
Searching for Balanced 2D Brawler Games: Successes and Failures of Automated
Evaluation

Samuel Shields, Ross Mawhorter, Edward Melcer, Michael Mateas
University of California, Santa Cruz

samshiel@ucsc.edu, rmawhort@ucsc.edu, eddie.melcer@ucsc.edu, michaelm@ucsc.edu

Abstract

Automated game design (AGD) research focuses on
creating systems that can design entirely new games.
This is often done by a genetic algorithm, with a fitness
function that is used to find individual games that sat-
isfy certain design criteria. However, it is difficult to tell
if generated games actually have the desired emergent
properties (such as balance), since the fitness function
might not align well with human aesthetic judgments
about such properties. This is particularly problematic
when trying to automatically design balanced, fair, yet
asymmetrical games for multiple players. In this paper
we present an early system for automatically design-
ing brawler games, and present findings from a prelimi-
nary user study involving the same games. We show that
while the system successfully optimizes for our written
fitness function during human play, we found that this
optimization did not correctly translate to our hypothe-
sized human experience of the game.

Introduction
Procedural content generation has solidified as a commonly-
used technique in video games, leading to a wide body
of research covering many techniques for creating video
game content automatically. More recently, researchers have
begun to focus on automated game design (AGD) (e.g.
(Browne and Maire 2010; Cook, Colton, and Gow 2016a)).
Here, the generation systems are responsible for more than
a single static artifact that will be used as part of a wider
game. Instead, they generate interactive parts of the game
world including narrative, game mechanics, and other game
elements like sound effects. Because these systems generate
multiple parts of the game, they usually strive to make co-
herent choices, so that each part makes sense in the context
of the other part, a framework called orchestration (Liapis
et al. 2018). In addition to designing entirely new games,
this framework can also be used to discover new mechanics
that integrate well with the fixed design of an existing game.

A primary challenge of AGD is evaluation: many AGD
systems are evaluated by defining an objective function that
intuitively corresponds to desirable properties of the game,
and show that generated examples score well on this metric

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Cook, Colton, and Gow 2016a). Because of the complexity
of games, the objective is often calculated using statistical
data about play traces performed by an AI. However, even
if the objective function is well-calibrated towards desirable
gameplay, there is no guarantee that this AI behaves in a
human-like way, and thus no way to tell whether the outputs
of the system are games that achieve their aesthetic goals.

This is problematic when it comes to balance in mul-
tiplayer games. While there exists literature on automated
balancing in multiplayer games, studies often stop short of
performing user studies to determine if proposed method-
ologies produced artifacts that end-users perceived as bal-
anced. In a study on Real-Time Strategy balancing, for ex-
ample, human judgments are wisely included in an iterative
system that aims to tune a set of parameters to achieve bal-
ance. (Preuss et al. 2018) However, evaluations of this sys-
tem consist of case studies and evaluations using an internal
fitness function, leaving the reader with little understanding
if a broader or uninformed audience might actually judge
produced artifacts as balanced. If we computationally model
aesthetically-driven judgments in a game balancing system
(this character feels overpowered, this unit is under game
tempo, etc.), we should also strive to show in user studies
that these aesthetically-driven properties are perceived with-
out priming or bias.

In this paper we describe a system that automatically gen-
erates games in the brawler genre, and evaluate its perfor-
mance with a user study (screenshots from gameplay shown
in Figure 1). We show that the system’s evolutionary al-
gorithm successfully controls many facets of actual human
play, but with a weaker effect on human perception of those
facets. These results from real gameplay provide insight into
the circumstances under which automated evaluation is cor-
related with human evaluation.

Background
Brawler Games
Brawler games (a.k.a. Platform Fighting Games) are a sub-
genre of fighting games where players each control a single
character and attack each other with various moves. In con-
trast to the Street Fighter (Capcom Co. Ltd. 1987) style of
game where players have a health bar, brawler games re-
quire players to knock their opponent off the screen. Knock-

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

189

Figure 1: Six screenshots from example games. The games’ labels from top left to bottom right respectively are: Game A
(Evolved), Game B (Random), Game C (Evolved), Game D (Random), Game E (Evolved), Game F (Random).

back inflicted to a player is scaled with the total damage that
that player has - the higher their damage, the farther they fly
when hit. Some examples of brawlers are the popular Super
Smash Bros games, as well as games inspired by these like
Rivals of Aether and Nickelodeon All-Star Brawl (Nintendo
Co. Ltd. 1999; Dan Fornance 2017; Ludosity, Fair Play Labs
2021). Brawlers are popular and often host large and com-
petitive eSports communities.

