (such as a module which tags any row
of 3 or more pieces; other modules can destroy or add score
for tagged pieces). We do not provide Puck any prior knowl-
edge of how to use these composite rules. Our hope is also
for Puck to eventually be able to create its own rule modules
per (Cook 2020).

Moods & Mood Selection

Puck currently has two moods in the release version, and one
more experimental mood not yet released:

e Generate New Ideas (M1): Puck generates a new game
design, either from scratch or based on an existing game
design. It plays the new design once.

e Test Promising Games (M2): Puck tests an existing
game which has only been played once, playing it in
greater depth with more varied agent configurations.

o Test for Degenerate Strategies (EM1): Puck tests a
game with a specialised agent to try and detect a par-
ticular kind of degenerate strategy where a small set of
actions can be repeated over and over to win.

Deciding which mood to move to next is a key part of
the system’s personality, and something we are developing
slowly as we expand the system’s capabilities. Our long-
term goals are to settle on a process by which:

e Puck can make intentional, high-level choices about what
work to do that affects its creative growth.

e Observers can make sense of these choices and under-
stand them as being purposeful and intentioned.

In order for mood selection to feel meaningful there must
be meaningful decisions to make, which requires us to have
a wider selection of lower-level behaviours to choose be-
tween. This remains an area of future work, given the small
number of moods currently available. For now, we have de-
vised a few simple measures that balance Puck’s behaviour
between creating new games and exploring existing ones:

o If fewer than thirty games have been generated, generate
anew game.

e If a game in the top 10%, ordered by score, has not been
played more than once, fully evaluate it using mood M2.

e If any game in the top 15% has not been mutated then
generate a new game via mutation.

e Otherwise, generate a new game.

We focus on a fairly conservative percentage of the
highest-scoring games for two reasons: first, the design
space has quite a high proportion of uninteresting games,
and although we wish to retain these in Puck’s database,
we don’t want to prioritise their evaluation. Secondly, these
rankings are temporary. We intend for Puck’s understanding
of games to change over time, which means evaluations of
games will change and rankings will alter accordingly, as
we add new metrics and new systems for Puck to develop its
own metrics. In the future Puck may reconsider the quality
of a game based on the knowledge it has, which might al-
low it to rise up the rankings into the top 10-15% and thus
be eligible for evaluation further down the line. Thus we can
afford to overlook games now, as we retain access to them
(exhaustively) for later.

Generating Games

New game generation is mostly intuitive (for example, there
is a 50% chance a new game will be single- or multi-player,
and there are lower and upper bounds set for board size
and the number of game modules). Puck’s generation also
includes several instances of what we call “design space
sculpting” — small adjustments to the generation process that
alter the generative space and bootstrap the generation of
games. Currently, these are:

e Games must include a win condition.
e Games must include at least one interaction rule.

We list these here partly for transparency’s sake, but also
because we do not consider these to be permanent features
of Puck’s generation. In the future we intend for Puck to be
able to sculpt its own design space through inference (see
Future Work), and for the user to be able to specify their
own suggested sculpts for Puck to decide on. We can think
of these current conditions as training wheels for the system,
rather than inherent features.

Mutating from a source game has a 2.5% chance to re-
move an existing module, add a new module, or change a
feature of the game specification (such as the number of
players or board size). We check to see if the resulting mu-
tation has already been seen before (since Puck retains ev-
erything) and reattempt mutation a fixed number of times
until we mutate an unseen game. If this fails to find a fresh
game, we simply abort mutation and generate a new game
conventionally instead.

Game Evaluation

As part of mood M1, new game designs are evaluated us-
ing game agent playouts, a common technique in automated
game design (Cook, Colton, and Gow 2017; Browne and
Maire 2010). We use open-loop MCTS agents (OLMCTS)
which store actions in the search tree rather than game states
(Liebana et al. 2015). This makes them flexible enough to
handle games both with and without randomness, with lit-
tle loss of efficiency. New game designs are initially played
using mid-level OLMCTS agents, stronger than our ‘weak’
agent preset, but weaker than our ‘strong’ agent preset: 2000
iterations, a rollout depth of 20. The dynamic selection of a
C value appropriate to an unseen game design is still a point



of future work for us — we use a low C for deterministic
multiplayer games and a high C for singleplayer games with
randomness and scoring.

