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Abstract

Reinforcement learning (RL) is a powerful way to solve
sequential decision-making tasks. However training an RL
agent in a complex environment requires a large amount of
interactions, which is non-ideal when acting in an environ-
ment is costly or dangerous. One alternative is to learn an
approximation of the real environment, referred to as a world
model. This simulator can be used to train an agent and trans-
fer the learned policy to the real environment. Unfortunately,
training world models have traditionally required a significant
number of interactions in the real environment. This brings us
to the same problem when it is costly or dangerous to act in
the real environment. To address this problem, we present an
entity-based representation and corresponding architecture,
which allows for greater data efficiency in world model train-
ing. Our approach outperforms other world model baselines
in an initial application to the game Pong.

Introduction

Reinforcement Learning (RL) is a framework for defin-
ing and computationally solving sequential decision-making
problems. Deep RL (DRL) has arisen as a combination of
Deep Learning (DL) and RL to tackle more complex do-
mains. Game-playing agents are among one of the most pop-
ular successes of DRL (Mnih et al. 2013). However, these
approaches tend to require a significant amount of training
data, often in excess of millions of interactions with an envi-
ronment. This can be non-ideal, such as when interacting in
the environment is dangerous or costly (Kiran et al. 2021).
As opposed to interacting in the real environment di-
rectly, there are alternative approaches to learn a simulation
of the real environment, sometimes called a world model
(Ha and Schmidhuber 2018). The RL agent can then be
trained in this simulated environment, rather than the real
one. There have been a number of these methods in re-
cent years, some with very impressive results (Wang, Kos-
son, and Mu 2017). However, they have all needed a large
amount of data from the real environment (Lotter, Kreiman,
and Cox 2016). This means that these models still require
a large number of interactions in the—potentially danger-
ous and costly—environment. One possible reason for this
is that these recent world model approaches have relied on
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pixel input, a high variance representation (Halevy, Norvig,
and Pereira 2009). If we had a simpler representation, we
could potentially learn a helpful model in fewer interactions.

In an attempt to find a method to train a simulated envi-
ronment with less training data, we propose a novel entity-
based representation for game environments. This entity-
based representation reduces the complexity of input, but
can still be automatically extracted from a pixel-based repre-
sentation for simple environments. For this reason, we focus
on the Atari domain and specifically the game Pong. While
the game Pong is simple, it is well-understood and appears
in prior world model-learning work (Wang, Kosson, and Mu
2017), making it appropriate for an initial exploration.

We employ our entity-based representation as the basis
for an action-conditioned model that predicts reward and
the next state in order to serve as a world model. We use
this model to train an RL agent, and compare it to an agent
trained in the real environment, an agent trained in an exist-
ing World Model baseline (Ha and Schmidhuber 2018), and
several variants of our approach. We find that our approach
leads to a more accurate and useful model with much less
training data compared to prior work.

Related Work
Game Representations

Automated game playing has traditionally been an impor-
tant domain for artificial intelligence (Silver et al. 2018).
One of the fundamental topics in intelligent game playing
is the problem of efficient game representation (Mandziuk
2010). The majority of DRL approaches take video game
frames, represented as matrices of pixels, as input (Oh et al.
2015). A single level of a game may consist of tens of thou-
sands of frames, and each individual frame contains a great
deal of information, much of it useless. Other approaches
rely on more condensed, human-authored representations
(Thielscher 2017), however, these representations take sig-
nificant authoring effort and cannot represent many complex
environments. We attempt to automatically extract a con-
densed representation from game frames.

There are other approaches to automatically extract or
learn a representation related to game frames. For example,
(Osborn, Summerville, and Mateas 2017) directly access the
visual data, gaining information about what is present in



a frame directly from the game. While this is theoretically
possible for all games, it might require specialized knowl-
edge of the hardware or software in question. As an alter-
native approach, other work has attempted to automatically
learn a representation from game frames or images (Jad-
hav and Guzdial 2021; Smirnov et al. 2021). There is also
work combining both of these prior approaches, accessing
a game’s memory and then learning a usable representation
from it (Karth et al. 2021; Mawhorter et al. 2021). We view
all of these approaches as complimentary to our method,
and consider learning forward models based on these rep-
resentations an open area of future work. However, given
our results with learned representations discussed below, we
believe that our approach may be more general due to its
simplicitly (Khameneh and Guzdial 2020).

