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Abstract

Uncertainty is ubiquitous in games, both in the agents play-
ing games and often in the games themselves. Working with
uncertainty is therefore an important component of success-
ful deep reinforcement learning agents. While there has been
substantial effort and progress in understanding and working
with uncertainty for supervised learning, the body of litera-
ture for uncertainty aware deep reinforcement learning is less
developed. While many of the same problems regarding un-
certainty in neural networks for supervised learning remain
for reinforcement learning, there are additional sources of un-
certainty due to the nature of an interactable environment. In
this work, we provide an overview motivating and presenting
existing techniques in uncertainty aware deep reinforcement
learning. These works show empirical benefits on a variety
of reinforcement learning tasks. This work serves to help to
centralize the disparate results and promote future research in
this area.

Introduction
Deep reinforcement learning techniques have become the
state of the art methods for a number of games including
games such as Chess, Go, Shogi (Silver et al. 2018), and
Dota 2 (Berner et al. 2019) to name a few. However, the
much of the standard suite of deep reinforcement learning
algorithms have little to no awareness or quantification of
the uncertainty in either the agent or the environment. This
can lead to brittleness in cases in which the reinforcement
learning agents perform unsuccessfully when encountering
new situations. Building uncertainty aware agents is impor-
tant for building robust and versatile agents.

The task of quantifying and incorporating uncertainty in
neural networks is essential for a variety of tasks, such as
imperfect information games (e.g. poker, SCII), increasing
exploration of RL agents, flagging high uncertainty sam-
ples for human review (in real world deployments), guard-
ing against adversarial examples, active learning, etc. The
techniques for supervised learning have substantially grown
with the explosion of deep learning in the last decade (Gaw-
likowski et al. 2021; Pearce, Leibfried, and Brintrup 2020;
Kendall and Gal 2017; Gal and Ghahramani 2016). These
works usually focus on one of two areas of uncertainty, the
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uncertainty in the dataset, i.e. noise in the labels ylabel =
ytrue + ϵ, or the uncertainty of the neural network model.
With the success of uncertainty modelling in the supervised
learning field, reinforcement learning has begun to adopt
some of these techniques. Building upon these approaches,
uncertainty aware reinforcement learning has been able to so
improvements in empirical performance and data efficiency.

In this work we outline some of the advances being made
in uncertainty aware deep reinforcement learning. These
techniques have resulted in improved performance on hard
exploration games, continuous control tasks, and hold the
current state of the art performance for offline reinforcement
learning. We begin by outlining some of the background on
deep reinforcement learning. We then connect uncertainty
to deep reinforcement learning and how recent works have
attempted to address uncertainty and the results that these
works have shown.

Reinforcement Learning
Markov Decision Process
Reinforcement learning is often formalized via the Markov
Decision Process (MDP), defined by the tuple ⟨S,A,R, P ⟩.
In this representation, S is the set of states, A the set of
actions, R is a function mapping states and actions to re-
wards, and P is the transition probability (i.e. the probably
that a given state follows another given some input action).
γ is sometimes included in this tuple and is used to denote
the discount factor on the reward. The goal of reinforcement
learning is to maximize the numerical reward signal (Sutton
and Barto 2018). In this framework, we write this objective
function as J(π) = maxπ Ea∼π

[∑T
i γiR(si, ai)

]
. In other

words, we wish to find a policy, π, such that it maximizes the
sum of the discounted rewards. This can also be formulated
as a maximization of the Q function. The Q function, also
called the action value function (Watkins and Dayan 1992)
, is defined as the expected return of a policy from a given
state action pair.

Model Free Algorithms
In order to maximize this numerical reward, contemporary
deep learning methods use a variety of techniques. Here we
focus on model free algorithms. These algorithms gener-
ally fall two main categories: value based and actor-critic
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methods. The most common value based method is Deep
Q Learning (Mnih et al. 2013). Deep Q Learning replaces
the dynamic programming approach to Q learning with a
Deep Q Network (DQN) that learns to approximate the Q
values of the actions given an input state. These Deep Q
Networks are updated via the Mean-Squared Bellman Er-
ror, L(θ) = (r + γmaxQ(si+1, ai+1, θ)−Q(si, ai, θ))

2.
This approach has a number challenges, such as a moving
target, over estimation of Q values, and wall clock time inef-
ficiency. Numerous modifications have been proposed, with
varying degrees of improvements (Hessel et al. 2018). Dis-
tributional Q algorithms, such as QR-DQN (Dabney et al.
2018), predict the distribution of expected rewards Z, rather
than the exact Q value. Note that this distribution is a poor
estimation of the uncertainty (Osband, Aslanides, and Cas-
sirer 2018). However, even with these improvements limita-
tions remain. The learning efficiency is generally lower than
actor-critic methods and they are limited to discrete action
environments.