The game is played for a number of turns proportional to
the size of the board. The reason for this is to ensure that
as many win conditions as possible can be validated. Com-
mon win conditions include covering the board, which may
initially start empty. Thus, running the game for at least as
many turns as there are squares on the board is important
to test if the game can be won. Games are currently played
for a number of turns equal to twice the number of squares
on the board, to account for other rules which may reverse
progress. The primary objective with this initial testing is to
rule out obvious deficiencies, such as being unable to influ-
ence the game state, or being unable to end the game.

The second stage of evaluation, in mood M2, aims to
gather more data to calculate metrics that measure differ-
ent qualities of the game and its gameplay. For singleplayer
games this consists of a playout by: a Random Valid Agent
(RVA), which is a modified random player that only makes
actions that affect the game in some way'; a weak OLMCTS
player (500 iterations, 10 rollout depth); and a strong OLM-
CTS player (4000 iterations, 30 rollout depth). Two-player
games are more complex: we perform three mirror matchups
of the RVA, Weak and Strong agents, and then two asymmet-
ric matchups: RVA vs Weak, and Weak vs Strong. In both
singleplayer and two-player cases, each setup is played five
times. The aim of these assessments are to allow a prelimi-
nary assessment of the following metrics:

e First-Player Advantage (2P Only): measures the ex-
pectation of the first-player winrate against the mea-
sured winrate. Mirror matchups should be approximately
equal, imbalanced matchups should favour the stronger
player.

o Skill Advantage (2P Variant): measures the proportion
of games in imbalanced matchups in which the higher-
skill player wins.

o Skill Advantage (1P Variant): measures the difference
in performance between tiers of agent (RVA, Weak,
Strong), and then computes a capped, weighted sum of
these ratios. We expect higher-skill players to perform
better, but we cap the maximum they can demonstrate as
some games have exponential scoring growth.

e Unique States: measures the number of unique game
states encountered across all playthroughs. This is cur-
rently capped at 75% of a theoretical maximum, as it
is not a property Puck should always seek to maximise.
This is a clear candidate for variation (see Future Work).

e Progress: measures the number of playouts in which ei-
ther score was gained (if scoring is possible) or a player
won (if a win condition is present).

User-Facing Application

The underlying Al system, described above, was initially de-
veloped as a headless application for experimentation. Once

"For example, swiping randomly in Bejewelled will not count
as a game action unless it forms three-in-a-row.

236

we were satisfied with the basic implementation and struc-
ture, we began work on a separate interface that would even-
tually form the downloadable version of Puck. We omit
many minor engineering details here, which sadly are hard
to justify including in six-page paper, but the system has
been designed to be as flexible and extensible as possible.

Puck’s application currently consists of two modes: De-
sign Mode, which gives control over to Puck to freely de-
sign games according to the mood logic described above,
and User Mode, where the user can explore Puck’s work
and play with the results. Design mode is largely self-
explanatory, as the Al acts autonomously. The AI’s actions
are always visualised, with game playouts clearly visible,
alongside information about the current game design.

In User Mode the user is presented with an index of ev-
ery game Puck has generated and tested, sorted initially by
Puck’s own internal scoring. We have implemented a few
quality of life features for the user, including the ability to
‘star’ games, which cause them to appear first in the game
list, regardless of their score according to Puck. The user can
also rename games, and add notes to refer to later. Most im-
portantly, the user can click on any game to be taken to an
interactive interface for playing the game. They can add Al
agents to take over any player role, allowing them to play
against other people, the Al, or to stage Al vs. Al matches.

While not part of the traditional user-facing application,
our own research version of Puck has additional features
designed specifically for streaming on Twitch. We have in-
tegrated Puck with Twitch chat, allowing it to play games
against Twitch viewers, running polls to decide where the
Twitch player should play next. In addition to being a fun
feature for viewers, we hope that this may become a form of
dynamic and quick playtesting for our instance of Puck, as
it allows immediate evaluation of a game by a large group of
people.

