
Using Multi-Armed Bandits to Dynamically Update Player Models in an
Experience Managed Environment

Anton Vinogradov, Brent Harrison
Dept. of Computer Science, University of Kentucky
Anton.Vinogradov@uky.edu, Harrison@cs.uky.edu

Abstract

Players are often considered to be static in their preferred play
styles, but this is often untrue. While in most games this is
not an issue, in games where experience managers (ExpMs)
control the experience, a shift in a player’s preferences can
lead to loss of engagement and churn. When an ExpM makes
changes to the game world, the game world is now biased
in favor of the current player model which will then influ-
ence how the ExpM will observe the player’s actions, po-
tentially leading to a biased and incorrect player model. In
these situations, it is beneficial for the ExpM to recalculate
the player model in an efficient manner. In this paper we show
that we can use the techniques used to solve multi-armed ban-
dits along with our own idea of distractions to minimize the
time it takes to identify what a player’s preferences are af-
ter they change, compensate for the bias of the game world,
and to minimize the number of intrusive elements added to
the game world. To evaluate these claims, we use a text-only
interactive fiction environment specifically created to be ex-
perience managed and to exhibit bias. Our experiments show
that multi-armed bandit algorithms can quickly recalculate a
player model in response to shifts in a player’s preferences
compared to several baseline methods.

Introduction
An Experience Manager (ExpM) is often used in games
when one wants to provide a tailored experience for the
player. An Experience Manager acts as an omniscient third
party, monitoring player actions and preferences, and uti-
lizes of these observations to deliver better content to the
player (Sharma et al. 2007).

The ExpM has the ability to take actions while the player
is playing the game, gently guiding the player towards an
optimal gameplay path. In more recent advances in experi-
ence management the ExpM has access to a player model
created from observations of the player, often times gath-
ered while the game is being played. This allows the ExpM
to provide content that is more personalized to the player
(Yu and Riedl 2013) and allow for a balance between au-
thorial intent and player agency. Modeling a player as they
play and having the ExpM change the environment that the
player is modeled in has an issue though. The environment is

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

biased by past choices that the ExpM has made. If the ExpM
thinks that the player enjoys combat, it will send monsters
to the player. The player then kills those monsters, not be-
cause they prefer it, but because the monsters are there. The
ExpM sees that the player is engaging with this task and de-
cides that the player must really love killing. If a player is
static in their preferences this issue may not appear, as this
would just help narrow down the static preferences. Unfor-
tunately, it has been shown that players often do change their
play styles (Valls-Vargas, Ontañón, and Zhu 2015), and that
a dynamic computation of the player model needs to be done
(Khoshkangini et al. 2018). This improperly managed game
may be more frustrating and less engaging than an unman-
aged game as the environment is now biased and thus the
environment is tailored towards a set of preferences that the
player no longer holds.

Past approaches have not attempted to control for this
bias. One might think that removing the changes that the
ExpM introduced could be a viable solution to controlling
the bias, but this leads to greater issues. While managing the
narrative the ExpM must make changes to the world, some
of which make lasting changes to the narrative. Attempting
to remove these changes to remove the bias may be impos-
sible without disrupting the narrative and thus the player.
Thus, it is necessary to instead compensate for bias by mak-
ing additions to the game world. These additions need to be
small enough as to not disturb the narrative, but still be no-
ticeable to player.

In this paper we propose a system to introduce new ob-
jects into the game world to gather information from the
player, and to quickly find the shift in the player’s prefer-
ences1. We model the ExpM’s player profiling as a Multi-
Armed Bandit (MAB) to be able to take advantage of these
techniques to quickly find the player’s current preferences.
MAB’s ability to balance between exploration and exploita-
tion allows us to quickly discover what the player’s current
preferences are without serving them too many unwanted
distractions. This is critical as providing too many unwanted
distractions may cause the player to disengage from the ex-
perience.

