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Abstract

Recent work extending planning algorithms that reason
about action and change has been successful at support-
ing game design, player modeling, and story generation.
Incorporating agent preferences over actions and propo-
sitions into a planning process allows for a more accu-
rate prediction of what a human might do when solv-
ing a problem like playing through a game level. This
paper presents the preference-based planning heuristic
RPGPREF which uses relaxed plan graphs (RPGs) and
preference sets to guide a planner toward a preference-
conforming path to its goal. A human subjects evalu-
ation confirms that RPGPREF successfully guides the
planning process toward solution plans that recogniz-
ably match and differentiate player playstyles.

Introduction

Game designers working across many genres will often de-
sign game levels that require players to take long sequences
of actions to achieve goals in ways that require those se-
quences to respect complicated causal dependencies be-
tween actions. In games with many choices, anticipating
what a certain type of player might do can be extremely dif-
ficult, but such predictions could help a designer find ways
to better engage that type of player. Planning algorithms are
powerful tools capable of producing multi-step solutions to
fairly complex problems where causal dependency and goal
achievement are central.

Typically, planning research has revolved around incor-
porating more complex features into planning or reducing
the amount of time that a planner takes to generate an op-
timal (shortest-length) solution. However, planners which
solely produce shortest-length plans may not match how a
human would solve the same problem. Not only can multi-
ple shortest-length plans exist, but also humans don’t always
behave in ways that an algorithm would consider optimal.
Recent work has used planning to give game designers more
visibility into the planning process (Pizzi et al. 2021) or gen-
erate multiple plans and select one that matches a player
model (Ramirez and Bulitko 2015). However, in order to
more accurately predict human behavior within the plan-
ning process, the human’s preferences about how they solve
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a problem must be taken into account. While a preference-
aware planner might be used to more accurately predict hu-
man behavior in a variety of real-world scenarios, video
games provide the perfect testbed for these planners. Game
and level designers often attempt to accommodate multiple
player types in their games and a preference-aware planner
could help a designer in this process. In this paper, we of-
ten refer to the way a player prefers to play a game as their
playstyle; a collection of data that defines what a certain type
of player wants to do or how they want the game world to
be.

This paper presents a search heuristic called RPGPREF —
roughly based on Hoffman and Nebel’s FastForward heuris-
tic (Hoffmann and Nebel 2001) — that is used to drive a HSP
algorithm in its search to construct a sequence of actions to
achieve a desired goal state. RPGPREF uses preference val-
ues to bias the construction and analysis of a relaxed plan
graph (RPG) built by HSP planners to select the next best
actions to add to the suffix of a plan. These biases guide a
planner to select steps which either the player prefers or have
effects which the player prefers. Similarly, it pushes the re-
laxed plan extraction away from steps which are undesirable
to the player. This heuristic-based approach guides the plan-
ner to appropriate playstyle-conforming paths by both mini-
mizing the steps in the plan while maximizing the playstyle
value of the plan.

Related Work

Preference-based planning has been an active research area
for well over a decade. These preference-based planners
typically try to solve a planning problem that both min-
imizes cost and maximizes utility or desired plan prop-
erties. Initially, these planners primarily targeted a spe-
cific preferred end state, but other heuristic-based methods
such as HPLAN-P (Baier, Bacchus, and Mcllraith 2009)
and LPRPG-P (Coles and Coles 2011) can target specific
propositions in the planning process. These approaches, like
RPGPREF, use an enriched relaxed plan graph, but they only
allow for proposition preferences rather than action prefer-
ences and their preferences are more rigid than the prefer-
ence values used in this work. Because gameplay necessar-
ily involves player agency within the world, the ability to
incorporate action preference is vital to producing accurate
plans.



Some narrative planners (e.g. IPOCL (Riedl and Young
2010), CPOCL (Ware and Young 2011), Glaive (Ware
and Young 2014), IMPRACTICAL (Teutenberg and Porteous
2013), HEADSPACEX (Young 2017)) implement character
choices using a belief-desire-intention (BDI) model based
on Bratman’s model of practical reasoning (Bratman 1991).
In these systems, characters can have their own goals and so
they perform actions to pursue those goals but do not incor-
porate preferences in action selection.