Brawler games are noted for the emergent complexity in
their competitive environments in spite of their ease to learn
(Codsi and Vetta 2021). Balance and fairness are common
concerns of expert players and novice players alike: experts
want fairness in tournaments, and novice players want a
fighting shot in any given match. Deciding what object prop-
erties in a brawling game (damage of a move, layouts of lev-
els, physics characteristics of characters) allows for an in-
teractive, balanced game environment is a complex problem
and is the subject of many “balance patches” that publishers
apply after initial release.

Our system generates simple brawler games consisting of
two characters with one move each and a single level. This
simplified game allows us to parameterize the core elements
of a brawler game. A full list of system parameters is in Ta-
ble 1. Simple changes to parameters have dramatic impacts
on emergent game feel. An example: The numerical value
of a character’s jump force has a large effect on how pow-
erful they are overall. Level design also has a great impact
on game balance: levels might have platform spacing that is
difficult for one character but not the other.

Gameplay differences driven by parameter changes pro-
vides an opportunities for a parameter-tuning system to pro-
duce asymmetrical yet balanced characters. An ideal system
should be able to produce games that feel fair with signifi-
cantly different characters, not only characters that are mir-
ror copies or are so poorly constructed that they cannot func-
tionally interact. We acknowledge that our system does not
cover the full space of brawler games (more players, more

moves) - the complexity described above scales dramatically
with every new mechanic introduced. Due to the paucity of
existing work on brawler optimization, this study serves as a
starting point to investigate the generation of emergent prop-
erties in this specific gaming environment.

Related Work
Many existing Automated Game Design systems generate
high volumes of candidate games and use automated evalu-
ation to choose a subset that are judged to be the most enjoy-
able for human players (Togelius and Shaker 2016). Among
these, it is common to use data from AI play traces to in-
form the objective function (e.g. (Togelius and Schmidhu-
ber 2008; Liu et al. 2017; Browne and Maire 2010; Cook,
Colton, and Gow 2016a)). This approach has also been used
extensively for game balancing, where the game is mostly
fixed except for optimizable parameters (Beau and Bakkes
2016; Volz, Rudolph, and Naujoks 2016; Preuss et al. 2018).
Another approach involves leveraging learning techniques
that strive for optimal gameplay strategy as in (Yu and
Sturtevant 2019), though these methods are likely too com-
putationally costly to have in an AGD evaluation function.

A wide variety of desired characteristics have been con-
sidered and used in fitness functions for automated game de-
sign. In addition to simple fairness, the existence of multiple
competing strategies (Preuss et al. 2018), learnability (To-
gelius and Schmidhuber 2008; Liu et al. 2017), and the un-
certainty of the outcome (Browne and Maire 2010) are a few
examples. Some systems, like ANGELINA, evolve multiple
parts of the game at the same time, evaluating each part indi-
vidually, as well as the interplay between the pieces(Cook,
Colton, and Gow 2016a,b). Our work lies somewhere be-
tween balancing and game generation: while the base game
mechanics are not subject to change, the level geometry is
evolved alongside the characters, and the parameter space
for the characters is large.

While automatically evolving games is common, it is

190

Entity Parameter Description Range

Character

Ground Acceleration Acceleration of players on the ground 0-1
Air Acceleration Acceleration of players in the air 0-1
Max Ground Speed Maximum self-applied speed on the ground 2-10
Max Air Speed Maximum self-applied speed in the air 2-10
Ground Jump Force Force applied from jump on the ground 1-15
Air Jump Force Force applied from jump in the air 1-15
Mass Impacts momentum and knockback 0.5-2.5
Drag Impacts air control 1-6
Width Scales width of player hitbox 0.7-1.5
Height Scales height of player hitbox 0.5-2.5
Gravity Scales how gravity impacts player 0.3-1.3
Hitstun Scales how a character responds to hitstun 0.1-0.3