We evaluate our system using a custom text-based in-

1The code is available at: https://github.com/garyyo/MAB-PM-
Recovery

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

207



teractive fiction environment and a set of scenarios where
the ExpM is focused solely on finding a new player model
with the assumption that it has already detected a shift in
player preferences. We implement several different MAB al-
gorithms and player agents across 20 different player pref-
erence shift scenarios to evaluate our system. We find that
MAB algorithms are capable of quickly finding what the
player agent’s preferences are despite the inherent bias of
the environment while reducing the number of distractions
needed compared to baselines.

Background and Related Works
In this section we will discuss some of the earlier work
done on drama management and provide a brief overview
of multi-armed bandits.

Experience Management and Player Modeling
The goal of experience management, and the subset field
of drama management, is to balance the player’s sense of
agency while also preserving the goals of the author. A
Drama manager (DM) can achieve this by making changes
to the game outside of the player’s control through a series
of actions. These actions may include things like locking or
unlocking certain paths, adding or removing some charac-
ters or objects from the game, or modifying the information
that is given to the player to guide them towards the author’s
narrative goals. Early works in drama management did not
make use of a player model (Riedl and León 2008; Cavazza
et al. 2009; Lamstein and Mateas 2004; Nelson and Mateas
2005, 2008).

Our approach works within the space of player model-
ing focused experience management as having an accurate
and useful model of the player can allow for more intelli-
gent ExpM actions (Sharma et al. 2007, 2010; Yu and Riedl
2013). These have more recently been expanded into mul-
tiplayer environments (Gray, Zhu, and Ontañón 2021; Zhu
and Ontañón 2019). In each of these works, player prefer-
ences are assumed to be static. In our work, we explore the
methods which would allow for an ExpM to recalculate a
player model in response to shifts in player preferences.

There have been works recently that have acknowledged
the need for dynamic player models. These works have fo-
cused on trying to dynamically recalculate a player model
according to a pre-existing set of playstyles (Khoshkangini
et al. 2018; Valls-Vargas, Ontañón, and Zhu 2015). The dif-
ference in their work is that they make an assumption of
pre-existing categories for a player to be placed into. Our
method does not make this assumption and seeks to learn a
player model described purely by player behavior. Since our
method is incorporated into an experience managed environ-
ment, we also need to deal with the left-over biasing of the
environment from past ExpM actions.

MABs have been used in player modeling before with the
focus of adapting games to their players (Gray et al. 2020;
Gray, Zhu, and Ontañón 2021), but these are concerned with
finding player models from scratch, rather than correcting
one in live gameplay. As such while many of their goals are
the same, such as finding a player model quickly, they have

more freedom in how to modify the environment and can
make more assumptions. Due to the issues our method is
attempting to solve we cannot make these assumptions about
a player’s play style and must actively intervene to discover
them.

Background on Multi-Armed Bandits

Multi-Armed Bandits (MABs) are a class of sequential
decision-making problems where an agent is tasked maxi-
mize the amount of reward from iteratively taking one of
k actions (often called arms) (Slivkins 2019). Since we are
able to model the act of discovering the player model as a
MAB, we can use the techniques used to solve a MAB for
this task.

They take their name and inspiration from slot machines
in a casino, which are informally referred to as one-armed
bandits. The problem can be framed using this analogy as
follows. Assume the existence of a slot machine with many
arms that a player could pull. Each arm has a different pay-
out probability, but the user does not know which arm will
likely result in the largest payout. As such, the person needs
to find a strategy (policy) to maximize their own return on
playing time while minimizing their own losses from the
cost associated with pulling an arm. Rewards are often as-
sumed to be drawn from fixed (yet independent) distribu-
tions. We make the same assumptions in this work, with the
added assumption that the environment is fully observable.
In other words, the user receives an accurate observation of
the reward they receive after pulling an arm.

The difficulty associated with the multi-armed bandit
problem is in balancing the act of gathering information
about the payout associated with each arm (exploration) and
maximizing reward given the current known information
(exploitation). In this work, we make use of three different
algorithms for our MAB policy learning: ϵ-greedy, UCB1-
Tuned, and Thompson sampling. The simplest is ϵ-greedy,
which at each turn will either randomly choose an arm to
pull with a probability ϵ or will select the arm with the high-
est expected payout given current information with a prob-
ability 1 − ϵ. Random actions serve as a way to gather in-
formation about the arms while the greedy actions take ad-
vantage of this information. We also consider a variant of
ϵ-greedy called ϵ-decreasing in which the ϵ value decreases
over time according to a decay function.