Forward Models and World Models

In this paper we focus on the problem of training RL agents
with fewer interactions in the real or target environment. One
way to offset this problem is to derive an accurate simu-
lated environment or forward model (Kober, Bagnell, and
Peters 2013), a concept that was originated by Schmidhuber
(Schmidhuber and Huber 1991). The idea is to train an agent
in the simulated environment and then transfer the learned
policy to the real environment. However, acquiring a suffi-
ciently accurate model is a challenging problem and in many
cases requires a large amount of data.

(Oh et al. 2015) proposed a highly accurate video frame
action-prediction model using a combined Recurrent and
Convolutional Neural Network architecture. Their approach
required 500K training frames for each game. (Leibfried,
Kushman, and Hofmann 2016) extended the work of Oh
et al. by including reward prediction, with similar train-
ing data requirements. (Wang, Kosson, and Mu 2017) pro-
posed a convolutional feed-forward model for predicting fu-
ture frames and rewards, trained on roughly 600K frames
of the game Pong. This work relied on a trained DQN to
play Pong, which was used to collect the training data for
the forward model. However, relying on a trained DQN to
collect the training data is not ideal, since this contradicts
the purpose of learning a simulated environment to train the
agent in, in the first place. (Kaiser et al. 2019) proposed a
complete model-based deep RL algorithm based on video
prediction models called Simulated Policy Learning (Sim-
PLe), which relied on considerably less training data com-
pared with previous approaches. While we worked on a sim-
ilar but distinct problem, our dataset is nearly an order of
magnitude smaller. Outside of games, there are more recent
approaches to learning to simulate complex physics and par-
ticles (Sanchez-Gonzalez et al. 2020; Duarte and Vlimant
2022). These approaches have not been tested in games and
typically require direct access to the simulator.

Ha & Schmidhuber (Ha and Schmidhuber 2018) pre-
sented a predictive model that can be trained quickly in
an unsupervised manner to learn a compressed spatial and
temporal representation of a game. They coined the term
“world model” for a forward model represented in a deep
neural network architecture that attempted to fully approx-
imate the real environment. Their approach derived world
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models training data via 10K random rollouts in the real en-
vironment. While this is an improvement over requiring a
trained DQN agent to collect the training data, it still repre-
sents a significant amount of interactions in the real environ-
ment. In addition, their world model did not include reward,
making it impossible to train an agent solely in this simu-
lated environment.

Entity-Based Representation

In this section, we introduce our entity-based representation.
We describe our forward model based on this representation
in the next section. We use Pong from the Atari Learning
Environment (Bellemare et al. 2013) as an initial domain
to test our approach, due to its simplicity and its history
with forward model learning (Wang, Kosson, and Mu 2017).
We draw on the same approach as (Sieusahai and Guzdial
2021), to identify individual entities. At a high level, we run
a depth-first search over the pixels of a frame to find all pix-
els of the same colour. This allows us to identify individual
entities in a frame.

Note that we assume that entities have a constant pixel
color, and the entire entities are structured so that every pixel
in the entity is adjacent to at least one other pixel. This as-
sumption holds for the majority of ALE games. This as-
sumption breaks when a single game entity has multiple col-
ors, which is common in more complex Atari games. For ex-
ample, in Montezuma’s Revenge the player character makes
use of five distinct colors. However, even in cases where it
does not hold, due to the fact that the different “pieces” of
a single entity have highly correlated behavior, this type of
representation has been shown to still capture important se-
mantics (Sieusahai and Guzdial 2021).

After identifying an entity as a collection of pixels we ex-
tract the following features based on each entity, and a near-
est matching between entities across pairs of frames.