Move

Distance Distance between move and character center 0.8-1.5
Angle Angle Made between character and move 0-2*PI
Width Scales width of move hitbox 0.5-1.5
Height Scales height of move hitbox 0.5-1.5
Warm-Up Duration of move warm-up 0.1-0.6
Execution Duration of move execution 0.1-0.4
Cool-Down Duration of move cool-down 0.1-0.4
Damage Scalar for damage applied on hit 0-10
Knockback Scalar for knockback applied on hit 1-16
Knockback Direction Direction knockback applies on hit (0-1, -1-1)
Hitstun Duration Determines base hitstun applied by move on hit 0-1

Platform Location Position of the platform (top left) -
Size Size of platform in width and height -

Table 1: A List of parameters used for game generation including ranges for parameter generation. Platform width and location
are dependent on the game’s bounds.

less common to empirically evaluate the fitness function.
The success of the generated games does not necessarily
mean that the fitness function actually optimized for the de-
sired qualities. Some prior work solves this problem directly
by using player preferences in the fitness function (Colton
and Browne 2009; Hastings, Guha, and Stanley 2009). This
solves the problem that the fitness function may be mis-
aligned with player judgment, but it requires users to manu-
ally play and evaluate many games. Some notable prior work
does take an extra step to validate their evolutionary strategy.
In (Browne and Maire 2010), Browne and Maire validate
their fitness function with a user study that ranked the games,
showing how well each criterion in the fitness function cor-
related with human enjoyment of the games. In (Isaksen,
Gopstein, and Nealen 2015), Isaksen et. al. optimize directly
for a target difficulty of a one-button single-player game.
They performed a user study to validate their results, show-
ing that human judgment broadly aligns with AI judgment in
terms of the difficulty of the games. However, the AI in ques-
tion was a player model that makes human-like mistakes and
it might be infeasible to create an accurate model of hu-
man play for more complex games. Without such a model,
it is still possible to use more rudimentary AI techniques to
playtest a candidate game. However these playtests may be
very different from actual human play in crucial ways, and
understanding these differences is necessary to designing ef-
fective AI playtesters.

Brawler Generation
We used the Unity game engine to implement a brawler
game generator BrawlerAGD 1. We used free assets from
Kenney licensed under CC0 1.0 2. All games are playable
with either a keyboard or Microsoft XBox controllers.

Base Game Mechanics
Each generated game consists of two characters, a move that
each character uses, and a stage that the characters play on.
During gameplay, each character has 3 stocks (or lives), and
there is a static “blast zone” rectangle which causes charac-
ters to lose a life when they leave it. The loss condition is
static: a player that loses all of their stocks loses the game.

The characters are parameterized by statistics used by
other brawler games. Each character can jump twice, but
the height of each jump is controlled by the generator, along
with other physical attributes like the character’s size, move-
ment speed, falling speed, and weight. The sprite is chosen
randomly and scaled according to the generator. To create
nuanced attacks, the generator controls the timings of the

1Code for this project is available at
https://github.com/smshields/BrawlerAGD. All trial games
used are playable in the repository, and the full evolutionary
process is available for interested readers to generate their own
new games. An example screenshot is shown in Figure 1.

2https://www.kenney.nl/assets/bit-pack

191

attacks, the placement of the attack relative to the charac-
ter, and the knockback direction and damage of the attack.
Finally, the stage is a list of platforms that each character
can stand on, and block the characters from moving through
them. The space of characters is large, with each character-
move pair consisting of 24 independent parameters (Table 1)
each of which has a predefined range of valid values. Stage
designs can consist of up to 10 separate platforms.

Game Fitness
We perform evolutionary search over the space of candidate
games. Stages are initially designed with an algorithm that
creates a symmetrical stage where platforms are placed in
accordance with player jump height. Players are generated
initially by generating each parameter according to a uni-
form distribution on the valid set of parameter values.