Actor critic methods use both a policy neural network
and a critic neural network to help inform the training of
the policy. Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al. 2015) uses a deterministic policy net-
work updated via information from the Deep Q Network
by the deterministic policy gradient theorem, ∇J(µθ) =
E [∇µθ(s)∇Q(s, µθ(s))]. It relies on the Mean Squared
Bellman Error to update the Q network. Stochastic pol-
icy algorithms parameterized a distribution over the ac-
tion space, in opposition to the above deterministic policy.
This distribution is traditionally represented as a Gaussian,
with mean µθ and standard deviation σθ. Proximal Pol-
icy Optimization (PPO) is one such algorithm (Schulman
et al. 2017). PPO relies on an advantage based critic, where
A(s, a) = Q(s, a) − V (s), implemented via a value neural
network which allows an approximation of the advantage via
A(st, at) = rt+1 + γV (st+1) − V (st). The policy is then
updated via a clipped objective function which allows for
efficient updating of the policy, without taking too large of
a step in the wrong direction. Another important stochastic
actor critic algorithm is Soft Actor Critic (SAC) (Haarnoja
et al. 2018). As an entropy maximization algorithm, this has
a different objective function than previous examples with
an added term H(π), characterizing the entropy of this pol-
icy. When maximizing the Q function we can use the soft
Q Bellman error and the policy can be done via soft policy
updates, both of which rely on the added term of the nega-
tive log of the policy distribution to maximize for entropy.
Although actor-critic algorithms are more common, uncer-
tainty estimation generally occurs on the critic/Q-function.

All of the above algorithms were designed for online re-
inforcement learning (in which the agent primarily learns
through its own interactions with the environment). How-
ever, another field of reinforcement learning has grown in
prominence: offline reinforcement learning. In this case the
agent has access to a large static dataset of tuples of obser-
vations, actions, and rewards and minimal (or no) access to
training in the environment. This has a number of challenges
that extend beyond the typical challenges of fitting a dataset
(Levine et al. 2020). Uncertainty estimation has proved to

be essential for this subfield of RL and many deep RL algo-
rithms for offline RL have some sort of implicit or explicit
uncertainty estimation.

Uncertainty in Deep Reinforcement Learning
When discussing uncertainty we can often decompose it into
two sources: aleatoric and epistemic. Aleatoric uncertainty,
originating from the Latin alea meaning dice, also called
statistical uncertainty, is uncertainty that originates from the
stochastic nature of the environment and interactions with
the environment. Although this uncertainty can be modelled
and evaluated, it cannot be reduced. For example, Chess is
a game that has zero aleatoric uncertainty whereas Poker
has important aleatoric uncertainty. Epistemic uncertainty,
also called model uncertainty or systematic uncertainty, is
uncertainty that originates from the current limitations of
the training of the neural network. Epistemic uncertainty
is reducible. For example, the epistemic uncertainty of a
classifier is high early in the training but should decrease
with more iterations over more data. It is important to ac-
knowledge that the division of these uncertainties are not
absolute but represent helpful context dependent heuristics
(Hüllermeier and Waegeman 2021). As an example, con-
sider adding a feature (and embedding the problem into a
higher dimension), that results in separable data. This ‘re-
duces’ the aleatoric uncertainty, but also modifies the prob-
lems, highlighting the importance of context.

Aleatoric Uncertainty
Aleatoric uncertainty stems from the behavior and interac-
tions of the environment the reinforcement learning agents
are trained on. Hence, the importance of aleatoric uncer-
tainty varies substantially depending on the application.
There are 3 main potential sources of aleatoric uncertainty in
reinforcement learning (effectively one for each component
of the MDP): stochastic rewards, stochastic observations,
and stochastic actions. If the reward function is stochastic,
there is irreducible uncertainty regarding the true value. The
stochastic observations can stem from incomplete observa-
tions or stochastic transition dynamics. Incomplete obser-
vation games (also called imperfect information games) are
extremely common and represent some of the biggest chal-
lenges to RL, such as StarCraft II, Dota 2, etc. No amount
of training can make an agent see through the fog of war
in StarCraft II, hence why this is an example of irreducible
(aleatoric) uncertainty. If the P function in the MDP is non-
deterministic, then the transition from one state to the next
is a source of aleatoric uncertainty. In cases like this, for ex-
ample Poker, Blackjack, etc., the uncertainty what the next
observation will be is still there, but in some cases this tran-
sition function (although uncertain) can be calculated. Fi-
nally, if the actions are stochastic, there is uncertainty about
what the next state will be (since the action is uncertain). The
obvious example would be any stochastic policy algorithm
(PPO, SAC) in which the action is chosen from a distribution
instead of a deterministic point.