* SizeX and SizeY are the sizes of the entity in the x and
y dimensions, based on the differences between the fur-
thest pixels in each dimension.

* PositionX and PositionY are the positions of the entity
in the = and y dimensions of a frame, identified as the
value of the leftmost and uppermost pixels of each entity,
respectively.

* VelocityX and VelocityY are the the velocities in the x
and y dimensions, identified by the difference between
an entity and it’s matching entity in the next frame.

This means each entity is re-represented as a vector of
shape (1x6): <SizeX, SizeY, VelocityX, VelocityY, PositionX,
PositionY>. This ignores variation in entity shape, and as-
sumes all entities can be represented as rectangles. Because
our unit of measurement is pixels, all the values are integers
at this stage. All of the features are always greater than zero
except VelocityX and VelocityY which can be negative. For
uniformity, we append vectors of zeroes to each frame, such
that each frame in our data has the same number of vectors.
This allows us to represent when an entity disappears in the
prior frame or is about to appear in the next frame, like the
ball appearing and disappearing in Pong.



Forward Model Learning

Forward models can simulate how a real environment
changes in response to an action from an agent, and can
therefore be used to train agents. Prior approaches relied on
high dimensional pixel input observations to train a predic-
tive model. We present a method that is able to learn the tem-
poral and spatial dependencies of entities, using an entity-
based representation. This allows our approach to learn to
make predictions with considerably less training data. In this
section, we describe our forward model approach based on
our our entity-based representation.

Methodology

The goal of our model is to learn a function f : s;_j.¢, ay —
S¢y1, Rev1, where s, ay, and r; are the entity-based repre-
sentation of the state, action and reward at timestep t, re-
spectively. s;_j.; indicates states from time ¢ — k to time t.
Entity extraction converts the pixel inputs to entity vectors,
and our predictive model takes these vectors and a repre-
sentation of the action as input to predict the next state and
the associated reward. The predictive model is composed of
an LSTM to extract temporal features from the input data.
We chose an LSTM due to it’s common inclusion in similar
prior work and to simplify comparisons (Ha and Schmidhu-
ber 2018). The model also has an action-conditioned layer,
which is concatenated with the output of the LSTM. Finally,
the concatenation of the LSTM output and action is fed into
dense layers to predict both the next state and reward. The
major difference from this approach to existing, prior work
is in the use of our entity-based representation instead of
pixel input (Oh et al. 2015).

Model Architecture

Our network takes a fixed history of prior states as an input.
We choose four for the history state time horizon as prior
work also used it for the Atari domain (Oh et al. 2015). The
network architecture consists of three LSTM layers each
with 1024 hidden units. The action is represented as a one-
hot encoded vector, which is concatenated to the output of
the third LSTM layer. As shown in Figure 1, after incor-
porating the action, the network is divided into two parts.
In the first part, the output is a real-valued approximation
of the vectorized representation of the entities. The second
part employs a fully connected softmax layer, which predicts
the reward. We split the reward into three categories (-1,0,1)
treating it as a classification problem. We discuss this further
below. We used dropout equal to 0.5, the Adam optimizer, a
batch size of 64, and trained the model for 200 epochs.

Loss Function

The model is trained by minimizing the weighted sum
of two loss functions, mean squared error (MSE), and
cross-entropy.

ey

Ltotal = )\Lmse + Lcrossfentropy

where: A =10
We measure the MSE loss between the predicted state and
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the next ground truth state, where each state is in our entity-
based representation. In addition, we employ the cross-
entropy loss function (Simard et al. 2003), to measure the
difference between the predicted and true reward values. We
weight the MSE loss (A = 10) to encourage the model to not
focus on the “easier” classification task.

Reward Prediction

Around 95% of the rewards in a typical game of Pong have
a 0 value. This makes predicting non-zero rewards difficult.
In our final model, rewards are represented as one-hot en-
coded vectors of size three (Leibfried, Kushman, and Hof-
mann 2016). Even with this, there was a large imbalance
in the distribution of reward classes. As a result, the varia-
tions of our approach discussed below struggled to predict
non-zero rewards.