Game Descriptions Puck utilises game descriptions
throughout both User and Design modes, and this feature
will only become more important as the system becomes
better able to create and release complete games. Describing
a game from its design outline is not straightforward, and is
considered a challenging research problem even for games
which are well-formed. As is often the case in AGD, the re-
quirement to be able to describe even badly-formed games
greatly complicates this task.

In the current version of Puck we compose rule descrip-
tions by delegating to each individual rule module, request-
ing a description of the module itself, then composing in-
dividual descriptions into a whole. This mostly produces
legible descriptions, however some filtering is required as
certain modules can never execute in some game designs,
while others execute invisibly to the player (such as modules
which mark the board for other modules to respond to). Ad-
ditionally, such composite rule descriptions treat each mod-
ule with equal importance, whereas succinct descriptions of
games tend to give high-level overviews of the important
rules, or may even imply a particular strategy.

Figure 1 shows an example game description generated
by Puck for Triple Flip, a game we describe in depth in the



Tapping the board changes the tapped
piece, adds a piece to the board, drops
a plece onto the board, and ends the
turn.

If any players has
more, they win.

[sic] a line of 5 or

Figure 1: A generated description of Triple Flip.

next section. The rules are primarily contained in a single
line, which describes all the consequences of tapping the
board. However the description misses or confuses some de-
tails. For example, tapping an existing piece and tapping an
empty space have two different effects, but the phrasing of
the rule implies they both happen at once. ‘Changing the
tapped piece’ is also dependent on the number of piece types
active in the game, which is not included in the game de-
scription. These problems sound like they have simple solu-
tions, but fixing them for this game would cause problems
when describing a different kind of game. We hope to im-
prove game descriptions as an area of future development.

Evaluating Puck

Evaluating automated game design systems is something
researchers in the field have often struggled with. Past at-
tempts include internal algorithmic evaluations, for example
to show that an evolutionary process is improving in fitness
(Cook, Colton, and Gow 2017). Other systems were eval-
uated through user studies, such as the Data Agent system
where users were asked to evaluate the system’s ability to
create a coherent and enjoyable mystery scenario. The Gem-
ini project has recently framed evaluation in terms of the
interpretable meanings a designed game conveys. Compar-
isons between different systems are rare, besides qualitative
discussions in Related Work sections, because AGD systems
are typically very distinct from one another, using different
game engines, technology, and design philosophy.

For a field that already struggles with evaluation, Puck’s
unusual aims make it even more awkward to evaluate. For
example, showing the best or average fitness of the popula-
tion is meaningless, since no individual is ever removed and
elites are always retained. Measuring the speed with which
good solutions can be found is also unhelpful, since this is
explicitly not our aim. We hope to perform user studies in
the near future to better understand the audience’s relation-
ship with the system but there is little to compare against, so
in isolation these studies are hard to identify as good or bad.

This paper is primarily a systems description paper, and a
philosophy paper of sorts: a statement of intent for us about
the project and its future trajectory. However, by way of a
supporting argument for our work, we include below some
examples of output from our personal version of the system,
as a way of showcasing some of its output and its unusual
qualities, both good and bad.

Example Games

Antitrust designed by Puck in 2021, for two players on
a 5x5 board. Players take it in turns to place pieces onto the

237

board. At the start of a turn any line of four or more pieces of
the same colour is removed from the board. When the board
is full, the player with the most pieces wins. This game was
used in an earlier study (Johansen and Cook 2021).

This game was discovered during Puck’s development,
identified as one of its three top-scoring games at the time
of running the study mentioned above. It should be noted
that the other two higher-scoring games were in our opinion
not as goodz, and thus this should be considered a curat-
ed/cherrypicked output. There is a much longer debate to be
had about the validity of such outputs.

At first glance, the first player has a distinct advantage
since they place a piece on the board first, and thus maintain
a piece advantage as the board fills up, which is crucial to
winning the game. However, the numerous ways to make
four-in-a-row means it is easy to force a player into making
a line, which is then removed, reducing their board presence
and extending the game. The player closest to winning is
therefore always at a disadvantage, which gives the game a
pleasant back and forth. The game suffers from a long game
duration for players of even average skill.