ACONF is a narrative generation system focusing on
generating believable characters by expressing character
traits (Riedl and Young 2003). While they mention a heuris-
tic function which captures a character’s action preferences,
they do not describe how such a heuristic would work within
their system.

Mask is a planner that incorporates character personality
into the action choices they make in a narrative (Bahamén
and Young 2017). This approach determines action choice
by analyzing the impact of actions on other characters’ emo-
tions rather than explicit enumeration of character prefer-
ences. The work by Rivera-Villicana et al. (2018) on using
BDI for player modeling touches on a player’s goal choice
in the context of an interactive narrative. Their model has
exploration as a type of action choice where the player may
choose to perform actions which don’t lead directly to the
goal in order to gather information but do not consider al-
ternate ways the player may approach their goal once they
have all the necessary information.

Heuristic Description

In this section, we provide a detailed description of a
heuristic-driven search process for constructing plans. Ad-
ditional background describing the elements of our planning
knowledge representation appears in the appendix.
Heuristic search planners typically perform depth-first
search without backtracking to generate a plan by using a
heuristic to guide the process. This heuristic determines, at
each step of the planning process, which action should be
selected as the next step in the plan. The planner gives the
heuristic information about each next possible step being
considered and the heuristic returns some evaluation of those
steps. Because of this, the heuristic has the power to guide
the planner toward desired characteristics. However, because
the heuristic must practically be far faster than the planner
itself, all of the returned values are estimates. In many plan-
ning contexts, the desired plan achieves a goal state in as few
steps as possible. In these cases, the heuristic is optimized to
estimate the number of steps to the goal, allowing the plan-
ner to select the next step which has the estimated shortest
distance to the goal. By doing so until the goal is reached,
the planner can efficiently find a plan that is reasonably op-
timal (depending on the accuracy of the heuristic).
Approaches that use relaxed plan graphs such as the one
presented in this paper are powerful because, when evaluat-
ing which step the planner should choose next, they attempt
to look forward in the planning process by building a relaxed
graph of possible future steps and extracting a collection of
actions that might be used to reach the goal. In a system
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such as FastForward, the number of actions in this collec-
tion is a relatively accurate estimate of the distance from the
evaluated step to the goal. On the other hand, by specifically
targeting actions and propositions that are preferred in this
extraction process, RPGPREF can bias the relaxed plan ex-
traction to select actions which are both productive (i.e. they
approach the goal) but also express the preferences defined
by the user. This allows the heuristic to approximate the dis-
tance to the goal while also attempting to conform to the
given preferences. The planning process selects each next
step that has the shortest estimated preference-conforming
path to the goal.

For this preference-aware heuristic, we consider playstyle
to be a simulated player’s preference for specific actions or
states in the world. We incorporate playstyle preferences
as arbitrary float values assigned to specific propositions
and actions that tell the system how well the specific ac-
tion matches a playstyle or how likely it is that a player
would pursue or avoid a specific proposition.! Effectively,
this means that a final plan can be evaluated for a specific
playstyle as a function of the values of all actions in that
plan and the values of all world states it progresses through
calculated by analyzing the propositions that hold for each
individual state.

Definition 1 (Proposition Preference) A proposition pref-
erence is a tuple (p,v) € X,, which contains a proposition
p and a float value v indicating the preference value for p in
some playstyle.

Definition 2 (Action Preference) An action preference is a
tuple {a,v) € X, which contains an action a and a float
value v indicating a preference value for a in some playstyle.

Definition 3 (Playstyle) A playstyle P is a set of proposi-
tion and action preferences (X,, X,) that collectively rep-
resents the preferences of a certain type of player.

RPGPREF expands its relaxed plan graphs all the way to
the fixed point — the first repeated proposition layer in the
relaxed plan graph where no new actions will be available in
the next layer — because the algorithm optimizes for the ac-
tions chosen and the world states traversed in our plan rather
than the length of the plan. By expanding all the way to the
fixed point, we ensure that all actions and propositions that
are reachable by the state being evaluated are represented in
the RPG. Our resulting relaxed plan, therefore, is produced
by considering all possible steps to reach the goal.