UCB1 is a technique for learning MAB policies that in-
volves estimating the upper confidence bound on rewards
for each arm and selecting the one that maximizes this value.
We use a variant of UCB1 called UCB1-Tuned which uses
a more finely tuned upper confidence bound for the vari-
ance of an arm for a Bernoulli random variable (Auer, Cesa-
Bianchi, and Fischer 2002). This method performs substan-
tially better than UCB1 in all of our tests, so we have opted
to only include this tuned variant. UCB1-Tuned (like UCB1)
requires that one of each arm is played before more intelli-
gently selecting the arm with the highest upper confidence
bound.

208



argmax

(
Qa +

√
lnn

na
min(1/4, Va(na))

)
(1)

Va(n) =

(
1

n

n∑
t=1

R2
a,t

)
− R̄2

a,n +

√
2 lnN

n
(2)

UCB1-Tuned calculates the upper confidence interval for
every arm using equations 1, 2 where Qa is the sample mean
for arm a, na is the number of times arm a is given, Ra,n is
the reward of arm a at time n, R̄a,n is the average reward,
and N is the total number of rounds that have occurred.
The 1/4 constant is an upper bound on the variance of a
Bernoulli random variable, where Va is the calculated vari-
ance.

argmax (B (αa + 1, βa + 1)) (3)
Thompson sampling is the first bandit algorithm in lit-

erature first appearing in 1933 (Thompson 1933). It builds
a probability model of the expected rewards, which it then
samples an arm pull from. It draws samples from a beta dis-
tribution of the number of successes and failures for each
arm, choosing the sample with the maximum probability, as
seen in equation 3, where α and β represent the number of
successes and failures for arm a. Initially, both α and β are
set to 1 to establish a uniform prior distribution. Thompson
and UCB1 both are able to naturally shift between primarily
exploration early on to being more exploitation as they gain
more information.

Methods
In this section we will go over the various parts of our system
and how they are adapted to fit the framework of a MAB.
We will also discuss the implementation decisions of our
interactive narrative game environment.

Multi Arm Bandit Adaptation
In an experience managed system, the experience manager
changes the game world based on expected player behav-
ior as defined by a player model through the use of ExpM
actions. If player’s preferences change during gameplay the
player model can be considered outdated. Any ExpM ac-
tions made based on this now outdated player model will
not have the desired effect. In these situations, the player
model should be recalculated; however, the ExpM cannot
use past observations to perform this recalculation as these
player observations were gathered in a biased setting caused
by the ExpM.

To recalculate the player model, we propose an additional
set of ExpM actions that focus on offering a new set of tasks
to the player, which we call distraction actions. The sole pur-
pose of these new ExpM actions is to gather information
about the player and their preferences. This means that they
will not attempt to further authorial goals nor make the en-
vironment well suited to the player.

One of the core concepts to our method is the idea of a dis-
traction. A distraction is an object that can be added to the

game environment via an ExpM distraction action that the
player can interact with, much like a regular game object.
Distractions differ from other game objects in that their pur-
pose is not to contribute to the game, but rather to offer the
player alternative gameplay options that the ExpM can use to
update the player model. Distractions can also be removed
from the environment when they are no longer needed, as
they should be designed to not be important enough to the
narrative to require a consistent presence.

All objects in the game, including distractions, have a pri-
mary means that the player would interact with that object
which we call the action-type. For example, a book object
may have the action-type read. These action-types corre-
spond to the axes of our player model, and thus are related to
regular ExpM actions. This is common way of representing
the player model that we see elsewhere in literature (Thue
et al. 2007; Sharma et al. 2007) In our system a regular
ExpM action would consist of the ExpM noticing that the
player model has a high affinity to a specific action-type
or types and then customizing future content to include ob-
jects with that action-type. On the other hand, an ExpM dis-
traction action consists of simply adding a distraction corre-
sponding to an action-type (which it wants to test the player
on) to the environment.