While seemingly unwanted, aleatoric uncertainty can be
injected into games to improve them as benchmarks. For ex-
ample, Atari games are deterministic, and thus have zero
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aleatoric uncertainty (assuming the observation represen-
tation is markovian). However, fully deterministic single
player games are problematic as benchmarks since the
agents can just memorize the correct set of steps to max-
imize reward (rather than actually ‘learning’ to play the
game) which has led to forced insertion of aleatoric uncer-
tainty into the environments via techniques such as sticky
actions, in which there is a chance that the same action
will be used regardless of the agent’s input (Machado et al.
2018). This forced action uncertainty makes for a more diffi-
cult (and effective) benchmark. Although all three sources of
aleatoric uncertainty can be estimated and potentially quan-
tified they cannot be reduced like epistemic uncertainties.
That does not mean that awareness is unimportant. Differen-
tiating between areas of high epistemic uncertainty and high
aleatoric uncertainty can be essential in the training of an
agent. An area of high uncertainty in an environment may
want to be explored, but if the uncertainty stems entirely
from aleatoric sources, it will result in ineffective training to
continue to visit that area (since the agent is already knowl-
edgeable of that area, there just isn’t enough information
to make a certain decision). Hence, aleatoric uncertainty
awareness is crucial for deep reinforcement learning algo-
rithms, even if it cannot be reduced.

Epistemic Uncertainty
In deep reinforcement learning, uncertainty is connected
with some of the foundational problems. For example, the
trade-off of exploration versus exploitation in reinforcement
learning, in which an agent must decide whether to explore
new policies and potentially get a lower reward (or poten-
tially discover a better policy) or exploit its current policy to
get a known reward but have the opportunity cost of missing
out on a potentially better path. The challenge of effective
exploration is connected to epistemic uncertainty. As a help-
ful model, let us consider a localized epistemic uncertainty,
i.e. rather than epistemic uncertainty over the whole envi-
ronment consider the epistemic uncertainty with respect to
a specific region of the state space. In a deterministic game,
the epistemic uncertainty of a subset of the state (or observa-
tion) space correlates with the exploration (or lack thereof)
of the subset. High epistemic uncertainty means the agent is
uncertain about the policy (or value) in that subspace, hence
the region is underexplored. This relationship is often im-
plicit in exploration strategies for deep reinforcement learn-
ing (and will be discussed more in next section). Even basic
benchmarks like Atari required implicit uncertainty aware-
ness to achieve human level performance (Badia et al. 2020)
as basic algorithms (PPO, SAC, DQN, etc.) are insufficient.

Epistemic uncertainty is also connected to some of the
limitations mentioned in the reinforcement learning section.
If we have a neural network learning to approximate a Q
function a common problem is the overestimation of the Q
values. This overestimation is a result of the fact that the esti-
mates of the Q values are noisy and E[maxQ] ≥ maxE[Q],
thus resulting in Q value estimates that can be substantially
larger than the true values. This highlights the challenges
of reducing epistemic uncertainty, which is not always triv-
ially reducible through more data or training. DQNs can

experience drops in performance over long training times
due to catastrophic forgetting (i.e. forgetting how to perform
well early on in the environment because it has been train-
ing primarily on observations from late in the environment),
so simply running the training algorithm for longer will not
always decrease epistemic uncertainty. This highlights that
even in fully deterministic environments, uncertainty can not
be trivially wished away and there is a need for uncertainty
aware algorithms.

