Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

Automated Play-Testing Through RL Based Human-Like Play-Styles Generation

Pierre Le Pelletier de Woillemont', Rémi Labory?, Vincent Corruble!

I Sorbonne Université, CNRS, LIP6, F-75005
2 Ubisoft La Forge, France
pierre.le-pelletier-de-woillemont @ubisoft.com, remi.labory @ubisoft.com, vincent.corruble @lip6.fr

Abstract

The increasing complexity of gameplay mechanisms in mod-
ern video games is leading to the emergence of a wider range
of ways to play games. The variety of possible play-styles
needs to be anticipated by designers, through automated tests.
Reinforcement Learning is a promising answer to the need of
automating video game testing. To that effect one needs to
train an agent to play the game, while ensuring this agent will
generate the same play-styles as the players in order to give
meaningful feedback to the designers. We present CARMI: a
Configurable Agent with Relative Metrics as Input. An agent
able to emulate the players play-styles, even on previously
unseen levels. Unlike current methods it does not rely on
having full trajectories, but only summary data. Moreover it
only requires little human data, thus compatible with the con-
straints of modern video game production. This novel agent
could be used to investigate behaviors and balancing during
the production of a video game with a realistic amount of
training time.

1 Introduction

In the video game realm, the main goal of Reinforcement
Learning (RL) has usually been to achieve superhuman per-
formances (Silver et al. 2017) (Vinyals et al. 2019). Another
interesting application for RL is the pursuit of human behav-
ior (Jacob et al. 2021), in order to perform automated game
testing. These automated tests can have varying objectives:
find the most resource consuming assets of the game or flag
possible unintended exploits in the gameplay. In our case we
wish to perform automated tests in order to help assess more
accurately the difficulty of the game.

The results of these automated tests are most useful to the
designers during the production phase of the game, during
which there is very little human data available (only the oc-
casional human play-tests). Moreover, this data is rarely in
the form of full trajectories but rather in the form of sum-
mary data, i.e. in the form of a few key metrics, or play-
modes, that are of most interest to the designers (e.g. number
of shots fired during a game). Indeed, tracking and storing
full players’ paths (state-action tuples) is a big constraint
to put on developers, especially in the early stages of the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

146

production, as it involves issues of bandwidth and compu-
tational resources. Whereas summary data is cheaper to ac-
quire and to store. Furthermore, the pipeline for tracking and
storing summary data is usually the same during the pro-
duction of the game, as it is post launch. In short, logging
summary data is cheaper, easier to implement and is most
likely already being done by the developers. In this work,
the available human data is assumed to be very limited and
in a summarized format: no full trajectories, only a few key
metrics, so as to fit with the constraints of game production.

To assess the difficulty of a game, distinguishing between
performance (i.e. success) and play-style is important: a
game can be perceived hard for a subset of the players be-
cause of their style of play, not because of the game itself.
So the performances relative to the play-style should be re-
ported to the designers, as well as the overall difficulty, so as
to help them make informed decisions. A play-style is mea-
sured using key metrics which capture different aspects of
the gameplay.

We present here a Configurable Agent with Relative Met-
rics as Input (CARMI) agent, which aims at generating
a continuum of play-styles, fitting with the players dis-
tribution, making the sampling of human-like play-styles
straightforward, even on levels previously unseen by the
agent and the players. This agent is configurable with respect
to the metrics used to define the play-styles and is obtained
through a single RL training loop.

The definition and measure of a play-style is done on sum-
mary data (e.g. the number of shots fired and the number of
stabs made with a knife during a game). However, here it
is normalized level by level, using the players distribution.
Therefore the play-styles are defined not as absolute but as
relative to the players population, making them independent
from the levels and their designs. Take for example a play-
style characterized by “a high use of a riffle over a knife”.
Instead of measuring “high use” as ’X times during a game”
it would be measured X times more than the other players”,
making the definition of this play-style applicable no matter
the level.

The agent learns a policy conditioned to matching a de-
sired play-style. This is done by giving the desired relative
summary data z as input to the agent, and building a re-
ward function that orients the agent towards matching this
z. It is the main contribution of this work: training an agent

conditioned by a play-style which is defined in relationship
to human play-styles distribution. This means that the agent
learns the distribution of the players in the play-style space
solely through the reward function. Proceeding this way pro-
duces two results. First, it ensures that the agent is able to
cover at least the same space as the human players in the
space of the play-styles. Second, the independence between
the play-styles and the level design allows the agent to easily
generalize the play-styles to newly unseen levels. This is due
to the fact that the agent has learnt to associate any value of z
to a behavior, no matter the level, which allows better gener-
alization. The new direction presented by this paper results
from the capacity to generalize human summary data to new
levels using few human data, to better fit with the constraint
of the industry.

We can therefore use this agent to play-test new levels,
using play-styles defined from human data collected on pre-
vious levels. And because the agent is conditioned using
a very interpretable input z, it could also be used for au-
tomated play-tests using designers’ hand-made play-styles,
since each dimension of z corresponds to a specific metric.

In this paper we first give a more formal definition of
play-styles as well as the existing methods that aim at learn-
ing various personas and those aimed at modeling human
behavior. We then introduce the environment: a turn based
strategic shooter. And finally compare our results with the
existing method CARI (Le Pelletier de Woillemont, Labory,
and Corruble 2021).