In this work, we propose to model this process as a multi-
armed bandit problem. There are several benefits to doing
this, but the most important one is that existing MAB meth-
ods work to balance the exploration/exploitation trade-off
in order to quickly learn behavior policies. The ExpM has
to balance between providing distractions for the purposes
of gathering information critical to recalculating the player
model (exploration) and taking actions that the player is in-
terested in so that they do not disengage too much from the
experience (exploitation). ExpM distraction actions are one
of the primary means that the ExpM and player are modeled
as a MAB, as these are used as an arm pull, with one arm
for each action-type. Before each player turn, the ExpM can
take a distraction action and add a distraction with a spe-
cific type to the environment. When a player interacts with
a given distraction, a reward of one is given to its type, and
when they do not a reward of zero is given. We consider both
the player interacting with a different object and the player
moving to a different area as not interacting with that dis-
traction. Average reward is then calculated as the total num-
ber of times a player interacts with a distraction of a given
action-type over the number of times that action-type has
been given.

While the experience manager is providing distractions,
the player is constantly making choices as to which object
they want to interact. We observe these actions to form an
action history, which contains a turn-by-turn record of what
objects the player interacted with (if any), if these objects
are distractions, and what the action-type of the object is.
Previous observations of the player may be biased since the
player’s actions are limited by what is available in the en-
vironment, and the environment has been influenced by the
ExpM’s past actions. Since we want our observations to be
as unbiased as possible, we only consider a truncated ver-
sion of the action history, only including the actions that

209



happened after we are sure that the player’s preferences have
shifted. We then calculate a dynamic player model by find-
ing the frequencies of each action-type within the truncated
history.

Environment
To test our methods, we use a custom text-based Inform7 en-
vironment. This environment consists of a game world made
of 7 areas, called rooms, that the player agent can move
around in, with game objects that the agent can interact with,
with each object having a set of methods of interacting with
that correspond to our action types. The rooms that are in
our environment are set up to all be traversable using only
the commands north, south, east, west as they represent the
outdoors portions of a standard video game medieval town.

We use simulated agents in place of human subjects as it
allowed us to make direct measurements of the agent’s inter-
nal preferences and compare them to the computed player
model. These simulated agents have the ability to inter-
act with objects in the town through a list of valid actions
provided by the environment that are currently available to
the agent. These interactions are split across five different
action-types: look, talk, touch, read, and eat. Each of these
action-types has a corresponding distraction, and some num-
ber of objects scattered across the game world.

Our environment is set up to simulate the effects of a pre-
viously managed player who is already familiar with the
game. As such, we start in the middle of a quest that is cen-
tered around the talk action-type. Other action-types that the
agent did not have a preference towards are still included as
it is often not possible to design a narrative with only a single
action-type, but these are fewer in number, which we call en-
vironmental action-types. Action-types that are currently not
present in the environment at all are grouped under the name
missing action-types. We consider look and touch along with
talk to be environmental action-types and read and eat to be
missing action-types. This setup forms a biased environment
where a shift in the player’s preferences to read and eat may
not be adequately provided for.

A typical playthrough of the environment consists of the
player starting in the middle of town square with the task
to find an old lady’s cat. This would lead a human player
to ask around town for the location (using the talk action-
type), and eventually stumble upon some clues for it’s loca-
tion. The player can also look around for physical clues and
pick up various objects to give to NPCs and to unlock doors
(using the touch action-type) but these are not the focus of
the quest. The player does not have access to the parts of the
game that would allow for reading (like a library) or eating
(a potions shop) and thus we consider these missing action-
types. Distractions would be spawned in as an object similar
to regular game objects but does not contribute to the quest.
For example, this could be a NPC spawned in the town mar-
ket that the player can talk to, but they would give no clues
to the cat’s location. The game world is often filled with ob-
jects that are not directly related to the main quest so this
hopefully does not detract from the experience of the game,
but we expect that it might and thus try to minimize adding
distractions.