Exploration and Uncertainty
Research into epistemic uncertainty for reinforcement learn-
ing has figured prominently in exploration research, al-
though it is not always explicitly mentioned. There are many
ways to estimate epistemic uncertainty, and a number of
works implicitly rely on uncertainty estimation. Although
we will focus on explicit uncertainty calculations later in this
paper, we highlight a few prominent implicit calculations (or
calculations by proxy) here since exploration remains an ac-
tive and important area of research and understanding these
connections can help provide insight into both exploration
and uncertainty quantification. One such exploration tech-
nique is count based methods. Count based methods have
a simple origin, assuming our agent can learn equally well
from all examples, if we want to minimize epistemic un-
certainty we need to provide training information from all
parts of the state space. Therefore, the areas with the highest
epistemic uncertainty are the areas with the least training ex-
amples. If we simply count and keep track of how often ev-
ery state has been trained on, we can easily minimize uncer-
tainty (by seeking out the least visited states) and efficiently
explore. However, this quickly becomes infeasible for large
state spaces.

Contemporary count based methods attempt to approxi-
mate this ideal foundation using more tractable methods. In
one of the foundational methods of count based exploration,
(Bellemare et al. 2016) presented a method based on den-
sity models and pseduo-counts. Specifically, a density model
provides the ratio between the pseudo-count function, N̂(x)
and the pseudo-count total n̂. These pseduo-counts are es-
timates of the true count function through the proxy of the
density model (since N̂ is really the function we care about).
This density model ρi(x) is a function of a given observation
x, that it has encountered i times. This model must satisfy
the inequality ρi+1(x) =

N̂i+1(x)+1
n̂+1 ≥ ρi(x) =

N̂i(x)
n̂ . We

can then approximate the value of interest N̂i(x) from this
density model alone. This count is then used as an intrinsic
reward to direct the model to areas of high uncertainty. An-
other way to approximate this count function is by mapping
high dimensional observations to lower dimensional repre-
sentations (then using these representations to count with)
(Tang et al. 2017). The principle remains the same: to ap-
proximate the uncertainty from the data side, i.e. by count-
ing (or approximately counting) the amount of training done
on different areas of the observation space. Note that this is
an approximation of the uncertainty, and the quality of this
approximation is dependent on the density model’s task rel-
evance (Osband et al. 2019). Another way to approximate
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Paper Online/Offline Uncertainty Method Base Algorithm Type of Uncertainty
(Moerland et al. 2017) Online MC-Dropout & Variance Networks Distributional DQN Epistemic & Aleatoric
(Kalweit and Boedecker 2017) Online Bootstrapped Q Model Based DDPG Epistemic
(Osband et al. 2018) Online Bootstrapped Q & Prior Networks DQN Epistemic
(Clements et al. 2019) Online Bootstrapped Q (from MAP) QR-DQN Epistemic & Aleatoric
(Yu et al. 2020) Offline Variance of Dynamics Model SAC Epistemic
(Peer et al. 2021) Online Bootstrapped Q DQN Epistemic
(An et al. 2021) Offline Bootstrapped Q SAC Epistemic
(Wu et al. 2021) Offline MC-Dropout Actor-Critic Epistemic
(Hiraoka et al. 2022) Online MC-Dropout & Bootstrapped Q SAC Epistemic
(Mai, Mani, and Paull 2022) Online Bootstrapped Variance Q Networks SAC Epistemic & Aleatoric
(Lee et al. 2022) Offline Bootstrapped Q and Policy SAC + CQL Epistemic
(Bai et al. 2022) Offline Bootstrapped Q SAC Epistemic
(Ghasemipour et al. 2022) Offline Bootstrapped Q Actor-Critic Epistemic
(Mavor-Parker et al. 2022) Online Variance Networks PPO Aleatoric

Table 1: A Selection of Works in Uncertainty Aware Deep Reinforcement Learning

this uncertainty uses a neural network to learn to approx-
imate this uncertainty. One such example is Random Net-
work Distillation (RND) that uses a static neural network
that is a function of the state and another neural network
that is trained to predict the output of the static neural net-
work (Burda et al. 2018). This loss is used as an exploration
bonus (as the more times the state has been visited, the more
opportunities there are to learn and the lower the loss will
be) and as a proxy for model uncertainty.

Addressing Uncertainty in Reinforcement
Learning

A overview of the key papers we outline in this section can
be found in Table 1. The base algorithm is the deep rein-
forcement learning algorithm that the uncertainty quantifica-
tion is incorporated into. An empirical comparison of the of-
fline algorithms is presented in Table 2. Behavioral Cloning
(BC) , Conservative Q Learning (CQL) (Kumar et al. 2020),
and Twin Delayed Deep Deterministic Policy Gradient Be-
havioral Cloning (TD3 + BC) (Fujimoto and Gu 2021) are
used as baselines. All results are taked from the paper they
originally appeared in. Note that (Lee et al. 2022) is not in-
cluded as it focuses on the transition from offline to online
RL. In (Ghasemipour, Gu, and Nachum 2022), the results
are only presented in graph form, so values may not be ex-
act. The results are only presented for offline RL due to the
ubiquity of the D4RL benchmark. Although there are pop-
ular benchmarks in online RL, every paper does not have
the exact same environments. The papers represented in this
work should provide a large spectrum of techniques and al-
gorithms to help provide insight into the breadth of research
in uncertainty aware RL.