Our relaxed plan extraction algorithm starts at the fixed
point, selects all goals, and works backwards selecting ac-
tions to produce those goals, preferring desired actions and
actions which produce desired propositions. The algorithm
described here skips layers only when such a skip does not
result in a loss of playstyle preference value. This is distinct
from a typical RPG approach in a few ways, often losing ac-
curacy on measuring the shortest path to goal but potentially

!This approach is hand-crafted in this paper, though one might
consider more data-driven approaches (e.g., Monte Carlo tree
search (Silver et al. 2016)) that could be used to generate action
sequences driven by learned preference values.



gaining accuracy on measuring a more realistic and repre-
sentative path to goal for a given type of player.

Algorithm 1: Expanding the relaxed planning graph until the
fixed point while adding playstyle metadata.

Input:Evaluation information (A4, s, g, P)
Qutput:Planning graph G with playstyle metadata

Create planning graph G
Create proposition layer Lpg in G
for each proposition p in s do
Addpto Lpg, p, =0
5: end for
fixedpoint = false
i=1
while fixedpoint = false do
Create action layer L 4; in G
Create proposition layer Lp; in G
for each proposition p in Lp;_1 do
Duplicate p as p', pl, = p,
Lp;=Lp; Up'
end for
for each action a in A do
if a’s preconditions exist in Lp;_; then
Lai =Ly Ua
for each precondition p of a do
Connectain Lg; topin Lp; 4
end for
Davg = avg a’s precondition valuesin Lp;_;
eavg = avg a’s effect values in P
Ay = avg(pavga €avg Pa)
for each effect e of a do
ife ¢ Lp; then
Lp;=LpiUe, ey = ay
else if a, > e, then
€y = Uy
end if
Connect e in Lp; to ain L y;
end for
end if
end for
if Lpi = Lpi_l then
fixedpoint = true
if g £ Lp; return failure
end if
1+ +
end while
40: return G

10:

15:

20:

25:

30:

35:

A baseline assumption in this algorithm is that the heuris-
tic does not need to incorporate actions that do not lead the
agent toward the goal in some way. This eliminates frivolous
actions: the relaxed plan won’t include an attack, for exam-
ple, unless the attack action either fulfills a goal or fulfills a
precondition of some series of actions which fulfill a goal.
This does mean that the algorithm posed here is only use-
ful in an agency-rich environment; the player must be able
to make choices that move them toward their goal and there
must not be only one way to proceed to the goal, as other-
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wise FastForward would simply be a more efficient version
of this algorithm.

The RPGPREF heuristic calculation takes in a state infor-
mation tuple that contains all information the heuristic cal-
culator needs to know about the domain and the goal as well
as the playstyle that is being calculated for.

Definition 4 (Evaluation Information) The evaluation in-
Sormation is a tuple (A, s, g, P) that contains all actions in
the domain A, the world state to be evaluated s, the goal g,
and a playstyle P.

Expanding the Relaxed Plan Graph

Algorithm 1 shows our method to expand the relaxed plan
graph for use in relaxed plan extraction. This tightly follows
typical relaxed plan expansion algorithms, with a few key
differences.

First, the RPG is expanded all the way to the fixed point,
ensuring that all possible paths to goal are represented in the
RPG. If the goal is not represented in the final layer, it is
unreachable.

Second, a playstyle value is assigned to every node. The
algorithm carries playstyle values forward to each proceed-
ing layer. The initial propositions have no playstyle value,
as the actions in the relaxed plan should not be deprioritized
for relying on existing propositions. This is also true in the
rest of the algorithm: as values propagate through the graph,
the precondition values are only affected by the actions and
effects of the actions that may have produced them, not by
their value within the playstyle. In this way, we ensure that
we bias action selection based on actions and their outcomes
and not based on their requirements.

In each action layer, the actions have a value which is
calculated as an average of averages avg(Pavg, €avg, Pa)-
An action’s playstyle value is calculated from three parts:
its precondition values (how much the actions leading to
this action have matched the player’s playstyle), its actual
value in the playstyle (how much this specific action matches
the player’s playstyle), and its effect values (how much the
player likes or dislikes this action’s effects on the world
state). We assume these three have equal weight for the pur-
poses of our heuristic. Any action or effect that does not have
a playstyle value is assigned a zero for the purpose of aver-
aging.