Experiments
In our experiments we use a single environment to test the
effects of 3 different agents, 6 ExpMs, and 20 scenarios. In
this section we go over the differences between all of these.
We aim to maximize the rate at which our calculated player
model converges to a new value and how close we are to
the true player preferences, without giving too many distrac-
tions.

Player Agents
We used simulated players to test our environment. In or-
der to better model player variability, we use three different
types of agents which make decisions in different ways: Ex-
ploration Focused Agent, Novelty Focused Agent, and Goal
Focused Agent. All agents have an underlying preference
distribution which describes their likelihood to engage with
certain types of actions which is dictated by the scenario.
The agents first make a decision of what type of object they
wish to interact with then selects an object of that type. If the
selected type does not have an object in the current area the
agent will fall back on to a default behavior, detailed below.

The Exploration Focused Agent attempts to interact with
objects in line with its internal preferences with a 10%
chance each turn to randomly move to a different area. Its
default behavior is to also randomly wander and thus it com-
pletely ignores the quest and any of the required actions
needed to complete it but may still achieve quest relevant
actions incidentally.

The Goal Focused Agent also primarily attempts to inter-
act with objects in line with its internal preferences, much
like the previous agent, but changes its default behavior to
be equally split between taking a single action to achieve the
goal of the quest and wandering. These actions are predeter-
mined for the quest for the sake of the experiment but often
require that the agent moves to the correct area first.

The Novelty Focused Agent likewise attempts to interact
with objects in line with its internal preferences but puts
equal importance on how novel the object is. This has the ef-
fect that objects that this agent has not seen before or has not
interacted with in a while will be more likely to interacted
with even if the agent’s preferences do not reflect this. This
agent’s default behavior is the same as the Goal Focused
Agent’s, split between achieving the quest and wandering.

The Exploration and Goal Focused Agents are inspired
by the Bartle taxonomy of player types (Bartle 1996) repre-
senting explorers and achievers respectively. The other two
groups in the taxonomy (killers and socializers) require a
more social representation and are not applicable to our en-
vironment. On the other hand the Novelty Focused Agent is
not inspired by any taxonomy, but rather is based on find-
ings in literature on user engagement across many differ-
ent technology platforms, including games, which states that
novelty (or variety) can increase engagement (O’Brien and
Toms 2010).

Experience Managers
We use many different Experience Managers to both estab-
lish our baselines and to test our methods. Each ExpM takes

210



Figure 1: Mean JS Distance between Player Model and Agent Preferences vs. Turn for Exploration Focused Agent

Figure 2: Mean JS Distance between Player Model and Agent Preferences vs. Turn for Goal Focused Agent

Figure 3: Mean JS Distance between Player Model and Agent Preferences vs. Turn for Novelty Focused Agent

a single distraction action each turn which generally creates
a single distraction object. These distractions objects are re-
moved after a single turn for these experiments.

We include 3 managers as baselines: the One-of-Each
manager which provides one of each of the distraction ob-
jects each turn, the Random Manager which provides a ran-
dom distraction each turn, and the Provide-missing manager
which provides a distraction that is least represented in the
current area. The One-of-Each manager is expected to per-
form the best as it breaks from our requirement of mini-
mizing the number of distractions given. Our MAB man-
agers each implement a different MAB algorithm, of which
we use 3: ϵ-greedy (ϵ = 0.2), UCB1Tuned, and Thomp-
son. The details of these algorithms are present in the back-
ground section for MABs. These were chosen after testing
several different algorithms including ϵ-decreasing, various
ϵ values for ϵ-greedy, and UCB1. Of these we found that
UCB1 performed significantly worse than other baselines, ϵ-
decreasing performed similarly to the others but was slightly
worse, and that the optimal value for ϵ-greedy is 0.2.