World Model

We present our world model in Figure 2. When an agent acts
in our world model it takes as input the state and outputs an
action a;. We take the current state s;, in our entity-based
representation, and feed it and the action into our forward
model. Our forward model predicts the next state s;; and
the associated reward r. We then convert the predicted state
s¢+1 back to a pixel representation to feed into our agent and
the loop continues. Figure 3 demonstrates example predicted
frames using this approach in comparison to the true next
frames. All frames are represented in black and white as our
entity-based representation does not track pixel colors.

Evaluation

The focus of this paper is to achieve a world model that can
be used to train an RL agent with less training data than
prior work. The reason for this is to minimize the amount of
interactions in the environment, under the assumption that
the environment is dangerous and/or costly to act in for a
randomly initialized agent. Thus, if we can train our agent
entirely with our world model or employ our world model
to pretrain our agent to avoid the worst behaviors in the real
environment, then we have achieved this goal.

For comparison, we include four variations of our ap-
proach. The first variation is our proposed entity-based
approach (“Entity”’) described above, while the remaining
three allow us to interrogate certain assumptions in our ap-
proach. All three are based around employing a Variational
Autoencoder (VAE) as the basis of a representation, which
is closer to the learned latent representations in other work
(Oh et al. 2015; Ha and Schmidhuber 2018). All of these ap-
proaches differ only in the state representation input to and
output from the forward model.

» Entity: Our approach. In this version the input size
is 1 x 54 where 54 is number_of_entities (9) X en-
tity _dimension (6).

* Entity Embedding: For this variant we employ a VAE
trained on individual entities, and use it’s latent dimen-
sion as the input representation to our forward model. We
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Figure 1: The complete architecture of our predictive model.
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Figure 2: Visualization of our world model approach. An
agent takes actions given the current state. The current state
is transformed into our entity-based representation, and that
and the action are passed to the forward model. The forward
model then predicts the reward and the next state, and the
cycle continues.

describe the VAE in further detail below. In this represen-
tation each input has a shape of 1 x 18 where 18 is num-
ber_of_entities (9) x latent_dimension_of_each_entity (2).

* Output VAE: We used the reconstructed output of the
Entity VAE as the basis of another baseline. We included
this as an in-between approach, potentially more general
than the Entity representation, but with more detail than
the Entity Embedding representation. In this approach
each input has the same format as Entity.

¢ Frame Embedding: A variant embedding in which
rather than individual entities we embed an entire frame’s
worth of entities. We employed this representation to ex-
plore if it is more helpful to represent all entities in a
single embedding or model them individually. In this ap-
proach each frame has the shape of 1x 12, where 12 is the
latent_dimension_of_each_frame. We describe this model
in more detail below.

We also employ the Ha & Schmidhuber world model
work as a fourth baseline (Ha and Schmidhuber 2018), be-
cause it is the original world model paper and it had the
smallest data requirement. We had to adapt this baseline to
the Atari environment, thus we changed the input parame-
ters to match Pong. Their model consists of a VAE to learn
the compressed representation of the 2D image input, which
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inspired our embedding variant baselines. Rather than train-
ing a separate RL agent their model included a controller,
responsible for choosing the action in order to maximize ex-
pected cumulative reward. We attempted to implement an-
other forward model learning approach (Oh et al. 2015),
however, their model had nearly 90 million parameters, and
we found it to be untrainable with small datasets. We an-
ticipate that the use of other, more complex forward model
learning approaches would lead to similar results.

To evaluate our work we employ three experimental se-
tups. To evaluate the quality of the predicted states, we di-
rectly compare the predicted and original frames. To evalu-
ate the quality of the predicted reward function, we calculate
the Fl-score of the predicted rewards. Finally, to evaluate
whether the forward models are helpful to an agent, we train
a DQN agent in our world model.