2 Background
2.1 Play-Styles As A Combination Of Play-Modes

Canossa and Drachen adapt the ”persona” framework intro-
duced by (Cooper 2004) in the field of Human Computer
Interaction. Tychsen and Canossa make the distinction be-
tween play-mode, play-style and play-persona. It is a dis-
tinction based on the level of data aggregation. A play-mode
is one or a few discrete metrics, within the same overall
group or type of metrics. From there, play-style is defined as
a set of composite play-modes”. And finally play-personas
represent the ”larger-order patterns that can be defined when
a player uses one or more play-styles consistently”. The fo-
cus of this paper is on the simulation of human-like play-
styles through the generation of behaviors yielding play-
modes similar to players’.

2.2 Automated Play-Testing

Recent work as been done to develop automated play-tests
using machine learning (ML) approaches, more specifically
using agents trained through (Deep) RL. There are two main
categories of test: technical tests (e.g. frame rate, bugs) and
gameplay tests (e.g. difficulty assessment, game consump-
tion analysis). Our approach focuses on difficulty assess-
ment for the experiments while taking into account the di-
versity of approaches and resulting play-styles.

RL can be use to improve game testing (Bergdahl et al.
2021) in order to find unintended exploits in the video game.
It can also be used to measure what is achievable in the
game. For example, (Sestini et al. 2022) train an agent to

147

uncover what is possible in the environment, but should not
be, in order to flag bugs and glitches for the designers to
fix. Alonso et al. trained an agent to navigate complex 3D
environments, which can be used for Non Playable Charac-
ter (NPC) development with complex navigational skills, or
in order to measure the feasibility of procedurally generated
goals.

However, in this work we are interested in training an
agent that can inform us about the difficulty of the game.
Therefore, this agent must produce diverse human-like play-
style in order to provide meaningful feedback.

2.3 Diverse Human-Like Behavior

To approximate human behavior, Inverse Reinforcement
Learning (IRL) (Ng, Russell et al. 2000) can potentially be
used. The 2 main drawbacks of IRL methods are the ho-
mogeneity assumption in the trajectories and the quantity
of the data necessary for such approaches to yield convinc-
ing results. In our case, neither full trajectories nor large
dataset are available. Kangasriisio and Kaski developed an
approach to perform IRL using solely summary data to al-
leviate this problem. However they assume homogeneity in
the data, in the sense that all the data comes from the same
expert. This homogeneity assumption goes against the idea
of generating varying, and therefore heterogeneous, play-
styles.

There are a few possibilities to insert heterogeneous
play-styles into an agent. To that effect, Holmgard et al.
have demonstrated that shaping the reward (2014), fitness
(2014) or utility function (2019) produces variety in the
style of play of the agents. Moreover they showcased that
archetypes (i.e. stereotypical play-styles) can be a good low-
cost, low-fidelity approach to automated play-test. Because
each archetype requires its own training and its own reward
function, they limit themselves to only 4 archetypes.

Le Pelletier de Woillemont, Labory, and Corruble (2021)
solved this issue by training a CARI agent where the coef-
ficients of the reward function are given to the RL agent as
input. Concretely, they train a policy 7(a|s, w) where w are
the coefficients of the reward function: r = w - 6, where 6
represents all the events which induce a reward signal. Ad-
ditionally one must define W, the intervals within which the
w will be sampled during the training. Thus creating a con-
tinuum of available play-styles to sample from at inference
time (simply using varied w). This approach allows to train
one single model rather than multiple ones. It moves the
problem of selecting the proper w to generate the desired
play-style after the training rather than before, it does not
however remove it.

The CARI approach suffers from two main issues. The
first is the absence of guarantee that the space of generated
playstyles covers well enough the set of human play-styles.
The second is that even if the CARI generated play-styles
do include the players’ play-styles, there is no straightfor-
ward way to know which reward coefficients w to select in
order to simulate the human-like play-styles. This is due to
the fact that the process still relies on finding a good com-
bination of reward coefficients that will hopefully generate
the desired play-modes. Both these issues are solved here by

directly giving the target values of the desired play-modes
as the goal to the agent as part of its input state: replacing
w by a z which encodes a desired play-style. These objec-
tives are encoded and sampled using the distribution of the
play-mode over the players population. This agent still al-
lows access to a wide variety of play-styles but also ensure
that the generated play-styles do in fact encompass the hu-
mans’ ones.

However, there is no guarantee that the players’ and the
agent’s full trajectories look the same, for that we would
need full human trajectories to train on, which we assume
to not have access to during the the production of the game.
We are not claiming to generate human-like behaviors, but
human-like play-styles, as they are measured : using sum-
mary data. The goal is to produce summary data that are
player-like enough to take well informed decisions, on new
levels.

2.4 Goal-Conditioned Reinforcement Learning

Goal-conditioned RL has been used in video game testing
in different ways. For example (Roy et al. 2021), frame
their problem as constrained RL, to create an agent with the
desired behavior. Their approach relies on a main goal to
achieve and several constraints to fulfill, and are automati-
cally weighed throughout training. This approach does not
allow the emergence of heterogeneous play-styles, neces-
sary in our case, since the play-style is the goal to achieve,
not a constraint to be met.