Any given action may have a value in the playstyle, and
this value occupies the P, slot when calculating a,
avg(Pavg, €avgs Pa)- The effect values e,,4 are the average
of the effect propositions (excluding unvalued propositions)
within the set of proposition preferences X, in the playstyle
‘P. The precondition values are inherited from the action that
produced them (as described next) or are unvalued. Once a,,
is calculated, it is assigned as the value of a but also as the
value of every effect of a in the next proposition layer. The
values that are assigned to the effects of a are then used in
the next action layer’s calculations as precondition values.

Because any given proposition in a proposition layer can
be produced by multiple different actions in the preceding
action layer, we set the value of a proposition to the highest
value it received from actions which produced it in the pre-



Algorithm 2: Calculating heuristic values

Input:Planning graph with playstyle metadata & goal (G, g)
Output:Playstyle matching value v and pruned action set A
i = final layer index of the planning graph len(G)
gpi = tuples of each goal g in Lp; and their values
v = avg(gp; values)
5: while i > 0 do
S={}
for each goal proposition p, in gp; from highest
value to lowest value do
if p, € S then

continue
10: end if
a = highest value action that provides p,
A=AUa
for each effect e of a do
S=5SUe
15: end for
for each precondition p of a do
c=py,inLp;_y
j=i—1
while j >= 0do
20: ifp & Lpjor(p,inLpj) < cthen
grj+1 = gprj+1UD
break
end if
25: end while
end for
end for
Z’ JE
end while

30: return v, A

vious layer. In the algorithm, this means that the effect of an
action is only assigned the action’s value in the next propo-
sition layer if the corresponding proposition doesn’t already
have a greater value assigned by some other action.

At the point where the plan graph constructs its last layer
(which is at the fixed point), the RPG is complete and the
relaxed plan is ready to be extracted. The values that are as-
signed to the goals in the final proposition layer approximate
how well the relaxed plan will match the given playstyle.

Extracting the Relaxed Plan

Algorithm 2 shows our method of extracting the relaxed plan
and thereby calculating the heuristic value from our calcu-
lated plan graph from Algorithm 1. All of the information
needed is contained in the RPG and the set of goals to be
achieved. The main differences in our relaxed plan extrac-
tion compared to FastForward are in step selection and skip-
ping proposition layers for subgoals.

As with FastForward, our relaxed plan extraction starts at
the last layer. For each goal, the algorithm searches back-
wards in the planning graph for the point where that goal’s
proposition no longer exists or the playstyle value of the
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proposition drops. Upon finding either of these conditions, it
assigns that goal to the previously-searched layer (i.e. before
the value is dropped or while the goal still exists as a propo-
sition). While FastForward solely searches back through the
layers to find the first layer that a goal appeared, our algo-
rithm also stops its search if it finds that the goal drops in
playstyle value. This way, we ensure that we always select a
layer where the previous actions that led to this proposition
were as high-value as possible but still reduce the relaxed
plan length as much as we can. We use this exact same pro-
cess for subgoals (preconditions of actions which we add as
steps), resulting in a relaxed plan that is as short as possible
while still retaining maximum value.

For step selection, then, we start at the last layer that
contains a goal starting with the highest-value goal and se-
lect the highest-value action that provides that goal (which
should have the same value as the goal proposition). We then
add that action’s preconditions as subgoals using the process
described in the previous paragraph, starting with the propo-
sition layer immediately preceding the selected action. This
continues in a loop, always prioritizing the final layer that
still contains an unresolved goal and then prioritizing the
goals in order of descending playstyle value.

Once all goals are met by the relaxed plan, the selected
actions A are the steps in the relaxed plan for the heuris-
tic calculation. As is typical in RPG-based approaches, the
heuristic value used is simply the number of steps selected
len(A) and, if the step being evaluated is chosen by the plan-
ner, the actions in A will be the actions first considered for
the proceeding step. The playstyle value v of the final goals
is currently only used to prioritize the selection of steps with
equal length estimates.