Entity Embedding

For three of our baselines, we explore learning a latent repre-
sentation based on our proposed entity-based approach. This
allows us to verify whether our entity-based approach can be
usefully compressed further. Employing a latent embedding
in this way is the more typical solution to this sort of prob-
lem (Oh et al. 2015; Ha and Schmidhuber 2018). We train
our VAEs on a dataset of entities extracted from our train-
ing dataset, which is described below. We explored a variety
of VAE architectures and hyperparameters. Since accuracy
of predicted entities using a VAE with low dimensional la-
tent space is our main goal, we choose the model with the
smallest possible latent space dimension with high recon-
struction accuracy. Ultimately, we ended up with a model
that offered high-quality reconstructions and several helpful
characteristics, including the ability to differentiate between
games while minimizing the difference between conceptu-
ally similar entities (Khameneh and Guzdial 2020). Our fi-
nal architecture had only one fully connected hidden layer
for the encoder and decoder, with a 2-dimensional embed-
ding layer. The embedding layer used Sigmoid activation,
with the two other layers using Relu. Further detail on this
model can be found in (Khameneh and Guzdial 2020).

Frame Embedding

Our final variant baseline makes use of a VAE trained on all
of the entities in frame instead of individual entities. In this
model, each training instance is represented as a flattened
vector of all of the entities in a frame. In Pong, we have
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Figure 3: Consecutive predicted frames from our model. The right paddle is controlled by the agent in the original game.

at most 9 entities in each frame, and each entity has a shape
1 x 6, thus each input for this model has the shape 1 x 54. We
employ a 12-dimensional latent space for this model, with
all of the other layers and hyperparameters kept the same as
the Entity Embedding VAE.

Dataset

For our dataset, we collect 15K frames in the Pong environ-
ment. We have an agent act randomly to explore the environ-
ment, and record the actions, states, and rewards. We use the
first 14,000 frames for our training set, used to train our ap-
proach and the four baselines, and the last 1000 frames for
our test set. This amount of training data is roughly an or-
der of magnitude smaller than seen in prior work (Oh et al.
2015; Ha and Schmidhuber 2018).

Results
Predicted Frames

To evaluate the accuracy of the predicted frames, we use
MSE and the Structural Similarity Index Measure (SSIM),
which are two similarity metrics commonly used to com-
pare images (Sara, Akter, and Uddin 2019). Given that our
different baselines have different representations, we con-
verted all of them to a grayscale frame for this analysis. In
addition, since the goal of our model is to predict a frame in
which each entity is in the right position with the right size,
we also compare the predicted and ground truth for the entity
representation of each frame. To this end, we calculate the
MSE of each entity’s position and size features between the
predicted frames and the original frames. Lower values for
MSE and higher values for SSIM are better. For this analy-
sis, we feed the test data to each world model to predict the
next frame given the prior frames.

As seen in Table 1, the Entity and Frame Embedding
approaches outperform the others according to all metrics.
We observed that, in both of these variants, our model is
able to capture the movement of entities, particularly the
player-controlled paddle. The models also predict the in-
teractions between objects such as bouncing the ball off
the paddles. The Frame Embedding approach performance
makes sense, as it is closer to the more common wisdom
of learning a single embedding for an entire state (frame)
in forward model learning work. In comparison, the Ha &
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SSIMT MSE | Entities |
Entity 09677 0.1644 10.1733
Entity Embed. 0.8442 04534 154121
VAE Output 09441 0.1997 11.1356
Frame Embed.  0.9694 0.1587  8.0112
Ha & Schmidhuber -0.0951 2.4052  77.2876

Table 1: Results of our state comparison over our test data,
comparing the output of the forward models to the original
game states.

Zero Negative(-1)
Entity 1 1
Entity Embed.  0.99 0.76
VAE Output ~ 0.99 0.79
Frame Embed. 0.99 0.77

Table 2: Fl-score of the predicted test rewards

Schmidhuber baseline is unable to capture the important en-
tities, such as the ball and paddles. One possible reason is
that their model requires 10K rollouts while our training
data was only the equivalent of 14 rollouts. The Entity Em-
bedding approach does the worst of our variant approaches,
even beaten out by VAE Output. This indicates that despite
the model’s high reconstruction accuracy, it lost important
details in the latent space. Due to the importance of accu-
racy of the predicted states, we focus only on the Entity,
Frame Embedding, and Ha & Schmidhuber models in our
third experimental setup.