Goal-conditioned RL has been extensively studied (Kael-
bling 1993) (Schaul et al. 2015a) (Chane-Sane, Schmid, and
Laptev 2021). The framework is usually in the form of a pol-
icy which given a state s and a goal g, predicts actions which
lead to the goal. The goal is usually a certain state of interest
in the environment (e.g. a destination). In our case the goal
is the encoded play-style z, relative to the players distribu-
tion. It is not a state in the environment, but a behavior to
adopt. Moreover, this behavior is not absolute, but relative
to the players, and should be matched on different levels.
The only information about the distribution of the players
given to then agent is thought the reward feedback.

3 Proposition

Our goal is to learn a play-style conditioned policy which
generates trajectories yielding summary data as close as pos-
sible to a given objective. This policy is then used to emulate
human-like play-styles, on previously unseen levels.

3.1 Notations

In our environment, let 7 = (so, a1, s1, ..., ar, S7) denote
the trajectory of a full episode. We introduce the summa-
rizing function v which takes as input a trajectory and re-
turns a set of M/ summary data (e.g. number of shots and
stabs made): ¥(7) € RM. In this work, we assume to have
access to the summary data of Np players over Ny, levels
of the game: {1 (71) }1e[1:N,),pe[1:Np)- Additionally, 1; and
oy represent the mean and standard deviation of the players
summary data on level [, such that (7)) ~ N (u,07). We

also note ¢, (7) := %j”l, the summary data on level [,

148

normalized by the players distribution on that level (assum-
ing a Gaussian distribution).

We introduce the policy 7 (a|s) := 7(als, z), with a the
action, s the state and z some additional information (e.g. a
play-style to emulate in our case or the reward coefficients
in CARI) given to the agent, with z ~ P,, here we assume
that P, = N(0,1). In our case we wish for z to represent
(7). Our goal is for 7, to generate 7, yielding ¢; (7,) as
close as possible to z. The reward function reflects this ob-
jective by being proportional to —d; := —A(Yy(7r, ¢); 2)s
the current distance between the goal z and the agent. Where
Tr, ¢ 18 the trajectory generated by 7, until time-step ¢. By
formulating the problem this way, we can then use any RL
algorithm to solve this MDP and generate an agent with a
policy m € argmin {E;[E.[E ., [¢¥i(T) — 2]]]}.

3.2 Relative Metrics As Input

The way the metrics are encoded, when given to the agent
as goals, is key here. Instead of aligning z (the agent’s goal)
to the absolute metrics values (1), it is aligned to the rel-
ative ones, w.r.t. the players distribution on that particular
level: ¢;(7). It moves the issue of playing with a given play-
style from a hard to define absolute point of view, into an
easier relative one. It is difficult to define what can be con-
sidered a high frequency of shots, it is however easier to say
if a given frequency of shots is among the highest over the
players population.

Additionally, it improves greatly the usefulness of the
agent at inference time, especially on new previously un-
seen levels. Giving the absolute metrics as the objective (i.e.
z ~ (7)) would have the agent learn how to achieve that
specific goal, no matter the level design. During inference
the agent would then still generate these exact metrics val-
ues, if the level allows it. This would render the agent quite
useless for any automated testing procedure: on a new level
the agent is tasked with shooting twice and it does it. We did
not learn much, except that shooting twice on this new level
is possible.

Instead giving the normalized metrics, relative to the play-
ers, as the objective (i.e. z & (7)) means that the agent
needs to learn to adapt its behavior to fit with the portion of
the players represented by z. Since we assumed the data to
be normally distributed and given than P(X ~ N(0,1) <
—1.96) = 0.025, at inference time giving the target value
z = —1.96 to the agent means shooting as much as the 2.5%
of players that shoot the least. After playing one level with
this z, the absolute number of shots done by the agent is
then reported to the designers, which would correspond to
the number of shots done by this portion of the players, had
they played that new level.

3.3 Configurable Agent

The more complex the game the more numerous the play-
styles, thus the more numerous the number of models to
train. In order to solve this issue a single model is trained,
much like in (Le Pelletier de Woillemont, Labory, and Cor-
ruble 2021). The objective z, which correspond to the nor-
malized metrics v;(7) are given inputs to the model. Pro-
ceeding this way makes the agent configurable: the play-

(%) @

HP 120 / 120

HP 24 /70

D 26

5.

Empowe FF,,,2
]
Dash x1 3% 10

Move

A Shoot

Figure 1: Screenshot of the Video Game

style we wish the agent to adopt can be chosen after training,
at inference time. We only need to train a single model for
all play-styles. At the beginning of each episode a new z is
drawn and given as input to the agent. The agent has then the
objective of matching this value by the end of the episode.

The reward function used to this end is defined as r; =
di—1 — di + [—dy]s=7. If the agent does an action bringing it
closer to its objective it will receive a positive reward corre-
sponding to how much closer it got, much like in a naviga-
tion problem. The same applies if the chosen action moves
it away from the objective. The objective of the agent is to
end the episode as close as possible to z. This is why at
the end of the episode the agent perceives a negative signal
equal to how much distance to the target is left. Moreover,
Zthl ry = (do — dr) — dp: the cumulative reward on the
whole episode is equal to the distance “travelled” towards
the objective minus the distance left at the end.