Simple Example: Lights

In our example, we define a simple domain where there are
two rooms: room 1 and room 2. The goal in our example is
for the lights to be on. One possible solution, referred to as
path 1, involves the agent flipping a switch in room 1, thus
turning on the lights and immediately meeting the goal. The
other solution, path 2, involves the agent picking up a key
in room 2 and using the key to turn a switch that turns on
the lights. Path 2 is clearly more total actions (2 instead of
1) once the agent is in the room. We will assume there is an
entrance that allows the agent to enter either room, but both
rooms are connected to each other.

First, let’s consider the case of a FastForward heuristic.
At the start of the planning process, the planner evaluates
starting by entering room 1 versus entering room 2. Entering
room 1 will show one action to goal while entering room 2
will show two actions to goal, so the planner will plan for
room 1 and proceed from there to select path 1, flipping the
switch and turning on the lights.

Next, let’s consider a case where the agent has a playstyle
that makes them prefer room 2. This could be, for example, a
preference for the true proposition (at agent room2),
but it could also be a preference for using the key to turn
on the lights or a preference against a proposition or action
for path 1. When evaluating the move to room 2, RPG-
PREF behaves much like the FastForward heuristic: it re-
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Figure 1: The relaxed plan graph and relaxed plan extraction illustration for evaluating the step of moving to room 1 in the

simple “Lights” domain example.

turns 2 actions. When evaluating the move to room 1, how-
ever, RPGPREF will actually return 3 actions, as it will
give a relaxed plan where the agent moves to room 2 and
performs path 2. The associated RPG for this evaluation
is shown in Figure 1. In this figure, the playstyle has the
value of 1 for the key—activate action, but the evalua-
tion would be similar regardless of value chosen as long as
the value was higher in path 2. We also introduce an action
called lockpick—-activate that immediately turns on
the lights in room 2 without the agent needing the key but
only assign that a 0.5 playstyle value to illustrate the way
the heuristic extracts a longer but higher-value plan.

This simple relaxed planning graph displays a few of the
properties of this playstyle-aware algorithm. First, the goal
(Lights—on) appears in proposition layer 1. In a typical
RPG heuristic, the relaxed plan graph would not be built
any further than this point, as the goal can be reached by
a relaxed plan. Instead, our algorithm continues to build the
RPG to the fixed point which is reached in proposition layer
3.

Second, the blue steps and arrows in the graph corre-
spond to the actions and effects selected by the relaxed
plan extraction algorithm. By proposition layer 3, the goal
(lights-on) is provided as an effect of three possible ac-
tions: press—-button agent, lockpick—-activate
agent, and key—-activate agent. The algorithm al-
ways selects the highest-value action that provides the goal,
so key—activate agent is selected for the relaxed
plan.

The third component that is illustrated in the above di-
agram is an instance of a skipped proposition on a layer,
shown in yellow. In proposition layer 2, the subgoal at
agent room2 exists, but it is ignored because it exists in
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proposition layer 1 at equivalent or higher playstyle value.
Because of this, the at agent room2 subgoal is ignored
in proposition layer 2 and is instead met in proposition layer
1. On the other hand, 1ights—on exists in proposition
layer 3, 2, and 1, but because its value decreases in propo-
sition layer 2, the algorithm chooses the goal in proposition
layer 3. This process ensures that the extracted plan matches
the highest playstyle value possible while still ensuring all
selected steps make progress toward the goal.

While the above example is clearly very simple, it
nonetheless shows some of the intricacies of RPGPREF.
When running in larger domains which produce RPGs far
too large to present visually, the heuristic chooses among all
of the available options in a way that attempts to maximize
preference values.

Empirical Evaluation

We evaluated this work by experimentally determining
whether a planning algorithm driven by RPGPREF could
produce simulated playthroughs such that:

1. People would recognize specific playstyles used to create
playthroughs, and

2. People would differentiate playstyles in playthroughs
within a single domain

The evaluation of this work was performed through a two-
part human participant study. The first part of the study in-
volved deriving playstyle values and the second part of the
study was focused on evaluating the output that the algo-
rithm produced using the playstyle values from the first part.

Domains Two domains or worlds were used in this study:
one referred to as scifi” and the other as “western”.
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Figure 2: The scifi domain illustration.