Scenarios

We test 20 different scenarios, one for each transition from a
preferred action-type before (pre-preference) to a preferred
action-type after (post-preference) the preference switch.
The preferred action-type has a weight of 11/15 and the rest
have a weight of 1/15. This allows us to look at all the pos-
sible preference shifts and see how our system performs on
each. These 20 scenarios are then categorized into 4 group
scenarios, Environment to Environment, Missing to Envi-
ronment, Environment to Missing, and Missing to Missing.
These correspond to our grouping of the action-types into
environmental and missing action-types, where the look,
talk, touch are considered environmental and the read and
eat action-types are considered missing. Each group con-
tains 6 scenarios except for Missing to Missing which only
contains 2 scenarios.

For the sake of consistency between trials we pre-generate
and reuse the first 100 turns of each scenario. This pre-
generated history consists of 90 turns where the agent is us-
ing the pre-preference, and 10 turns where the agent is us-

211



Agent Random Provide-Missing ϵ-Greedy UCB1-Tuned Thompson One-Of-Each
Environment to Environment Action-Types

Exploration Focused 0.354±0.249 0.292±0.205 0.269±0.339 0.295±0.282 0.211±0.250 0.019±0.013
Goal Focused 0.097±0.073 0.064±0.055 0.087±0.024 0.092±0.025 0.088±0.025 0.019±0.013

Novelty Focused 0.255±0.162 0.232±0.136 0.163±0.118 0.171±0.126 0.169±0.108 0.181±0.055
Missing to Environment Action-Types

Exploration Focused 0.327±0.250 0.270±0.194 0.234±0.323 0.291±0.260 0.229±0.267 0.018±0.013
Goal Focused 0.102±0.088 0.062±0.051 0.093±0.026 0.094±0.024 0.091±0.025 0.016±0.011

Novelty Focused 0.238±0.161 0.212±0.123 0.162±0.125 0.156±0.105 0.171±0.126 0.163±0.050
Environment to Missing Action-Types

Exploration Focused 0.747±0.118 0.562±0.111 0.273±0.433 0.362±0.275 0.266±0.340 0.023±0.014
Goal Focused 0.585±0.190 0.347±0.135 0.079±0.040 0.073±0.024 0.081±0.030 0.019±0.013

Novelty Focused 0.735±0.138 0.551±0.109 0.303±0.331 0.257±0.231 0.254±0.187 0.197±0.054
Missing to Missing Action-Types

Exploration Focused 0.747±0.107 0.568±0.119 0.260±0.378 0.350±0.287 0.268±0.367 0.022±0.015
Goal Focused 0.570±0.200 0.363±0.146 0.083±0.039 0.079±0.023 0.075±0.029 0.018±0.012

Novelty Focused 0.737±0.133 0.548±0.108 0.251±0.245 0.258±0.214 0.299±0.281 0.199±0.055

Table 1: Mean and Std. of the JS distance between player model and agent preferences on the final turn for all tests. Bolded
entries represent the best performing manager (excluding One-Of-Each) and italicized entries are statistically significant and
better than Random with p < 0.001 according to a Student’s T-Test.

ing the post-preference. We include the 10 turns of the post-
preference to simulate the time between when the player’s
preferences shift and when the ExpM starts to take action.
Since we reuse this pre-generated history across multiple
agents, this history uses the Goal Focused Agent.

We measure the agent’s preferences against our calculated
player model by treating each as a probability distribution
over action-types and use Jensen–Shannon (JS) distance to
measure the distance between the two. JS distance is used
because it is symmetric and is guaranteed to have a finite
value. For the purpose of this calculation, we start at turn 90
of the pre-generated history as this is the point at which the
agent switches to the post-preference, though the ExpM does
not take distraction actions until turn 100. For each run we
first average the models over each trial and use that averaged
model to compare against the agent’s preferences. We run 50
trials for each test of agent, ExpM, and scenario.

Results and Discussion
For each test we have created a graph that measures the JS
distance between the player agent’s internal preferences and
the measured player model in Figures 1, 2, and 3 for the
Exploration Focused, the Novelty Focused, and the Goal Fo-
cused Agents respectively. Each graph starts at turn 90 when
the preferences are switched and ends on turn 199 for a total
of 110 turns. While the actions taken between turn 90 and
100 are all the same, we include them to show the effect of
switching between the different groups of preferences. We
will discuss these figures by first addressing the performance
of the baselines, then the MAB based managers, and finally
some of the effects of different agents and scenarios.