4 Experimental Setup
4.1 Game Environment

The game environment used in this work is the same as in
(Le Pelletier de Woillemont, Labory, and Corruble 2021).
This environment presents a few advantages. It is complex
enough to be able to have different play-styles and some of
the challenges that come with training in a complex video
game, but simple enough to have moderate computation re-
quirements. Moreover it is developed using Unity’s ML-
Agents (Juliani et al. 2018), which allows to control the
agent either with the Python programming language (for the
RL aspect) or with a controller (for the human player as-
pect).

This video game environment is a discrete, turn-based,
shooter-strategic, see Fig. 1. In this video game, two teams
fight to the death on a 3D cell based board. This game is in-
spired in its gameplay elements from the ”Mario + Rabbids”
video game, developed by Ubisoft. The movements can be
done in any directions toward an empty cell. Some portals
(the circles in Fig. 1) are spawned across the board to al-
low characters to take short-cuts. In addition the board also
consist of a series of covers behind which the characters can
hide to avoid getting shot at.

A team of 3 heroes (in blue), controlled by an agent (or a

149

human, during a play-test), face a team of a varying number
of enemies (up to 7, in red) controlled by hand-crafted be-
havior trees, designed by us like any NPC would be in most
video games, for a maximum of 10 turns. Every hero char-
acter has the capacity to move, shoot and stab (i.e. melee
attack). They are all defined by a set of basic statistics: their
health, their range of movement and of fire and their dam-
ages. Additionally, each hero a super capacity. One has the
power to heal nearby allies, another has the ability to ap-
ply an empowerment to nearby allies thereby increasing the
damage caused by their attacks for one turn and the third
hero can apply a shield that will block one attack. Each of
these super capacity has a two turns cool-down.

It is a turn-based game, meaning that when one of the
team is playing, the other one is frozen in place. A full turn
is not a single time-step, rather a full turn is many time-
steps. So for example during one turn, the agent (controlling
the whole hero team) can move around with hero number
one, stab and shoot an enemy with the same hero, then shoot
another enemy with hero number 3, and use the shield of
hero number 2 before skipping the rest of its turn, effectively
starting the enemy’s turn. Each character has a maximum of
one shot and one stab per turn. Once a character has shot it
cannot move for the rest of the turn. The game ends once
one of the two teams has been fully destroyed or if the game
reaches the 10 turns limit, in which case the game is consid-
ered to be a draw.

The state returned by the environment is twofold: an
image-like segmentation map of size 20x20x3 indicating
what object is inside each cell (hero, enemy, cover, portal
or nothing at all) and an array comprising the rest of the in-
formation needed: the number of turns left, the current stats
for each hero and each enemy . The state size is 7414, as
it is the concatenation of the flattened image-like segmenta-
tion map and vectorial inputs. Regarding the action space,
there are three main group of actions per hero : movement,
long and short range attacks, super use. To move, the agent
selects a cell on which to send a hero, assuming this cell is
within reach of the hero. We use a path-finding algorithm to
then move the hero. For the attacks, the agent choose which
of the enemies to attack, there is at most 8 enemies. So the
total number of possible actions is 3 (number of heroes) x
[20x20 (size of the map) + 8 (one shot per enemy) + 8 (one
stab per enemy) + 3 (the number of supers)] + 1 (skip) =
1258. Note that not all actions are available for all heroes
at all times. For example, the healer cannot use the shield
ability or some cells might be out of reach for a hero. When
an action is unavailable to the agent, it is simply masked,
putting its probability to be selected to 0.

To gather players’ data, a play session with 30 participants
was organized. We designed a playlist of 10 levels that each
player had to play. At the end of each level the player would
go on to the next level, no matter the outcome. Playing all 10
levels took each participant roughly one hour of play-time.
The game was introduced to them with a tutorial in the form
of a PowerPoint document as well as a small video demon-
stration. No further interaction with the players took place
to ensure that each player had the same level of information
going in. The players only knew that this play session was

done in order to help automated test, there was no mention of
ML. Most participants are not familiar with RL or with ML
in general. Out of the 30 players, the data of 25 of them was
used: the rest either did not play all the way to level 10 or
skipped some levels. The first level was removed from the
available data, as it mainly served as an introduction level
where players where mostly testing the controllers and not
engaging fully with the game. Levels 2 through 8 were kept
as a training set (Lp,qn,) and levels 9 and 10 as test levels
(Lest), which means the training set only contains 7 (lev-
els, Lrrqin) * 25 (players, Np) = 175 data points.