Common Techniques
Now let us consider how we can address the aforementioned
sources of uncertainty. First, let us note that by variance net-
works, we mean neural networks with heads f and ϕ, the lat-
ter of which directly outputs an estimate of the variance. Two
of the most common and important techniques for these ap-
proaches are bootstrapping and Monte Carlo (MC) dropout.
The Bootstrapped DQN was introduced by (Osband et al.

2016) as a method for efficient exploration. This method is
a modification of the traditional DQN neural network archi-
tecture that uses a shared torso with K,K ∈ N heads (in
the original paper K = 10). By computing the variance of
the heads predictions, we have an estimation for the poste-
rior. Since the heads are picked for training uniformly, they
will ideally overlap only when they have all arrived at the
optimal Q function. This method provides an estimation of
epistemic uncertainty and will form the basis of many more
advanced techniques.

Dropout is a method to reduce overfitting in neural net-
works by stochastically dropping (setting the weight to 0)
neurons. This dropout is traditionally done during training
and removed during inference. It is common knowledge that
using dropout for neural networks in reinforcement learning
is a bad idea (due to the non-stationary targets and the lack
of concerns with direct overfitting). However, dropout can be
used as a method to approximate model (epistemic) uncer-
tainty. MC Dropout involes keeping the dropout layers dur-
ing inference and sampling repeatedly, through which one
can attain an estimate of the uncertainty by looking at the
variance of these predictions (Gal and Ghahramani 2016).
This variance serves to estimate the epistemic uncertainty.
Both of these methods are conceptually straightforward and
relatively easy to implement, making them a strong basis for
many approaches in deep reinforcement learning.

Bootstrapping
Here we highlight a set of papers that primarily rely on boot-
strapping to estimate the uncertainty. We provide a brief
overview of what the work did and show how it fits into the
broader narrative. (Kalweit and Boedecker 2017) replaces
the vanilla deep Q networks with bootstrapped DQNs in
model based DDPG. They showed that this approach can
be up to 15 times as efficient and achieve hundreds of times
larger rewards on continuous control tasks such as Reacher.
This is representative of a common trend (although some-
times presented with other modifications), that simple incor-
poration of existing uncertainty aware techniques can yield
empirical gains.

Although the majority of approaches are focused on esti-
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Environment BC CQL TD3 + BC Yu et al. An et al. Wu et al. Bai et al. Ghasemipour et al.*
Random HalfCheetah 2.1 35.4 10.2 35.4 28.4 14.5 13.1
Random Hopper 9.8 10.8 11.0 11.7 25.3 22.4 31.6
Random Walker2D 1.6 7.0 1.4 13.6 16.6 15.5 8.8
Medium HalfCheetah 36.1 44.4 42.8 42.3 65.9 46.5 58.2 70
Medium Hopper 29.0 58.0 99.5 28.0 101.6 88.9 81.6 75
Medium Walker2D 6.6 79.2 79.7 17.8 92.5 57.5 90.3 80
Expert HalfCheetah 107.0 104.8 105.7 106.8 128.6 96.2 98
Expert Hopper 109.0 109.9 112.2 110.1 135.0 110.4 108
Expert Walker2D 125.7 153.9 105.7 115.1 121.1 109.8 112
Medium Expert HalfCheetah 35.8 62.4 97.9 63.3 106.3 127.4 93.6 96
Medium Expert Hopper 111.9 110.0 112.2 23.7 110.7 134.7 111.2 110
Medium Expert Walker2D 6.4 98.7 101.1 44.6 114.7 99.7 109.8 112