Scenario Differences
In the -to Environment scenario groups we find that since
the environment already provides the agent with objects that
match its preferences there is not much information that can

be gained. This is especially true when going from Miss-
ing Actions to Environment Actions where this trend is fol-
lowed by a quick increase in the distance between the player
model and the agent’s preferences seen in Figures 1 and 3.
This is especially prevalent in the Novelty Focused Agent as
it prefers objects that it deems novel, and since the manager
has not taken any distraction actions before turn 100, the
sudden addition of distractions means that it will likely start
to interact with the distractions instead of solely in accor-
dance with its preferences. These two scenario groups rep-
resent a situation that does not need ExpM intervention as
the current environment is still well suited for the player de-
spite their preference shift.

The scenarios going -to Missing represent the cases that
are more appropriate for intervention via ExpM distraction
actions. In these cases, the environment is not well suited
for the types of actions the agent prefers, and thus without
intervention the user’s calculated player model will continue
to drift further from their preferences. We do not consider
the existence of the former scenario group to be an issue as
going to an environment action-type would not trigger the
need for the ExpM to take distraction actions. Going forward
we will be focusing on these the -to Missing scenario groups
unless noted otherwise.

Manager and Agent Differences
Our best performing manager is the One-Of-Each manager.
This manager serves as a lower baseline, with the unfair ad-
vantage of being able to provide multiple distractions at the
same time. Giving multiple distractions has the effect of pre-
venting the agents from moving, as they will never fall back
to their default behavior, with the exception of the Explo-
ration Focused Agent which still has a small chance to move.
This manager serves as the lower bound on JS distance and
outperforms ever other manager in nearly every case.

The random manager is our other baseline, and it serves

212



as a pure exploration option. We find that for the -to Missing
scenario groups all of our managers are statistically better
than this manager as shown in Table 1. This shows that at-
tempting to only explore and gather information does not
lead to better results, and that a balance must be made to be
able to quickly recalculate the player model. For our Nov-
elty and Exploration Agents giving the player agent com-
pletely random distractions just serves to distract them with-
out gaining any information. The Novelty Agent will focus
on the distractions since they are new, while the Exploration
Agent may choose to wander instead of interacting, lowering
its chance that it would interact with the distraction.

The provide-missing manager works differently than our
other baselines as it is informed, but also differently than
our MAB managers in that it does not try to gain informa-
tion from the player. It serves to test the importance of only
compensating for bias in the environment as it tries to pro-
vide a distraction for the least represented action-type. While
it performs statistically better than random, even sometimes
in the -to Environment scenario groups, it does significantly
worse than the MAB managers. This suggests that the role
of the environmental bias is a factor, and that observing the
environment should play a part in how a manager chooses a
distraction. We will be integrating the behavior of this man-
ager with MAB managers in future work.

We find that while the MAB managers perform very simi-
larly to each other there are some slight differences between
them. UCB1-Tuned often has a slight lead but this does not
persist, and Thompson is slower to achieve the same per-
formance as the rest but sometimes beats out UCB1-Tuned.
The most consistent is ϵ-greedy, but this does not result in
the lowest score at the end. This end is currently arbitrarily
set, so being able to decrease the distance quickly may be
more important in the future.

In some rare specific cases we found that the MAB man-
agers are actually capable of performing better than One-
Of-Each. This can be seen with the Novelty Focused Agent
in the -to Environment scenario groups on most MAB man-
agers in Table 1. The MAB managers have an average re-
ward value for each arm which often corresponds to the
agent’s preferences, but in rare cases the average reward is
higher for the preferred action-type than the agent’s pref-
erences. While exploiting its knowledge, the manager (es-
pecially ϵ-greedy) only pulls the arm with the maximum
average reward which causes the calculated player model
to overshoot the player’s preferences if not correctly tuned.
This overshooting effect is also why we see the performance
of the MAB managers in the Goal Focused Agent (Figure 2)
start to get worse around turn 140. Here the distance lowers
quickly because the average reward distribution has already
overshot the player preference distribution and continuing to
give distractions to the player actually gives them too many.
While this may serve as an occasional advantage this effect
is inconsistent, often harmful, and difficult to diagnose and
in future work we will attempt to limit its influence.