4.2 Training Procedure

To train the agent, we chose to use the ACER (Wang et al.
2017) algorithm. There are a few reasons why ACER was
chosen. First, it is a discrete action algorithm which suits the
problem well. It is an on-policy and an off-policy algorithm,
allowing for both fast convergence and better use of the
data generated. The off-policy part is coupled with a replay
buffer, which is prioritized following (Schaul et al. 2015b).
Another major reason for choosing ACER is the possibility
to run multiple environments in parallel in an asynchronous
fashion, all feeding the same buffer and training the same
model. This is quite useful for training agents with an en-
vironment that is not perfectly stable and could crash. The
inputs of the agent are both vectorial and convolution-based.
The actions of the agent are also both vectorial (shots and
stabs) and convolution-based (the movements of each hero).
Therefore the neural architecture used was very similar to
the one developed in (Gendre and Kaneko 2020). The neu-
ral network architecture treats the image-like inputs using
2D convolution layers and the vectorial inputs using dense
layer. The features generated are then combined to produce
both convolutional (for the movements) and vectorial (for
the attacks, supers and skip) outputs for the actions.

Some objectives z are easier than others to reach. For ex-
ample, shooting as little as the players who shot the least
is easier than shooting as much as the players who shot the
most. This is the reason why a curriculum-based approach
was used to sample the play-modes objectives z at each
episode. Moreover, automatic curriculum approaches can
improve performances of multi-goal agents (Portelas et al.
2020) . The approach used here is the modeling of abso-
lute learning progress with Gaussian mixture models (ALP-
GMM) developed by Portelas et al..

Realistically, training a RL agent on only 7 levels is usu-
ally not enough for the agent to be able to generalize well.
Moreover, in most video games it is usually possible to cre-
ate more levels, simply by changing the topology, the ene-
mies team composition, or the characters’ stats (e.g. health
or damage). In this work, the low amount of levels used to
train is not due to the low number of levels available to the
RL framework, but rather due to the low number of levels the
players played on. Finding a way to incorporate additional
levels, even without human data, into the training procedure
should be a focus in future work.

Three environments in parallel (each participating in the
training of the same model) were used, each running around
12,500 episodes, training the same model. It is equivalent

150

to 24 hours given our computational setup, which is a rea-
sonable constraint to aim for, in real-life use-case of game
production. Our setup is a single computer with a 12 core
CPU and a NVIDIA GeForce GTX 1070 GPU.

5 Evaluation And Results

The CARMI agent is trained on 5 metrics: the number of
shots, the number of stabs, the number of shots under an
empower, the number of heal made and the number of shield
used. All these metrics are expressed as a number per turn,
so not the number of shots, but the number of shots per turn
for example. The first two metrics represent the overall at-
tack strategy of the play-style, while the other three represent
the use of the super capacity available.

We will measure the quality of our agent on two aspects :

1. Does the space of play-modes generated by the agent
cover well the distribution of human players ?

2. Is the agent capable of generating human-like metrics on
new and unseen levels

Three models are trained : CARMI, CARI and WinOnly.
All three models train on the same levels, have the same state
and action space and use the same neural network architec-
ture.

The coefficients of the reward function used by CARI
are sampled uniformly in intervals including both positive
and negative values, to have the possibility to both encour-
age and discourage the agent to perform certain actions.
This baseline measures what diversity driven agent pro-
duces, without taking into account the closeness between
its diversity and the diversity in the players play-styles. The
WinOnly model has a sparse binary win/loss reward func-
tion. This serve as a baseline to how useful this most com-
monly used approach would be to give feedback to design-
ers on difficulty assessment, using only a win driven agent,
without taking into account the diversity of play-styles.

5.1 Play-Style Coverage

In this section we report the coverage of play-styles for both
the CARI and the CARMI agent, and compare them with the
players. We report the results solely on two metrics, due to
space constraints: the number of shots per turn and the num-
ber of stabs per turn. The CARI agent used here was trained
on the same metrics as the CARMI agent. To measure the
coverage possible by the CARI and the CARMI agent we
ran 2500 episodes with random w ~ U (W) for CARI and
z ~ N(0,1) for CARMI. These results are reported in Fig
2. Additionally, we report the Kullback-Leibler (KL) diver-
gence and the Jensen-Shannon (JS) divergence between each
of the models (CARMI, CARI and WinOnly) and the Play-
ers, both on the train and on the test levels, on the joint dis-
tribution of all metrics in Table 2.

The CARMI agent is indeed very much capable to cover
the same space as the players. It even generates play-styles
not seen in the players population. This too can be an inter-
esting feedback to give to designers as to what is achievable
in these levels.