Predicted Rewards

To assess the validity of the reward prediction we calculate
the Fl_score, the harmonic mean of precision and recall.
Since our training set is composed of 95% zero value re-
wards, it is important to investigate the validity of our model
on non-zero rewards. In Table 2, we show the F1-score of
our approach and the baselines over our test set for both 0
and -1 rewards. We did not include the +1 reward values in
Table 2, as there were no examples of those values in our
test set, as it is difficult for a random agent to score a point.
Table 3 includes the F1-score of the predicted rewards over



Zero Negative(-1) Positive(+1)
Entity 0.99 0.99 1
Entity Embed. 0.99 0.89 0
VAE Output  0.99 0.95 0
Frame Embed. 0.99 0.99 0

Table 3: Fl-score of the predicted training rewards

Real
+1.89

Entity Embed.
-4.23 -6.15

H&S Rand.
-7.4 -10.4

Score

Table 4: Average score of game playing agents over 100
game rounds in the real environment.

our training set. It shows that the Entity approach has an
F1-score near or equal to 1 for all values, which shows the
ability of the model to predict non-zero rewards. Our vari-
ant approaches could also predict both negative and zero re-
wards with a high Fl-score. However, they could not pre-
dict positive rewards. This indicates that despite the Frame
Embedding approach having the most accurate state predic-
tions, it still may not represent the best world model. We did
not include the Ha & Schmidhuber baseline in this section,
as their approach does not predict rewards.

Training Agents

To evaluate the usefulness of the world models to our pri-
mary challenge we trained DQN agents (Mnih et al. 2013)
using the Entity and Frame Embedding models. We em-
ployed the original DQN agent as Pong is a simple game
and so we did not need a complex agent. We test the trained
agents in the real environment to explore if they demon-
strated positive transfer of the learned policy from the simu-
lated environment to the real environment.

We use the agent from (Mnih et al. 2015) without alter-
ation. In the original paper, the authors applied a simple
frame-skipping technique from (Bellemare et al. 2013) to
the frames. In frame-skipping the environment repeats the
action for k frames and just returns the last frame to the agent
instead of every frame. This technique allows the agent
to play on k£ frames with much less computation. Since,
we trained our forward models using the frame-skipping
method they automatically predict the k‘h frame. We choose
k = 4 as the original paper suggests the same value for
Pong. To train the agent, we use the decayed e-greedy be-
haviour policy. € decreases from 1 to 0.05 linearly over the
first million frames. Episode lengths are 100 during training
in all experiments. We choose 100 because our model can
predict reasonable frames over around 100 time steps.

Figure 4, shows the average game score in the real en-
vironment per training episode, when training in both the
real environment and simulated environments of the Entity
and Frame Embedding approaches. We train three agents
with different seeds in all experiments. This is a small num-
ber, but we found extremely consistent results in all cases,
and so stopped after three. As is shown, the agent’s score
converges to -0.6 and -1 in the Entity and Frame Embed-
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Real
1.57

Pre-trained agent
3.65

Score

Table 5: Average game score for the agents over 100 game
rounds in the real environment.

ding simulated environments, respectively, while the agent’s
score converges to +0.5 in the real environment over the
same period. The plot shows that agent learns by playing
in the simulated environments, however with the same num-
ber of timesteps the agent learns more while playing in the
real environment. This does not mean the simulated envi-
ronments aren’t useful, as they could potentially still help an
agent learn to avoid catastrophic behavior in the real envi-
ronment. This led us to try to pre-train an agent in the sim-
ulated environment, then transfer the learned policy to the
real environment and continue to train the agent. Our goal
was to see whether this would help us achieve a better score
with fewer interactions in the real environment, while avoid-
ing catastrophic behavior.