We evaluate each game using the results of an automated
playtest. The playtest is performed by a decision-tree AI.
The AI continually tries to move towards a position that
would put its opponent within the hitbox of its attack. Ran-
domness is added to character movement (e.g. changing di-
rections unexpectedly) to ensure that separate trials of the
same game are not identical and so that characters do not
get “stuck” when separated by platforms. If its character is
off-stage, the AI switches to a recovery behavior tree, where
it tries to get back onto the stage. This AI is capable of play-
ing interesting matches, but the games it plays are visually
distinct from human play. For this implementation, we de-
termined that this simple agent would suffice in eliminating
most extreme edge cases of generated characters: overpow-
ered characters show imbalances in damage distribution be-
tween players, and underpowered characters lose all lives or
inflict no damage to their opponent.

After the automated playtest, the objective function is cal-
culated from a variety of information. From the playtest,
we obtain ℓ the game length in seconds, d1, d2, the total
amount of damage dealt by player 1 and player 2, s1, s2,
the number of remaining stocks for each player after the
game has ended, and h1, h2, the total number of hits taken by
each player. From this, we calculate many fitness variables,
each intended to influence a specific aspect of the candidate
games. These variable are normalized to ensure that we do
not overtune for any given property. The overall fitness func-
tion is the sum of the fitness variables.

We want games to last an appropriate amount of time and
remove games that are unplayable. To keep the game “fast”
paced and to keep our genetic algorithm efficient, we set
a desired time and punished games that were too short or
too long. We terminated overtime games, adding a constant
score punishment (-35) if games lasted longer than a minute.
The time fitness for a game is

ftime = ||ℓ− ℓtarget|| − 35 ∗ g

Where ℓtarget is the target game length: 45s, and g is an
indicator variable for whether the game ended in a draw due
to running out of time after 1 minute of gameplay.

We encourage games where more damage is dealt, and
more total player interactions take place:

fdamage = (d1 + d2)/10

fhits = h1 + h2

We want each life for each player to end at an appropriate
time and ensure that the system cannot blindly optimize for
fd by creating a game where players are stuck in a corner
hitting each other. We set the desired damage per stock to
100, and if the total damage exceeds that, we add a linearly
scaling penalty variable fstocklength.

We also want each game to be fair. We apply a fitness
penalty to games where the total damage dealt by each
player is different, or where the stocks remaining are dif-
ferent:

fdamagefair = ||p1 − p2|| ∗ 10
fstockfair = ||s1 − s2||

With the overall fitness function being:

f = ftime + fdamage + fhits + fstocklength

+fdamagefair + fstockfair

Evolutionary Search
We evolve candidate games with a population size of 100,
a mutation rate of 0.4, and a dropout rate of 0.5. Characters
and moves are crossed-over by treating them as a list of pa-
rameters and applying single-point crossover. We leverage
crossover as our character and level parameter lists are not
organized according to emergent gameplay output, meaning
we effectively randomize the design space between games
by selecting a random point in the list and combining. Stage
designs are crossed-over by treating them as a list of plat-
forms with single-point crossover. To mutate a player or
move, we re-generate 5 randomly chosen parameters using
the ranges of parameters used in initial generation. To mutate
a list of platforms, the entire stage is re-generated. Table 2
lists pilot study games’ specific fitness scores as well as the
average fitness scores of the generations that those games
were selected from.

User Study
We conducted a user study to understand how the genetic
search of BrawlerAGD influences emergent properties of the
games when played by human players. In particular, we fo-
cused on game fairness, i.e., the equal chance for each player
to achieve a win given equal skill. We had users play both (1)
randomly generated games and (2) games with high fitness
chosen after genetic search. This study examines how play-
ers rate games from each of these groups across the follow-
ing traits: ease to learn, balance, enjoyability, understand-
ability, immersion, quality of design, and ease of control.
We also examine differences in gameplay data by record-
ing the total number of hits, the amount of damage, winners,
and the game length. Players were asked to describe every

192

Game Number of
Generations

Agent
Fitness

Human
Fitness

Generation
Top Fitness

Generation
Average
Fitness

Generation
Average
Holdover
Fitness

A 315 109.32 88.26 128.27 50.12 83.14
C 98 129.47 146.29 138.47 63.56 96.93
E 224 122.23 64.53 109.52 48.67 84.44
B 0 -12.08 11.84 41.16 -10.44 2.12
D 0 -9.98 21.37 41.16 -10.44 2.12
F 0 -10.00 13.44 41.16 -10.44 2.12

Table 2: A table highlighting data from the generations of game samples used in the study. Note that randomly generated
came from the same batch of 100 games. Average fitness denotes the average fitness of all games in a generation, and average
holdover fitness shows the average fitness of all games that were kept for the subsequent generation.

game in 3 words and identify their favorite game. If we can
show that evolved games have perceivably higher qualities
than our randomly generated games, we can say our system
is successful in designing “balanced” brawler games.