Metrics Cluster 1 Cluster 2 Cluster 3 All
Player =~ CARMI | Player CARMI | Player CARMI Player = CARMI | WinOnly
Stabs 0.6 (x0.1) 0.6 (x0.1) | 1.3(+0.1) 1.1(x0.1)| 0.9 (x0.2) 0.9 (x0.1) || 1.0 (£0.1) 0.9 (+0.0) | 1.1 (£0.0)
Shots 1.7 (£0.1) 1.5(%0.1) | 2.1 (*0.1) 1.9 (£0.0) | 1.7 (0.2) 1.6 (x0.1) || 1.9 (£0.1) 1.7 (%0.0) | 0.9 (+0.0)
Empower | 0.2 (+0.1) 0.1 (+0.0) | 0.8 (x0.1) 0.7 (#0.0) | 0.5 (0.1) 0.4 (20.1) {| 0.5 (£0.1) 0.5 (+0.0) | 0.0 (0.0)
.E Heal 0.3 (x0.0) 0.2 (x0.0) | 0.3(+0.0) 0.2 (x0.0)| 0.1 (x0.0) 0.0 (x0.0) || 0.2 (£0.0) 0.2 (+0.0) | 0.2 (£0.0)
& | Shield | 0.1(x0.0) 0.1(%0.0) | 0.2 (+0.0) 0.1(x0.0)|0.1(x0.0) 0.1 (x0.0) || 0.1 (0.0) 0.1 (x0.0) | 0.2 (+0.0)
% Win |75 (£11) 52 (%5) 95 (+4) 77 (£3) 87 (x10) 67 (¢7) 88 (+4) 68 (+2) 33 (1)
% Lost | 0 (x0) 22 (+4) 0 (x0) 18 (£3) 0 (x0) 20 (+6) 0 (x0) 19 (£2) 8 (x1)
% Draw | 24 (x11) 25 (£4) 4 (+4) 4 (£1) 12 (£10) 12 (£5) 11 (+4) 12 (£2) 58 (£2)
Stabs 1.3(x0.4) 0.9(x0.2) [2.1(x0.9) 1.3(x0.2) | 1.4(*2.2) 1.4x0.2) | 1.7(x0.4) 1.2(x0.1) | 1.6 (£0.1)
Shots 2.1(x0.2) 2.0(x0.2) |2.2(£0.3) 2.2(x0.1)| 1.9 (x0.6) 1.8 (x0.2) || 2.1 (£0.2) 2.1 (x0.1) | 1.2 (£0.1)
Empower | 0.2 (+0.1) 0.2 (x0.1) [0.8 (#0.3) 0.6 (+0.1) | 0.7 (x0.4) 0.3 (¥0.1) || 0.5 (%0.2) 0.5 (x0.1) | 0.0 (£0)
» Heal 0.3 (x0.1) 0.2 (£0.0) | 0.3(£0.1) 0.2(x0.0) | 0.1 (x0.1) 0.1 (x0.0) || 0.2 (£0.1) 0.2 (£0.0) | 0.1 (£0.0)
& | Shield |0.1(x0.1) 0.1 (20.0)|0.2(x0.1) 0.1 (20.0) | 0.1 (x0.1) 0.1 (20.0) || 0.2 (x0.1) 0.1 (x0.0) | 0.5 (+0.0)
% Win | 100 (x0) 75 (x13) | 100 (+x0) 80 (£8) 75 (£25) 52 (x20) || 95 (£8) 74 (£7) 33 (%))
% Lost | 0 (£0) 21 (£13) | 0(x0) 13 (£7) 0 (x0) 43 (£20) || 0 (x0) 20 (£6) 0 (%0)
% Draw | 0 (£0) 2 (+2) 0 (x0) 6 (£5) 25 (£25) 4 (#4) 4 (£8) 4 (£3) 66 (£5)

Table 1: Mean and 95% confidence interval of key-metrics for each cluster for the players and the CARMI agent, on the Train
and Test Levels. In bold the metrics used to train the CARMI agent and are reported as the average per turn.

WinOnly | CARI | CARMI
Train KL | 10.17 9,34 6,69
JS | 0.76 0,73 0,60
Test KL | 9,53 9,38 9,74
JS | 0,80 0,80 0,78

Table 2: All metrics joint normalized distribution divergence
between players and agents

5.2 Human-Like Play-Style Emulation

To measure the capacity of the agent to emulate human-like
play-style one must first define the play-styles used. To this
end, a Gaussian mixture model (GMM) (Reynolds 2015)
clustering is trained on the players training normalized sum-
mary data: ¥r,.... = {Ui(7,.) } ieLpyain» Which yields C
clusters, each representing a portion of the players. In other
words, {fic, Xe}eenic) — GMM(C; 9L,)- These clus-
ters are what is being used to sample the adequate z in order
to emulate players’ play-styles..

For CARMI, a number of targets per level is sampled from
the distribution of each cluster. For each level [€ [1 : N]
(including Lr.s:) and each cluster ¢ € [1 : C], z is sampled
following N (j1¢, X.) and the episode is run using the trained
policy 7, on level [. Using this sampling method, the abso-
lute metrics generated by CARMI are compared to what is
observed in the players’ data, on the train and test levels.

Note that the 7 train levels are used to fit the clustering
GMM algorithm. The 2 test levels are used for testing. The
human data available on these 2 test levels is not used to
re train the clustering or the CARMI agent. So, in effect,
neither the agents, nor the clustering, use the test levels for
anything else than evaluation.

We do not compare results with CARI here for 2 rea-
sons. First, there is no straightforward way to transform

151

XS

—— CARMI
—— CARI
* « —— Players

2.0

o =
o =}

Stabs per Turn

=
=]

-2.0

40 -3.0 20 -1.0 00 1.0 20
Shots per Turn

3.0 40

Figure 2: Coverage of CARI, CARMI and the players. The
metrics here are normalized by the players distribution, each
point corresponding to an episode.

the samples z from the clusters into w to feed the CARI
agent. Second, even if there were, it is obvious from the big
gap in Fig. 2 between the CARI and the players, that the
CARI agent would never be able to emulate the players ac-
curately. We do however, compare those results with a pure
RL model trained with the sole objective of winning, called
”WinOnly”. This model is here to compare with what is pos-
sible using “classical” RL. Indeed, training a model solely
to win and using it to inform designers on balancing issues
is not unheard of in the industry. Note that neither the train-
ing of CARMI nor the training of the clustering have seen
the test levels nor the players’ data on those levels, these are
truly previously unseen levels. These results are available in

Table 1.