Table 2: Empirical Comparison on subset of D4RL of Uncertainty Aware Offline Methods

mating epistemic uncertainty, it can be important to decou-
ple the sources of uncertainty. This idea of decoupled un-
certainty awareness is explored by (Clements et al. 2019).
In this work, their estimates rely on approximate maximum
a posteriori (MAP) sampling (Pearce, Leibfried, and Brin-
trup 2020) to generate two sets of neural network parameters
θa, θb. The epistemic uncertainty can then be evaluated via
the mean squared difference in the predictions of the sam-
pled parameters. Hence, when the variance in the sampled
parameters decreases (as the neural network converges), this
approximation of epistemic uncertainty will decrease. Al-
though this is different than other bootstrapped approaches,
it is a variant of the same approach. The MAP serves effec-
tively to generate better versions of the heads from Boot-
strapped DQN, hence requiring only two of them (as op-
posed to 10 or more). The aleatoric uncertainty is estimated
via the covariance of these predictions. These parameters are
then used in action selection (and action selection only), and
this uncertainty is not evaluated directly in the loss func-
tions/training of the neural network. They are able to show
substantial improvements on the whole of the MinAtar en-
vironments (smaller versions of the Atari benchmark). This
shows two key results: that uncertainty awareness can yield
benefits even when used in action selection alone and the
potential of decoupling uncertainties even in environments
which do not seem to present much uncertainty (e.g. deter-
ministic Atari games).

(Peer et al. 2021) builds upon both BDQN and DDQN.
They present a DQN variant which uses K independent net-
works. Whereas BDQN only uses separate heads for each
prediction, this work uses entirely separate networks. While
DDQN uses separate networks only for target prediction,
this work uses them for action selection as well. By simply
using K = 5 networks, they are able to achieve comparable
performance to Rainbow (Hessel et al. 2018) on Atari. The
importance of this result is its conceptual simplicity. Such
a simple DQN expansion is able to compete with Rainbow
(i.e. all previous combined DQN modifications).

(An et al. 2021) added an ensemble of N Q function on
SAC (which usually has 2 Q functions), to enable a boot-
strapped estimate of epistemic uncertainty. The agent’s un-
derstanding of epistemic uncertainty enabled it to perform
well on Out of Distribution (OOD) data (which is impor-

tant for offline RL). OOD data is data that is collected un-
der different conditions than the training data. This sim-
ple modification of adding Q functions (although it some-
times required up to 500), shows how a conceptually simple
uncertainty aware modification can increase performance.
Expanding upon this, Ensemble-Diversified Actor Critic
(EDAC) was also introduced, which is extremely similar to
N -SAC but adds a term to the soft Q update to increase
the variance of the Q functions when encountering OOD
data. Conceptually, this is simply increasing the accuracy
of the epistemic uncertainty approximation (since the model
should have high epistemic uncertainty when it encounters
unfamiliar data/situations). They were able to show state of
the art performance at the time of their writing (and remains
competitive even with current works) and improve upon a
heavily model based field.

(Lee et al. 2022) used bootstrapped uncertainty estimates
of the both the actor and critic and combined them with
Conservative Q Learning (Kumar et al. 2020) to achieve im-
provements on the transition of offline to online continuous
control tasks. Although the most common choice of combi-
nation (i.e. the algorithm the uncertainty estimation is incor-
porated into) is SAC, this highlights how different choices
for this algorithm can impact the efficacy of uncertainty es-
timation.

(Bai et al. 2022) uses the standard deviation of boot-
strapped prior deep Q networks as an uncertainty quantifica-
tion. This uncertainty is then subtracted from the predicted
Q value of the next state (essentially penalizing high uncer-
tainty states). This is done for both in distribution (ID) data
and OOD. The ID data is the data provided in the dataset
and they generate OOD data by feeding a state into the ac-
tor (which will predict something different than the dataset,
hence OOD) and estimate both the ID Q errors and OOD Q
errors to minimize their sum. This uncertainty quantification
is then combined with SAC. This highlights the versatility of
uncertainty estimation and how figuring out the optimal way
to incorporate and learn from this uncertainty remains very
much an open problem.

(Ghasemipour, Gu, and Nachum 2022) further develops a
simple but important aspect of pessimistic updates: target in-
dependence. Pessimistic updates, which are common in of-
fline RL and exploration techniques, usually relies on sub-
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tracting the epistemic uncertainty estimation via variance of
Q values from the predict Q values. Shared targets use pes-
simistic predictions for the target values in the Q learning
updates, whereas independent targets do not. These inde-
pendent targets have favorable theoretical implications and
are shown to have empirical benefits for offline RL. Strong
theoretical understanding is important to advancing and de-
veloping further uncertainty aware RL algorithms.