We choose the best performing Entity agent and transfer
it to the real environment. We then trained the agent in the
real environment with e starting from 0.5 and decreasing to
0.05 in 500,000 steps. The agent trained for 1,200,000 steps
or 12,000 episodes. We chose 0.5 as an initial value for € to
explore if we can train a DQN agent with less exploration
that outperforms agents without pre-training. In Figure 5,
the left plot shows the average score of this agent during
training. As is shown the reward reaches +0.5 after around
5000 episodes. We also train the same agent in the real en-
vironment without pre-training it, with the pre-trained agent
having a better jumpstart, and converging faster. Further, the
pre-trained agent avoids the lowest average score achieved
by the non-pre-trained agent. We take this as evidence of
the utility of this approach, that it could be helpful to help
avoid catastrophic behaviour from an agent in the real envi-
ronment. This would be especially important in dangerous
environments. We note that if we continue to train the two
agents in the left side of Figure 5 they do eventually con-
verge to the same policy.

The right plot of Figure 5, displays the cumulative reward
of the Ha & Schmidhuber baseline during training. Since
this approach does not predict the reward, the controller has
access to the rewards from the real environment. As we men-
tioned the controller is a simple single layer linear model
that maps the output of the VAE and LSTM directly to an
action at each time step. To optimize the parameters of the
controller, the authors employed Covariance Matrix Adapta-
tion Evolution Strategy(CMA-ES) (Hansen 2006). We train
the agent for 3000 generations. Since their predictive model
is not able to predict appropriate future states, the controller
converges to -1.5 after only a few generations.

We tested all the agents prior to the pre-training exper-
iment in the real environment for 100 game rounds, each
round with a length of 500 frames. As is shown in Table
4, the real environment (Real) agent outperforms all other
agents. The Entity agent achieves an average score of -4.23,
which is the second best agent. It beats out our Frame Em-
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Figure 5: The left plot depicts the pre-trained agent (blue) and the agent trained only on the real environment (red). The right

plot shows the Ha & Schmidhuber baseline.

bedding agent (Embed.), the Ha & Schmidhuber baseline,
and the random agent used to collect training data. Thus the
Entity world model leads to agents that avoid negative re-
ward comparatively better than all our other world model
baselines. One could be disappointed to see world models
lead to worse outcomes than real environments, however, we
note that using world models is less costly since they make
it possible to train an agent with fewer interactions with the
real environment. Further, we include the scores of the two
agents from the pre-training experiment in Table 5. It shows
that the pre-trained agent outperforms the agent trained only
in the real environment.

Limitations

We focus on the domain of Pong in this paper, which is a
major limitation. While focusing on 1-2 domains (including
Pong) is not unusual for world model work (Oh et al. 2015;
Ha and Schmidhuber 2018), we need to apply our approach
to other domains to demonstrate generality. However, two
problems must be solved first: the issue of a moving camera
and a greater number of entities. We intend to address these
issues with a change of representation and a change in entity
identification process. In our Training Agents subsection, we
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converted the output of our predictive model to a pixel-based
image to train DQN agents. This may lead to needless com-
plexity and make the learning task harder for the DQN agent.
We hope to train a DQN agent using the entity-based repre-
sentation directly, which has a simpler structure than pixel-
based image input.

Conclusions

Despite the huge success of modern RL algorithms, train-
ing them in a real environment can be dangerous or expen-
sive. While approaches to learn simulated models of envi-
ronments exist, they require a large amount of interactions
with the real environment. We introduced a novel entity-
based representation and world model as a means of be-
ginning to address this issue. We demonstrated that our ap-
proach outperforms more standard solutions and an existing
world model baseline.

Acknowledgements

This work was funded by the Canada CIFAR AI Chairs Pro-
gram. We acknowledge the support of the Alberta Machine
Intelligence Institute (Amii) and the Natural Sciences and
Engineering Research Council of Canada (NSERC).



References

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research, 47: 253-279.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253-279.