The first thing to notice is the capacity of the agent to
match the desired metrics on the train levels, it is a good
indicator that the model did converge. Also it is worth noting
that the agent is overall capable to generalize those play-
styles to unknown levels, in the test set. Looking at what
the CARMI agent has produced, the feedback that we would
have given the designers would have been that the new levels
will have the players shoot and dash more, but that the use of
the super capacities would remain somewhat stable. These
feedback would have been correct since they match what is
observed in the player’s data for the test levels. Had we used
the WinOnly model to give feedback to the designers we
would have been right about the shots and dash, we would
however have missed completely the feedback on the super
capacities. This goes to show that encouraging models to fit
the players play-modes allows to create mode meaningful
feedback from automated tests.

The other very interesting result are the win rates. Over-
all the players perform better on the new level: from 88%
to 95% of game won. The same is observed with the agent:
from 68% to 74%. But even more interesting are the win
rates of the clusters between the train and the test levels. The
players in clusters 1 and 2 both perform better in the test lev-
els, and this increase in performance is mirrored by the agent
emulating these two clusters. However the players in cluster
3 perform worse: from 87% to 75%. The agent, when emu-
lating this third cluster, also performs worse. Indeed, regard-
ing difficulty assessment, given what the CARMI agent has
produced, we would have concluded to the designers that
the new levels are overall easier, expect for the third clus-
ter. Additionally, as for the play-modes, the win rates of the
WinOnly model is not reliable and doesn’t allow to draw
correct conclusions.

6 Conclusion And Discussion

We have developed a new agent capable, with one single
training phase, to generate a continuum of play-styles which
includes the players’ ones, using limited human summarized
data. We have also developed and demonstrated the effec-
tiveness of a straightforward sampling strategy able to gen-
erate human-like play-styles on new levels reliably. This ap-
proach can provide very meaningful feedback to level de-
signers. This approach makes no assumption as to the type
of environment, or RL algorithm used, making it easily us-
able in many different contexts.

Improvements should be made to incorporate more play-
modes in order to capture more of the players play-styles.
We argue that the more numerous the play-modes, the
smaller the differences in win rates. Another limitation of
this approach is the number of level used for training be-
ing limited by the available human data. Including randomly
generated levels (or at least some variations of the train-
ing levels), lacking human data, into the training procedure
would also allow the agent to generalize better between the
train and the test levels. Furthermore, we notice that the dif-
ferences between the agent and the players are bigger at the
level of the clusters rather than at the level of the whole
population. Including the players’ clusters distribution in the

152

learning phase would probably increase the accuracy of the
agent when emulating each of these clusters. Simply put, us-
ing the clustering during both learning and inference would
allow a better approximation of the clusters by the agent.

Moreover, this method relies on metrics computed over
a whole episode (i.e. a whole game). So, for games with
very long episodes (e.g. RTS games) there are many ways
to reach the desired metrics. This might produce unexpected
results. For example, in a RTS game with a metric measuring
the amount of resources gathered, the CARMI agent could
gather the desired amount of resources in an unexpected
way. This could indeed produce misleading feedback for the
designers. One way to counter balance this is to increase the
number of target metrics used and their variety to capture
more gameplay aspects. The more numerous the number of
metrics, the more constrained the agent should be. Studying
the effect of a varying number of metrics should be done in
the future.

A Additional Results
A.1 Play-Modes Distributions

In Table 1, we reported only the mean and 95% confidence
interval of each play-mode for the players’ clusters and their
CARMI counterpart. Here we report the full distributions.
These results can be seen in Fig. 3. The data that produced
Table 1 is the same displayed in Fig. 3.

Shots Per Turn

I
°

Shots Under Empowered Per Turn

&

3.0 20 0.0 1.0 20 30

-1.0
Stabs Per Turn

W
o

-2.0 -1.0 0.0 1.0 2.0 3.0
Shots Per Turn

Heals Per Turn

Shields Per Turn

73’-30 -2.0 -1.0 0.0 1.0 20 3.0 30 -2.0 -1.0 0.0 1.0 20 3.0
Shots Under Empowered Per Turn Heals Per Turn

Figure 3: Distribution over the play-modes of players (in
green) and CARMI (in blue) normalized summary data, fol-
lowing the sampling strategy described in section 5.2

These graphs showcase that our model is capable to cover
the space of players play-style and that the very simple sam-
pling strategy is adequate to have the agent emulate the play-
ers’ play-style.

A.2 Learning Curves

We display the evolution of the episodic reward throughout
the training for both the CARI and the CARMI agent, in the
Fig. 4.

CARI
P os
] 040
D: 030
Lo
8 020
5_ 015
W o0
oo o ok o S % S
Number of Transitions =
CARMI

el

E 10
; [13
2w
o
T 10
S

o0 o o o S i 7
Number of Transitions =
o WinOnly

g
QD 05
%
B o
Q
‘D
L -16

000 025 050 125 150 175

o o
Number of Transitions

Figure 4: Evolution of the CARI, CARMI and WinOnly
agent episodic reward.