Monte Carlo Dropout
Here we highlight papers that primarily rely on MC-Dropout
to estimate the uncertainty. In (Moerland, Broekens, and
Jonker 2017), they present a method for evaluating the
epistemic and aleatoric uncertainties simultaneously and
use these methods as exploration strategies. They estimate
epistemic uncertainty using MC-dropout and predict the
aleatoric uncertainty over the return distribution p(Z|s, a)
by having the neural network output µ = Q(s, a) and σ,
which results in the modified Bellman error with an added
term to penalize substantial changes in aleatoric uncertainty
and subtly encourages lower aleatoric uncertainty. This is
able to show some modest improvements on a variety of
simple gym benchmarks. Although the empirical results are
modest, this work presents important ideas that other papers
have built upon.

(Wu et al. 2021) presents a method of uncertainty aware
offline reinforcement learning in which MC-dropout is used
to estimate epistemic uncertainty. They use MC-droupout to
reduce the effect OOD backups have by scaling each the ac-
tor and critic errors by the same amount, β

V ar(Q(s,a)) , i.e.
by the inverse variance of the Q functions (the variance
calculated across the MC estimates). This means that high
variance estimates (high epistemic uncertainty) will con-
tribute less to the update process. This also achieves im-
provements on offline continuous control benchmarks, but
generally only outperforms SAC-N and EDAC on the ex-
pert replay examples (i.e. when the offline dataset contains
transitions of a expert completing the task, as opposed to
medium skill level or random). Along with (An et al. 2021),
this work remains extremely competitive with current offline
RL works. Since MC Dropout is a less common approach,
this work shows that it is still able to be as effective as boot-
strapped methods.

Combinations and Other Approaches
Here, we present a collection of methods that do not solid
rely on a single method or use a method not previously dis-
cussed. (Osband, Aslanides, and Cassirer 2018) highlights
some of the flaws in the previously mentioned methods and
introduces the concept of randomized priors as an add-on to
bootstrapped DQN. First, they show that MC-dropout (and
the distribution it generates) is not always a good estimate
of the posterior. Additionally, they highlight the problem
with count based estimates mentioned previously. Specifi-
cally, that they can be a very poor proxy for uncertainty for
cases in which state density does not correlate with the true
uncertainty. To overcome these challenges they suggest sim-
ply adding a random prior to bootstrapped DQN. This op-

erates in a unique way from the previously discussed tech-
niques since it doesn’t focus on estimating the posterior.
What this means is that all previous methods relied on es-
timating uncertainty based on the data, whereas the prior is
independent of the data. This is an important aspect of the
Bayesian approaches that these methods are often claiming
to approximate. Practically, this is simply a matter of cre-
ating K prior neural networks (with static weights) that are
then incorporated into the bootstrap heads so the final out-
put is Q(s, a) = fk(θ, s, a) + pk(ϕ, s). They show that this
results in improved exploration by achieving state of the art
(at the time) performance on the hard exploration Atari game
Montezuma’s Revenge.

In one of the foundational works of offline RL, (Yu et al.
2020) bootstrapped a prediction of the next reward using
an ensemble of neural networks and penalized the reward
that is learned by the policy proportionally to the maximum
standard deviation of the predictions in this ensemble. This
is different than the previous approaches to bootstrapping
since it does not rely on Q function estimates. This approach
achieved substantial improvements across the board on a va-
riety offline continuous control tasks.

In (Hiraoka et al. 2022), the ideas of dropout and boot-
strapped Q values are combined to modified the Q network
architecture to have several heads with dropout layers. By
combining the uncertainty estimation techniques, this results
in a higher quality approximation of the epistemic uncer-
tainty. These updated Q networks are then used as critics
with SAC to achieve better performance substantially faster
(around 100,000 frames as opposed to the usual 1-3 million)
on the MuJoCo continuous control benchmark.

(Mavor-Parker et al. 2022) present a unique approach to
aleatoric uncertainty, by using a neural network with two
heads that directly output the predicted mean and variance
of the next state. This network variance is a learned esti-
mation of the aleatoric uncertainty and is updated using the
Maximum Likelihood Estimation (MLE) loss function, sim-
ilar to the work done in (Kendall and Gal 2017). They are
able to show substantial improvements in “noisy TV” envi-
ronments (i.e. environments with large aleatoric uncertainty
traps). This represents a far different approach to uncertainty
estimation and highlights the relationship between uncer-
tainty estimation and exploration.