Triple Flip designed by Puck in 2022, for two players
on a 6x6 board. Players take it in turns to either place a
piece of their colour on the board, or flip an existing piece.
Pieces have three states: green, owned by the first player,
orange, owned by the second player, or pink, owned by nei-
ther player. Flipping the piece advances it to the next state
(flipping a pink piece makes it green). The first player to get
four-in-a-row of their colour wins.

At first glance this game sounds similar to Noughts and
Crosses. However, each player has a different relationship
with the flipping mechanic. For Player 1, their own pieces
are dangerous, as they can be flipped into ownership of
Player 2. This means that if Player 1 places a piece care-
lessly near a line of Player 1’s pieces, it might be flipped
into four-in-a-row and lose the game. On the other hand,
Player 2 has no such fear of their own pieces. Instead, the
neutral pink pieces are a concern as they can be flipped by
Player 1. At the same time, pink pieces provide no utility
to Player 2, meaning Player 1 can leave pink pieces on the
board as blockers to constrain Player 2’s options, who can-
not use them without first giving them to Player 1. Thus
the game creates a certain kind of asymmetric play out of
what is, on the face of it, a perfectly symmetric ruleset. This
game is not quite as balanced as Antitrust — Player 1 has a
slight advantage. But it is an interesting example of the kind
of game Puck currently is capable of identifying, and well
outside of the expected space of results we had in mind for
Puck’s initial version.

Exhibition and Release

During pre-release testing, we asked testers to comment on
how they found the software to use. The testers are a self-
selecting group who follow game Al researchers on social
media, however their feedback was encouraging as they en-
gaged with the software exactly as we hoped. One tester

2Puck’s rating metrics remain a work in progress, and at the
time lacked some of the metrics it uses today.



noted that they found ‘the beginnings of a good game’ af-
ter leaving Puck to run for a couple of hours (as we rec-
ommended). Users were confused by the game descriptions
provided by Puck, which is a priority for us to improve next.
Puck was accepted for inclusion in the WASD games expo
in London in April 2022. Over the course of three days Puck
was installed on the show floor, with attendees able to come
and watch Puck work on games, and play games that Puck
had designed. This was the longest test of the system to date.
It ran without problems for the duration of the event, design-
ing hundreds of new games, and with attendees favouriting
several games in the list, offering additional useful data.
Puck was also released to download on itch.io® where,
at the time of writing, it has been downloaded 260 times.
We were also fortunate to receive some press coverage (via
Rock, Paper, Shotgun) despite not advertising the release.
Puck does not track or monitor user activity at all, but we do
plan to notify users of a survey in the future to better gauge
how users are finding the software, to compare the feed-
back from testers with a broader group of users. We hope
to grow this audience into a small community of enthusiasts
who share their creations and give feedback on the project
as a whole. Hopefully this can combine with an audience on
Twitch following our version of Puck’s online design work.

Future Work
Design Inference

In general, hard-and-fast “design rules” for creative work do
not exist. Yet creators do develop informal guidelines and
preferred practices, based on their feelings, their audience’s
feedback, and the experiences of the work they are mak-
ing. We believe that Puck can bootstrap its own design work
through an inference process that provides it with higher-
level beliefs about the design space it inhabits.

We have experimented by building a simple inference sys-
tem based on its own design experience. Puck can survey its
database of games and note 1-, 2- and 3-tuples of modules
that score consistently high or low when appearing together
in the same game, or that consistently appear in games which
violate design constraints (such as being winnable). From
this it can suggest possible guidelines, such as “games with
module X must have module Y to be playable”.

These inferences are currently not strong enough to be
built into Puck, and remain experimental. We would like
Puck to be able to assign confidence values to each inferred
guideline (how likely it believes the evidence) and strength
(how consistently the guideline should apply). Ideally Puck
would also be able to explicitly test theories by generating
many games in sequence that violate or abide by the guide-
line. We feel this would not only help instances of Puck indi-
vidualise themselves and demonstrate growth, but also more
effectively isolate areas of the design space to explore.