We ran 12 total trials with 24 participants. Two instances
of participant data (from trials 11 and 12) were excluded
due to an incomplete survey. On average, our players were
moderately familiar with brawlers, with one player indicat-
ing they were not at all familiar with brawlers and five indi-
cating that they were extremely familiar with them.

Game Selection
To compare the random and evolved games, we used 6 sam-
ple games. Games were tested by having players play a sur-
vival match against each other, with each player having four
stocks per game. To choose the random games, we gener-
ated and evaluated a set of 100 games, with a mean fitness
score of -10.22. We randomly selected 3 games with fitness
−10±5 to use in the study. These randomly generated games
were named B, D, and F.

Each run of the evolutionary search plateaued with a mean
fitness score of 80-100 after 12 hours of computation. Fit-
ness runs were taken consecutively. To select evolved games,
we ran the evolutionary search to completion three times
(average fitness above 80 for 20 generations). Within the fi-
nal generation of each run, we grouped all games with fitness
100 or higher and randomly selected a game for use in the
trial. Evolved games A, C, and E were generated from this
process. The shortest evolved game was generated in gener-
ation 98, while the longest was created in generation 315.

Measurements
Users started the study by playing a tutorial level where
they learned the basic mechanics of games generated by
BrawlerAGD using human-defined characters. Users were
asked to verbally confirm that they understand game con-
trols and goals before leaving the tutorial. Users then played
each game in a random order, answering questions after each
game is completed.

During trials, we collected the same gameplay data used
to evaluate the fitness function. This included the total
amount of hits and damage to each player, the game length,
and the number of stocks remaining for each player. We

leverage this data to get an understanding of how human
gameplay corresponded to our written heuristic. We dropped
ftime and fstocklength terms because humans play slower
than our AI and occasionally took time to joke, ask ques-
tions, or experiment with characters.

Results
We outline the general trends across the various games, both
as observed by human players, and as seen through the sta-
tistical data about their matches.

User Perception
To understand if the evolved games had better perceived
characteristics, we first had to understand if the evolved
games scores were statistically different from the random
game user survey results. We used a t-test between the two
groups (evolved and random, 3 games each) to examine the
perceived differences between evolved and random games.
Only one factor had a statistically significant (p < 0.017)
difference: ease of control. Evolved games were on aver-
age slightly easier to control as perceived by users. To un-
derstand which of the games were specifically impacting
that result, we performed a one-way analysis of variance
(ANOVA) on all six games.

In our ANOVA comparison between all six individual
games, we found that both balance and (p < 0.001) ease
of control (p < 0.013) had significant differences. In partic-
ular, game C (an evolved game) was perceived to be more
balanced and easy to control than the other games. Game F
(a random game) was also perceived to be balanced, but was
extremely difficult to control.

One simple observation comes from our post-trial survey:
63% of users listed an evolved game as their favorite game.
None of the randomly generated games had a higher share
of votes than the lowest evolved game.

Game Statistics
We also examined how human gameplay in the evolved
games differed from gameplay in the random games, using
t-tests on the quantitative data gathered from the user study.
We recorded damage dealt to each player, the number of
hits received by each player, the game length, and the game

193

Figure 2: Distribution of user scores across a variety of measurement for evolved games (blue) and random games (yellow).

loser. Every one of these metrics, aside from game loser,
showed statistically significant differences when comparing
evolved games to random games (p < 0.001). Some exam-
ples of these trends: Evolved games tended to have higher
amounts of damage and hits to each player. Each evolved
game lasted, on average, more than twice as long as the
randomly-generated games. These differences indicate that
players had more interactions for a greater amount of time
when playing evolved games compared to random games.
Figure 2 summarizes these trends.