Building upon many of the above techniques and ap-
proaches from supervised learning, (Mai, Mani, and Paull
2022) present a method for “inverse-variance” reinforce-
ment learning with decoupled uncertainty estimates. Specif-
ically, they modify the value function loss over a minibatch
to be L = LBIV + λLLA. Here, LBIV is the Batch Inverse
Variance (BIV) which weights the loss function inversely
proportional to the variance of the noise of the label. This la-
bel noise is representative of the aleatoric uncertainty (which
is estimated through the variance networks). The LLA is the
loss function of variance networks, i.e. the negative log like-
lihood of the neural network outputs µ and σ (which can
estimate epistemic uncertainty). By using an ensemble of
variance networks, they can bootstrap an estimate of the un-
certainty for the BIV loss function. They apply this uncer-
tainty awareness to the critics of SAC and show substantial
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improvements on a variety of continuous control tasks.

Discussion
First, it is worth noting that most approaches to uncertainty
estimation in deep RL focus on the critic (which is also the
policy in the case of DQN variants). This may seem counter-
intuitive, seeing as it is the policy which actually makes de-
cisions and operates in the uncertain world. However, there
are likely two important reasons why uncertainty estimation
for the critic prioritized. For one, during training the critic is
more directly a influenced by the aleatoric uncertainty since
only the critic loss is a direct function of the state, action,
and reward. Second, the actor is downstream of the critic in
uncertainty propagation. Since all actor-critic algorithms up-
dates take some form of ∇J = E[∇log(π)δ], with δ being
some function dependent on the critic, any uncertainty that
exists in the critic is passed down to the actor. This does not
preclude uncertainty considerations for the actor (and this
is likely the directions of many future works in uncertainty
estimating RL), but sufficient uncertainty estimation in the
critic is important.

Second, a brief postulate as to why MC Dropout is less
common than using network heads to bootstrap. MC dropout
requires a full network pass for each repetition/sample used
to generate the distribution of predictions, whereas boot-
strapping from heads only requires multiple forward passes
of a subset of layers (i.e. the heads). This can result in a non-
negligible compute difference. However, the relative qual-
ity of the estimates from bootstrapped heads and full MC
Dropout remains an important but under explored area.

Next, let us note some trends that Table 1 and the expla-
nations highlight. First, uncertainty estimation can be incor-
porated into most (if not all) existing reinforcement learning
algorithms, and doesn’t require a ground-up re-evaluation.
Additionally, it shows how some implementationally sim-
ple techniques, can be used to result in large benefits. These
techniques are often built on the back of extensive work done
in the supervised learning community. These papers show
that uncertainty awareness can help improve a variety of al-
gorithms across types and classes, on different benchmarks
with different levels of aleatoric uncertainty.

Lastly, it is important to highlight some of the important
takeaways for applications of reinforcement learning, in ad-
dition to some potential future work. Even though many
games involve a substantial amount of uncertainty, quan-
tification often drops by the wayside since basic algorithms
perform moderately well. Incorporating uncertainty into al-
gorithms has shown empirical improvements on a variety of
tasks, even those that are largely deterministic. Given the
potential benefits (as we have shown throughout) and the
ease of implementation, it is our goal to get a larger com-
munity to consider the incorporation of some of these meth-
ods into their practices. There is also room for improvement
in the techniques presented in this work. Further empirical
insight is needed into the relative performance of different
uncertainty quantification methods, since these techniques
are often combined with other changes it is hard to provide
a meaningful comparison between advancements. It is also
important to quantify how good the uncertainty estimates

are. Seeing how close the estimates are to true values would
enable better comparisons of methods. These also speak to
the need to develop environments that enable the testing and
evaluation of uncertainty estimation. More work formalizing
and experimenting with the relationship between epistemic
uncertainty and common exploration strategies could also be
beneficial.

Conclusion
Although deep reinforcement learning has become the ubiq-
uitous method to solve a variety of control tasks and games,
it still suffers from problems such as brittleness and data in-
efficiency. Understanding and incorporating uncertainty into
deep RL agents is critical to their success in games and
real world situations and their robustness to new environ-
ments. We outlined the basics of contemporary deep RL al-
gorithms and highlighted the relationship of RL with uncer-
tainty. Outlining the roles of aleatoric and epistemic uncer-
tainty, we showed how these connect with the basic ideas
in the field. We presented a variety of techniques for work-
ing with and incorporating awareness of these uncertainties
into reinforcement learning algorithms. We show that these
techniques are able to improve performance across domains,
benchmarks, models, and types of reinforcement learning.
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