Knowledge Exchange

Unlike other creative forms such as writing, visual art
or music, there is no common representation format for

3 gamesbypuck.itch.io/

238

videogames, nor is there a standardised way to run and in-
teract with them. This poses a problem for automated game
design researchers that is somewhat unique among Al and
creativity research, as there is no straightforward way for Al
systems to engage with, and therefore learn from, existing
examples of work in the same domain.

Our short-term aims in this area are twofold: first, to add
specific interface options for exporting and importing games
designed by Puck, so that people can share output with other
instances of Puck. We envision this as also embedding the
originating Puck’s experiences, as a form of argumentation
that explains why this particular instance of Puck believes
the game to be good (or bad). This dovetails with our other
work aiming to individualise each instance of Puck.

We also aim to build tools within Puck for users to de-
sign games with, using the same toolset Puck has access to.
By using Puck’s language, users can both recreate famous
games as well as invent their own games in a format Puck
can understand. This offers two interesting new research
challenges — enabling Puck to learn from one-shot examples
of design from trusted sources, and enabling Puck to pro-
vide feedback on a user’s game design, suggesting changes
or making observations about elements it thinks work well.

Conclusions

In this paper we introduce Puck, a new automated game
design system that is designed to embed in people’s local
creative communities. Puck combines principles from au-
tomated game design and computational creativity with the
notion of exhaustive content generation, to create a slow de-
sign system that intentionally takes a scalable, low-stakes
approach to creative work. Puck never discards its work, and
thus opens up new opportunities to engage its audience with
its growth, creating opportunities to build on its past mis-
takes and learn from its successes. Puck has already pro-
duced several interesting games, and is proving to be a fruit-
ful platform for further automated game design research.

Acknowledgements

This work was supported by the Royal Academy of Engi-
neering under the Research Fellowship scheme. Thanks to
Younes Rabii, Florence Smith Nicholls, Mads Johansen and
Sara Cardinale for their contributions to Puck, and to the ex-
cellent reviewers.

References

Barros, G. A. B.; Green, M. C.; Liapis, A.; and Togelius, J.
2019. Who Killed Albert Einstein? From Open Data to Mur-
der Mystery Games. [EEE Transactions on Games, 11(1):
79-89.

Browne, C.; and Maire, F. 2010. Evolutionary Game Design.
IEEE Transactions on Computational Intelligence and Al in
Games, 2(1): 1-16.

Charity, M.; Khalifa, A.; and Togelius, J. 2020. Baba is
Y’all: Collaborative Mixed-Initiative Level Design. In IEEE
Conference on Games.



Colton, S.; and Wiggins, G. A. 2012. Computational Cre-
ativity: The Final Frontier? In Proceedings of the 20th Eu-
ropean Conference on Artificial Intelligence.

Cook, M. 2020. Software Engineering For Automated Game
Design. In IEEE Conference on Games.

Cook, M. 2021. The Social Responsibility of Game Al.
In Proceedings of the IEEE Conference on Games (CoG).
IEEE.

Cook, M.; and Colton, S. 2018. Redesigning Computation-
ally Creative Systems For Continuous Creation. In Pro-
ceedings of the Ninth International Conference on Compu-
tational Creativity, ICCC.

Cook, M.; Colton, S.; and Gow, J. 2017. The ANGELINA
Videogame Design System - Part 1. IEEE Transactions on
Computational Intelligence and Al in Games, 9(2): 192—
203.

Cook, M.; and Smith, G. 2015. Formalizing Non-
Formalism: Breaking the Rules of Automated Game Design.
In Proceedings of the 10th International Conference on the
Foundations of Digital Games.

Guzdial, M.; Liao, N.; Chen, J.; Chen, S.; Shah, S.; Shah,
V.; Reno, J.; Smith, G.; and Riedl, M. O. 2019. Friend, Col-
laborator, Student, Manager: How Design of an Al-Driven
Game Level Editor Affects Creators. In Brewster, S. A.;
Fitzpatrick, G.; Cox, A. L.; and Kostakos, V., eds., Proceed-
ings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI 2019, Glasgow, Scotland, UK, May 04-
09, 2019, 624. ACM.