To evaluate fairness, we looked at the ratio of damage
dealt to the player who was dealt the least damage (see Fig-
ure 2). This ranges from 0 to 0.5, where 0.5 indicates that
player 1 and player 2 each dealt the same amount of dam-
age to each other, whereas 0 indicates that one player took
all damage. We use the ratio to be able to compare games
where different amounts of total damage was dealt. We
found that evolved games had on average 0.19 (p < 0.001)
increased damage ratio, indicating that evolved games en-
couraged more trading of blows than random games. We
found the same trend when looking at number of hits. De-
spite having more activity from both players, and a more
equivalent distribution of attacks and damage, we did not
observe the evolved games had a more equal distribution of
wins (player 1 wins as often as player 2).

Discussion
Here we discuss qualitative observations collected through-
out trials and game evolution. These trends help provide ex-
planations for our survey and gameplay data.

Game Quality
Two of the games stood out both qualitatively and statisti-
cally - Game C, an evolved game, and Game F, a randomly
generated game. C consisted of one short and one tall char-
acter, both with moves that pointed downward. In order for

characters to land hits in C, they had to jump a single time,
position themselves over the opponent, and trigger their at-
tack. In F, both characters are roughly equal size but jump
very high and move very quickly, making them challenging
to control and land attacks on opponents. Attacks in F were
high-powered and often killed in one or two hits.

Both of these games were evaluated as “balanced” by our
players by a similar margin (and these results are also borne
out by the empirical gameplay data). Game C (Evolved)
scored the highest on most survey questions, while also pro-
ducing games with the greatest length and damage/number
of hits. Game F (Random) scored high on balance but scored
poorly in control. In descriptions of the game, 3 players
called the game “slippery” while others commented that
the controls felt “touchy” and characters felt “floaty”. That
the generator produced multiple examples of balance with
human-perceived differences in game-feel indicates that the
system is capable of producing balanced games that are not
homogeneous or trivial in their gameplay.

C and F are just one example of a general trend in the dif-
ferences between random and evolved games. While the sys-
tem can randomly create games with some desirable charac-
teristics, it is unlikely to find games that combine multiple
desirable characteristics without some kind of search. This
explains the lack of statistical significance in the individual
categories, despite the preference for evolved games in ag-
gregate.

Automated Playtester Alignment
Players often developed gameplay patterns similar to behav-
iors performed by the AI during evolution. Game C scored
highly during evolution as AI characters would jump over
one another inside of a corridor, attacking one another with
their downward-facing attacks (as shown in Figure 1). This
caused the automated testers to keep trading hits until one
was flung outside of the corridor. During trials, most partici-

194

pants followed an extremely similar behavior pattern, which
in turn led to similar damage and hit outcomes.

This effect backfired when users did not follow or under-
stand the evolved game’s key quirk. When users diverged
from the most common AI behaviors, evolved gameplay
started to become very unpredictable and unbalanced. I.e.,
the automated playtesting did not cover a broad enough set
of gameplay styles to stand in for human play. Some stages
forced or enticed users to play in a similar way as the auto-
mated tester, and these scored numerically higher on fitness
when played by humans. The design of each game influ-
enced how well the automated playtester was aligned with
human play. While the system is far from perfect in cover-
ing all gameplay possibilities, the ability for the system to
even infrequently create such intricate behaviors in players
by tuning parameters indicates that this style of search can
create distinct, meaningful, emergent playstyles while de-
signing games.

Trends in Evolved Games
There were some general trends in game design that we ob-
served in the evolved games. Most of the evolved games
tended to have characters with move hitboxes that would di-
rectly put the character in range of their opponent’s hitbox.
Evolved games also often had characters with attacks that
could only be performed in some specific character state:
for example, the downward attack in game C required play-
ers to jump first. These patterns meant that every attack
would put player at risk, which encouraged interaction be-
tween the characters. If a player missed an attack, it can be
immediately punished by their opponent. Another quirk of
high-fitness games is that many attacks had knockback di-
rections that pointed diagonally backwards towards the at-
tacking character (for example, game E). Most human play-
ers found this knockback confusing or disorienting. Players
would line up what they thought was a fatal hit, only to have
the resulting knockback push themselves off of the stage.
This is an example of how a fitness function designed to
increase the number of player interactions can create game
elements that are incomprehensible to humans.