References

Alonso, E.; Peter, M.; Goumard, D.; and Romoff, J. 2020.
Deep Reinforcement Learning for Navigation in AAA Video
Games. CoRR, abs/2011.04764.

Bergdahl, J.; Gordillo, C.; Tollmar, K.; and Gisslén, L. 2021.
Augmenting Automated Game Testing with Deep Rein-
forcement Learning. CoRR, abs/2103.15819.

Canossa, A.; and Drachen, A. 2009. Patterns of Play: Play-
Personas in User-Centred Game Development. In DiGRA
Conference.

Chane-Sane, E.; Schmid, C.; and Laptev, 1. 2021. Goal-
Conditioned Reinforcement Learning with Imagined Sub-
goals. In ICML.

Cooper, A. 2004. The Inmates Are Running the Asylum: Why
High Tech Products Drive Us Crazy and How to Restore
the Sanity (2nd Edition). Pearson Higher Education. ISBN
0672326140.

Gendre, Q.; and Kaneko, T. 2020. Playing Catan with Cross-
dimensional Neural Network. CoRR, abs/2008.07079.

Holmgérd, C.; Green, M.; Liapis, A.; and Togelius, J. 2019.
Automated playtesting with procedural personas through

MCTs with evolved heuristics. IEEE Transactions on
Games, 11(4): 352-362.

153

Holmgard, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014. Evolving personas for player decision mod-
eling. In 2014 IEEE Conference on Computational Intelli-
gence and Games, 1-8.

Holmgard, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014. Generative agents for player decision modeling
in games. In Proceedings of the Ninth International Confer-
ence on the Foundations of Digital Games. Society for the
Advancement of the Science of Digital Games. ISBN 978-
0-9913982-2-5.

Jacob, A. P; Wu, D. J.; Farina, G.; Lerer, A.; Bakhtin,
A.; Andreas, J.; and Brown, N. 2021. Modeling Strong
and Human-Like Gameplay with KL-Regularized Search.
CoRR, abs/2112.07544.

Juliani, A.; Berges, V.; Vckay, E.; Gao, Y.; Henry, H.; Mat-
tar, M.; and Lange, D. 2018. Unity: A General Platform for
Intelligent Agents. CoRR, abs/1809.02627.

Kaelbling, L. P. 1993. Learning to Achieve Goals. In IN
PROC. OF 1JCAI-93, 1094-1098. Morgan Kaufmann.

Kangasrddsio, A.; and Kaski, S. 2017.
inforcement Learning from Summary Data.
abs/1703.09700.

Le Pelletier de Woillemont, P.; Labory, R.; and Corruble, V.
2021. Configurable Agent With Reward As Input: A Play-
Style Continuum Generation. In 2021 IEEE Conference on
Games (CoG), 1-8.

Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, volume 1, 2.

Portelas, R.; Colas, C.; Hofmann, K.; and Oudeyer, P.
2019. Teacher algorithms for curriculum learning of Deep
RL in continuously parameterized environments. CoRR,
abs/1910.07224.

Portelas, R.; Colas, C.; Weng, L.; Hofmann, K.; and
Oudeyer, P. 2020. Automatic Curriculum Learning For Deep
RL: A Short Survey. CoRR, abs/2003.04664.

Reynolds, D. 2015. Gaussian Mixture Models, 827-832.
Boston, MA: Springer US. ISBN 978-1-4899-7488-4.

Roy, J.; Girgis, R.; Romoff, J.; Bacon, P.; and Pal, C. J.
2021. Direct Behavior Specification via Constrained Rein-
forcement Learning. CoRR, abs/2112.12228.

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015a.
Universal Value Function Approximators. In Bach, F.; and
Blei, D., eds., Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, 1312—-1320. Lille, France:
PMLR.

Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015b. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

Sestini, A.; Gisslén, L.; Bergdahl, J.; Tollmar, K.; and Bag-
danov, A. D. 2022. CCPT: Automatic Gameplay Testing
and Validation with Curiosity-Conditioned Proximal Trajec-
tories. arXiv e-prints, arXiv:2202.10057.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; et al. 2017. Mastering the

Inverse Re-
CoRR,

game of go without human knowledge. nature, 550(7676):
354-359.

Tychsen, A.; and Canossa, A. 2008. Defining Personas in
Games Using Metrics. In Proceedings of the 2008 Confer-
ence on Future Play: Research, Play, Share, 73-80. ISBN
9781605582184.

Vinyals, O.; Babuschkin, I.; Chung, J.; Mathieu, M.;
Jaderberg, M.; Czarnecki, W.; et al. 2019. AlphaS-
tar: Mastering the Real-Time Strategy Game StarCraft
II. https://www.deepmind.com/blog/alphastar-mastering-
the-real-time-strategy-game-starcraft-ii. Accessed: 2022-
08-28.

Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R;
Kavukcuoglu, K.; and de Freitas, N. 2017. Sample Efficient
Actor-Critic with Experience Replay. arXiv:1611.01224.

154