Hallnis, L.; and Redstrom, J. 2001. Slow Technology De-
signing for Reflection. Personal Ubiquitous Computing,
5(3): 201212.

Johansen, M.; and Cook, M. 2021. Challenges in Gener-
ating Juice Effects for Automatically Designed Games. In
Proceedings of the Seventeenth AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment.

Khalifa, A.; Green, M. C.; Barros, G. A. B.; and Togelius, J.
2019. Intentional computational level design. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence, GECCO. ACM.

Kreminski, M.; Dickinson, M.; Osborn, J.; Summerville, A.;
Mateas, M.; and Wardrip-Fruin, N. 2020. Germinate: A
Mixed-Initiative Casual Creator for Rhetorical Games. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment.

Kreminski, M.; and Mateas, M. 2021. Reflective Creators.
In Proceedings of the Twelfth International Conference on
Computational Creativity.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient World: Human-Based Procedural Cartography - An Ex-
periment in Interactive Sketching and Iterative Refining. In
Proceedings of the Conference on Evolutionary and Biolog-
ically Inspired Music, Sound, Art and Design.

Liebana, D. P.; Dieskau, J.; Hunermund, M.; Mostaghim, S.;
and Lucas, S. M. 2015. Open Loop Search for General Video
Game Playing. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO. ACM.

239

Nelson, M. J.; and Mateas, M. 2007. Towards Automated
Game Design. In Proceedings of the Congress of the Italian
Association for Artificial Intelligence.

Odom, W.; Banks, R.; Durrant, A.; Kirk, D.; and Pierce, J.
2012. Slow Technology: Critical Reflection and Future Di-
rections. In Proceedings of the Designing Interactive Sys-
tems Conference. Association for Computing Machinery.

Pell, B. 1992. METAGAME in symmetric chess-like games.
Technical Report UCAM-CL-TR-277, University of Cam-
bridge, Computer Laboratory.

Penner, J. 2007. Glorious Trainwrecks.
wrecks.com. Accessed 2022-08-01.

Saini, V.; and Guzdial, M. 2020. A Demonstration of Me-
chanic Maker: An Al for Mechanics Co-Creation. In Pro-
ceedings of the Conference on Artificial Intelligence and In-
teractive Digital Entertainment.

Smith, A. M.; and Mateas, M. 2010. Variations Forever:
Flexibly generating rulesets from a sculptable design space
of mini-games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games.

glorioustrain-

Smith, G. 2017. What do we value in procedural content
generation? In Proceedings of the 12th International Con-
ference on the Foundations of Digital Games.

Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
An Intelligent Level Design Assistant for 2D Platformers.
In Proceedings of the Sixth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment.

Sturtevant, N. 2013. An Argument for Large-Scale Breadth-
First Search for Game Design and Content Generation via a
Case Study of Fling! In Proceedings of the 2nd Workshop
on Artificial Intelligence in the Game Design Process, at Al-
IDE. AAAL

Sturtevant, N. R.; Decroocq, N.; Tripodi, A.; Yang, C.; and
Guzdial, M. 2020. A Demonstration of Anhinga: A Mixed-
Initiative EPCG Tool for Snakebird. In Demonstrations @
AIIDE.

Sturtevant, N. R.; and Ota, M. J. 2018. Exhaustive and Semi-
Exhaustive Procedural Content Generation. In Proceedings
of the Fourteenth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. AAAL

Summerville, A.; Martens, C.; Harmon, S.; Mateas, M.; Os-
born, J. C.; Wardrip-Fruin, N.; and Jhala, A. 2019. From Me-
chanics to Meaning. IEEE Transactions on Games, 11(1):
69-78.

The Royal Society. 2018. Portrayals and perceptions of Al
and why they matter. tinyurl.com/rs-portrayals. Accessed
2022-08-01.

Togelius, J.; and Schmidhuber, J. 2008. An experiment in
automatic game design. In Proceedings of the 2008 IEEE
Symposium on Computational Intelligence and Games.

Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012. Game-O-Matic: Generating Videogames That Rep-
resent Ideas. In Proceedings of the The Third Workshop on
Procedural Content Generation in Games.