Limitations
While we had modestly positive results towards evolved
games in user perception, we did not show that users consis-
tently perceived evolved games as more balanced than ran-
domly generated ones, even if their created heuristics would
have indicated to us that they should have. We attribute this
in part to the complexity of the term “balance” and making
judgments about it. While balance may be intuitive to most
people, that intuitiveness does not translate to agreement on
what is balance between users or games. Narrowing defini-
tions of the emergent properties we desire in these systems
or grouping users into persona categories could help in fu-
ture evaluations of emergent properties in AGDs.

Players also played the games against each other. When
playing random games with clear mechanical imbalances
(see Game B, where one player had their move behind and
below their sprite), the winner would often feel very positive
about their win. They might gloat, and on one occasion, one

said “that was the most balanced game we’ve played yet”.
Furthermore, a player with a long history of brawler fight-
ing games matched against a newcomer might make both
feel that every game was not balanced. It should be noted
that while this was qualitatively observed, the data does not
clearly bear this out - winners and losers did not have statisti-
cally significant differences in balance judgments in games.

Conclusion

We created an automatic game designer that generates
brawler-fighting games. We optimized these games for sim-
ple metrics that measure desirable properties about the
games like balance, ease of control, and interactions be-
tween players. By evaluating the generated games with a
user study, we learned about the ways in which our fit-
ness function influenced human gameplay. Broadly, evolved
games exhibited higher fitness when played by humans, in-
dicating that automated playtesting (even with a very simple
AI) can help optimize human play for given gameplay prop-
erties. The qualitative and quantitative matching of simple
AI performances and human play indicate that our designer
can also discover interaction patterns and mechanics that hu-
mans might enjoy.

These statistical differences did not necessarily translate
well to human perception of the games, a problem also de-
scribed in (Isaksen, Gopstein, and Nealen 2015). Ultimately,
the goal of evolving games towards a fitness function is to
improve and shape the user experience of the person who
eventually plays those generated games. Towards that end,
it is important to consider how the fitness function might
be misaligned with how users will experience the game. A
“high-fitness” game might not actually have the properties
it was optimized for when played by humans. It is also im-
portant to tune the evaluation agent to better match human
behavior. A future study might look to evaluate what factors
might be critical in creating a balanced game for a future
heuristic, or what types of agents create the most accurate
representation of human play.

This means that data from human players should be more
central when it comes to the design of automated evaluation.
One path forward is more advanced automated playtesting
that incorporates user data to play the game in a human-like
way. This would extend research on player modeling in PCG
such as (Shaker, Yannakakis, and Togelius 2010). Another
method would be to change the generative techniques them-
selves to incorporate user data (for example, (Sorochan et al.
2021) does this for a single-player game). A novel approach
might be to use techniques from Human-Computer Interac-
tion, such as “Design Personas” - user profiles that guide
design of an artifact (Salminen et al. 2022). Finally, by cor-
relating design variables with human perception of the re-
sulting game, a system could guess the perception of a novel
game, allowing it to automatically adjust the fitness function
in response to user feedback.

195

Appendices

Figure 3: Fitness graphs for each of the evolved games from the user study. Each graph shows the fitness of the population that
games A, C, and E were selected from, respectively.

196

Question
Timing

Question Response Format Required

Pre-Trial
Please indicate your familiarity with “brawler” fighting
games (examples include: Super Smash Bros, Playstation
All Stars Battle Royale, Nickelodeon All Star Brawl)

Familiarity, 1-5 Yes

Full Name String Yes
Player Number 1 or 2 Yes

Post-
Game

I found the game easy to learn Slider, -50 to 50 Yes
I found the game to be balanced between both characters. Slider, -50 to 50 Yes
I found the game to be enjoyable Slider, -50 to 50 Yes
I understood what was happening throughout the game. Slider, -50 to 50 Yes
I felt mentally immersed in the experience. Slider, -50 to 50 Yes
I found the game to be well designed. Slider, -50 to 50 Yes
I found the game easy to control. Slider, -50 to 50 Yes
Did you find your character substantially stronger or
weaker than your opponent’s character?

Stronger, Neither, Weaker Yes

Please indicate how you think this game was created. Random, AI, Human Yes
In less than three words, describe the game. Text Yes

Post-Trial

Provide a description of allowed player actions (e.g.
move right) and their corresponding control mapping.