Conclusion
While personalized experience management and dynami-
cally updating player models has been explored before, both

have not been implemented together. We believe that the
prevalence of player preferences shifts requires that ExpMs
have a means to quickly recover the player model when a
preference shift occurs. The simple solution of just observ-
ing the player is not enough as there is bias left over from the
ExpM’s previous actions. In this paper we implement and
compare several methods used to compensate for the bias
and allow the experience manager to dynamically update
the player model by modeling the system as a multi-armed
bandit. We find that these methods can quickly recalculate a
player model in response to preference shifts.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing, 47(2): 235–256.
Bartle, R. 1996. Hearts, clubs, diamonds, spades: Players
who suit MUDs. Journal of MUD research, 1(1): 19.
Cavazza, M.; Pizzi, D.; Charles, F.; Vogt, T.; and André, E.
2009. Emotional input for character-based interactive story-
telling. In AAMAS ’09: Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems,
Budapest, Hungary, 10-15 May 2009, 313–320.
Gray, R. C.; Zhu, J.; Arigo, D.; Forman, E.; and Ontañón, S.
2020. Player modeling via multi-armed bandits. In Inter-
national Conference on the Foundations of Digital Games,
1–8.
Gray, R. C.; Zhu, J.; and Ontañón, S. 2021. Multiplayer
Modeling via Multi-Armed Bandits. In 2021 IEEE Confer-
ence on Games (CoG), 01–08. IEEE.
Khoshkangini, R.; Ontañón, S.; Marconi, A.; and Zhu, J.
2018. Dynamically extracting play style in educational
games. EUROSIS Proceedings, GameOn.
Lamstein, A.; and Mateas, M. 2004. Search-based drama
management. In Proceedings of the AAAI-04 Workshop on
Challenges in Game AI, 103–107.
Nelson, M.; and Mateas, M. 2005. Search-based drama man-
agement in the interactive fiction Anchorhead. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 1, 99–104.
Nelson, M. J.; and Mateas, M. 2008. Another Look at
Search-Based Drama Management. In AAAI, 792–797.
O’Brien, H. L.; and Toms, E. G. 2010. The development and
evaluation of a survey to measure user engagement. Journal
of the American Society for Information Science and Tech-
nology, 61(1): 50–69.
Riedl, M. O.; and León, C. 2008. Toward vignette-based
story generation for drama management systems. In Work-
shop on Integrating Technologies for Interactive Stories-2nd
International Conference on INtelligent TEchnologies for
interactive enterTAINment, 8–10.
Sharma, M.; Ontañón, S.; Mehta, M.; and Ram, A. 2010.
Drama management and player modeling for interactive fic-
tion games. Computational Intelligence, 26(2): 183–211.
Sharma, M.; Ontañón, S.; Strong, C. R.; Mehta, M.; and
Ram, A. 2007. Towards Player Preference Modeling for

213



Drama Management in Interactive Stories. In FLAIRS Con-
ference, 571–576.
Slivkins, A. 2019. Introduction to Multi-Armed Bandits.
Foundations and Trends® in Machine Learning.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3-4): 285–294.
Thue, D.; Bulitko, V.; Spetch, M.; and Wasylishen, E. 2007.
Interactive storytelling: A player modelling approach. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 3, 43–
48.
Valls-Vargas, J.; Ontañón, S.; and Zhu, J. 2015. Explor-
ing player trace segmentation for dynamic play style pre-
diction. In Eleventh Artificial Intelligence and Interactive
Digital Entertainment Conference.
Yu, H.; and Riedl, M. O. 2013. Data-driven personalized
drama management. In Ninth Artificial Intelligence and In-
teractive Digital Entertainment Conference.
Zhu, J.; and Ontañón, S. 2019. Experience management in
multi-player games. In 2019 IEEE Conference on Games
(CoG), 1–6. IEEE.

214