Duarte, J.; and Vlimant, J.-R. 2022. Graph neural networks
for particle tracking and reconstruction. In Artificial intelli-
gence for high energy physics, 387-436. World Scientific.
Ha, D.; and Schmidhuber, J. 2018. World models. arXiv
preprint arXiv:1803.10122.

Halevy, A.; Norvig, P.; and Pereira, F. 2009. The unreason-
able effectiveness of data. IEEE Intelligent Systems, 24(2):
8-12.

Hansen, N. 2006. The CMA evolution strategy: a comparing
review. Towards a new evolutionary computation, 75-102.

Jadhav, M.; and Guzdial, M. 2021. Tile embedding: a gen-
eral representation for level generation. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, volume 17, 34-41.

Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Camp-
bell, R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Koza-
kowski, P.; Levine, S.; et al. 2019. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374.
Karth, I.; Aytemiz, B.; Mawhorter, R.; and Smith, A. M.
2021. Neurosymbolic map generation with vg-vae and wfc.
In The 16th International Conference on the Foundations of
Digital Games (FDG) 2021, 1-6.

Khameneh, N. Y.; and Guzdial, M. 2020. Entity embedding
as game representation. arXiv preprint arXiv:2010.01685.
Kiran, B. R.; Sobh, IL.; Talpaert, V.; Mannion, P.; Al Sallab,
A. A.; Yogamani, S.; and Pérez, P. 2021. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transac-
tions on Intelligent Transportation Systems.

Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research, 32(11): 1238-1274.

Leibfried, F.; Kushman, N.; and Hofmann, K. 2016. A deep
learning approach for joint video frame and reward predic-
tion in atari games. arXiv preprint arXiv:1611.07078.
Lotter, W.; Kreiman, G.; and Cox, D. 2016. Deep predic-
tive coding networks for video prediction and unsupervised
learning. arXiv preprint arXiv:1605.08104.

Mandziuk, J. 2010. Knowledge-free and learning-based
methods in intelligent game playing, volume 276. Springer.

Mawhorter, R.; Aytemiz, B.; Karth, I.; and Smith, A. 2021.
Content reinjection for super metroid. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 17, 172-178.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

222

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533.

Oh, J.; Guo, X.; Lee, H.; Lewis, R.; and Singh, S. 2015.
Action-conditional video prediction using deep networks in
atari games. arXiv preprint arXiv:1507.08750.

Osborn, J.; Summerville, A.; and Mateas, M. 2017. Auto-
matic mapping of NES games with mappy. In Proceedings
of the 12th International Conference on the Foundations of
Digital Games, 1-9.

Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R
Leskovec, J.; and Battaglia, P. 2020. Learning to simulate
complex physics with graph networks. In International Con-
ference on Machine Learning, 8459-8468. PMLR.

Sara, U.; Akter, M.; and Uddin, M. S. 2019. Image quality
assessment through FSIM, SSIM, MSE and PSNR—a com-
parative study. Journal of Computer and Communications,
7(3): 8-18.

Schmidhuber, J.; and Huber, R. 1991. Learning to generate
artificial fovea trajectories for target detection. International
Journal of Neural Systems, 2(01n02): 125-134.

Sieusahai, A.; and Guzdial, M. 2021. Explaining Deep Re-
inforcement Learning Agents in the Atari Domain. In Sev-
enteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, L.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140-1144.

Simard, P. Y.; Steinkraus, D.; Platt, J. C.; et al. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In Icdar, volume 3. Citeseer.

Smirnov, D.; Gharbi, M.; Fisher, M.; Guizilini, V.; Efros,
A.; and Solomon, J. M. 2021. Marionette: Self-supervised
sprite learning. Advances in Neural Information Processing
Systems, 34: 5494-5505.

Thielscher, M. 2017. GDL-III: A description language for
epistemic general game playing. In The IJCAI-16 workshop
on general game playing, 31.

Wang, E.; Kosson, A.; and Mu, T. 2017. Deep action con-
ditional neural network for frame prediction in Atari games.
Technical report, Technical Report, Stanford University.