Text Yes

Did you observe any characters that felt under- or over-
powered? If so, please describe.

Text No

Were there any distinguishing designs that separated
some games from others? For example, did a set of char-
acters or level stand out to you? If so, please describe.

Text No

Indicate your favorite game played. 1, 2, 3, 4, 5, 6 Yes
Please provide any other feedback you’d like about the
game and/or survey.

Text No

Any additional Comments? Text No

Table 3: Full list of questions used in the user study survey. Specific slider values were derived from a slider that the users
would move between Disagree/Agree.

References
Beau, P.; and Bakkes, S. 2016. Automated game balancing
of asymmetric video games. In 2016 IEEE conference on
computational intelligence and games (CIG), 1–8. IEEE.
Browne, C.; and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games, 2(1): 1–16.
Capcom Co. Ltd. 1987. Street Fighter.
Codsi, J.; and Vetta, A. 2021. A Case Study in Learning in
Metagames: Super Smash Bros. Melee. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 17(1): 2–9.
Colton, S.; and Browne, C. 2009. Evolving simple art-based
games. In Workshops on Applications of Evolutionary Com-
putation, 283–292. Springer.
Cook, M.; Colton, S.; and Gow, J. 2016a. The angelina
videogame design system—part i. IEEE Transactions on
Computational Intelligence and AI in Games, 9(2): 192–
203.
Cook, M.; Colton, S.; and Gow, J. 2016b. The angelina
videogame design system—part ii. IEEE Transactions on
Computational Intelligence and AI in Games, 9(3): 254–
266.

Dan Fornance. 2017. Rivals of Aether.
Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009.
Evolving content in the galactic arms race video game. In
2009 IEEE Symposium on Computational Intelligence and
Games, 241–248. IEEE.
Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
Game Space Using Survival Analysis. In FDG.
Liapis, A.; Yannakakis, G. N.; Nelson, M. J.; Preuss, M.;
and Bidarra, R. 2018. Orchestrating game generation. IEEE
Transactions on Games, 11(1): 48–68.
Liu, J.; Togelius, J.; Pérez-Liébana, D.; and Lucas, S. M.
2017. Evolving game skill-depth using general video game
ai agents. In 2017 IEEE Congress on Evolutionary Compu-
tation (CEC), 2299–2307. IEEE.
Ludosity, Fair Play Labs. 2021. Nickelodeon All-Star Brawl.
Nintendo Co. Ltd. 1999. Super Smash Bros.
Preuss, M.; Pfeiffer, T.; Volz, V.; and Pflanzl, N. 2018. In-
tegrated balancing of an rts game: Case study and toolbox
refinement. In 2018 IEEE Conference on Computational In-
telligence and Games (CIG), 1–8. IEEE.
Salminen, J.; Guan, K. W.; Jung, S.-G.; and Jansen, B. 2022.
Use Cases for Design Personas: A Systematic Review and
New Frontiers. 1–21. ACM. ISBN 9781450391573.

197

Shaker, N.; Yannakakis, G.; and Togelius, J. 2010. To-
wards automatic personalized content generation for plat-
form games. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 6, 63–68.
Sorochan, K.; Chen, J.; Yu, Y.; and Guzdial, M. 2021. Gen-
erating Lode Runner Levels by Learning Player Paths with
LSTMs. In The 16th International Conference on the Foun-
dations of Digital Games (FDG) 2021, 1–7.
Togelius, J.; and Schmidhuber, J. 2008. An experiment in
automatic game design. In 2008 IEEE Symposium On Com-
putational Intelligence and Games, 111–118. Citeseer.
Togelius, J.; and Shaker, N. 2016. The search-based ap-
proach. In Procedural Content Generation in Games, 17–
30. Springer.
Volz, V.; Rudolph, G.; and Naujoks, B. 2016. Demonstrating
the feasibility of automatic game balancing. In Proceedings
of the Genetic and Evolutionary Computation Conference
2016, 269–276.
Yu, K.; and Sturtevant, N. R. 2019. Application of Retro-
grade Analysis on Fighting Games. In 2019 IEEE Confer-
ence on Games (CoG), 1–8.

198