The scifi domain was described as follows: In this game,
the player is part of the republic and must disable an empire
base. In order to disable the base, the player must destroy the
power core. The power core is protected by empire troops
and automated guns. The base has a front gate, a loading
bay, a main hall, and a core room. The front gate has guards
and leads to the main hall. The loading bay has bay workers
and is connected to the main hall. The main hall has auto-
mated turrets with a control panel, a locked door that leads
to the core room, and an air vent to the core. The automated
turrets will fire at anyone who approaches the door or the air
vent. The core room has an alarm that is triggered if anyone
tampers with the core that will call empire reinforcements.

In addition, the descriptions of both domains had accom-
panying simple illustrations to illustrate the layout of the
worlds. Figure 2 shows the illustration for the scifi domain.
Both the descriptions and images were shown for both parts
of the study.

Part 1: Playstyle Definition Our algorithm requires a set
of proposition or action preferences, each a tuple associat-
ing an action or a proposition with a preference value for a
specific playstyle. Part 1 of the study engaged participants to
establish these values.

The participants were presented with the description and
illustration of each domain and a list of actions available in
the domain. Playstyles and their descriptions were derived
from player types in Robin’s Laws of Good Game Master-
ing (Laws 2002) and the same playstyles were used both
for Part 1 of the study (deriving playstyle data) and Part
2 of the study (evaluating the output of the planner, de-
scribed below). These playstyles were chosen in order to
be both distinguishable and understandable by participants.
The playstyles were a) fighter (A player who is a fighter
prefers to take the direct approach, solving problems in the
most direct way possible without worrying about the risks
they’re taking.), and b) factician (A player who is a tactician
prefers to take a well-thought-through approach, avoiding
unnecessary risks and trying to ensure the objective is com-
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pleted successfully.)

Actions were described to participants as a disjunction
of all available grounded forms of an action in order to
fully represent what the ungrounded version of an action in-
volved. For example, the shoot action in the Scifi domain
was described as Shooting guards or turrets. Other actions in
this domain included Shooting a door lock to destroy it, Trig-
gering an alarm, Shooting enemy reinforcements, Sneaking
past workers, Hacking automated turrets to disable them,
Hacking an alarm to disable it, and Triggering a remote ex-
plosive to destroy the base.

The participants were asked to rate how likely a player
of each playstyle would be to perform a given action. This
data was averaged and inserted into the domain data for the
planner as preferences for the corresponding actions for each
playstyle. A planner using the heuristic in this paper was run
with each set of playstyle values in each domain to generate
the four playthroughs for the second part of the study.

Part 2: Output Evaluation In this part of the study,
participants matched the playthroughs generated using the
playstyle data from Part 1 with the playstyles as they were
originally described in Part 1. The participants were pre-
sented with the two playthroughs for each domain and
asked to rate how well each playthrough matched the two
playstyles on a six-point Likert scale. The playthroughs were
converted from plan data structures to English sentences us-
ing a simple template-based approach.

Recruitment and Demographics A total of 26 partici-
pants were recruited across both parts of the study?. Two
participants were recruited via posted flyers and 24 partici-
pants were recruited in-person. The University of Utah was
chosen as the recruitment site to increase the likelihood of
finding participants who were familiar with video games.
The university’s IRB approved of all recruitment methods
and study materials.

Of the 26 participants, 5 (19.2%) identified as women and
21 (80.8%) identified as men. The majority (21, 80.8%) of
participants were between the ages of 18-25 and all partic-
ipants were 45 or below. Most (16, 61.5%) participants se-
lected high school as their highest achieved education level,
while 6 (23.1%) had bachelor’s degrees, 2 (7.7%) had mas-
ter’s degrees, and 2 (7.7%) had completed a trade school pro-
gram. Only 3 (11.5%) participants selected that they don’t
regularly play video games, while 14 (53.8%) selected that
they play more than 4 hours of video games per week. 14
(53.8%) participants, when asked how familiar they were
with video games, selected I have played games across
many genres”, while all but 2 (7.7%) of the remaining partic-
ipants selected “’T have played games in a couple of genres”.

2Six participants participated in both parts of the study. Because
the first part (N=10) involved participants rating actions and the
second part (N=22) involved participants rating playthroughs, we
were unconcerned about this overlap. However, even with those
six participants’ data removed from the second part of the study,
all listed results are still significant at p < 0.001.



Domain | Playstyle A D
Scifi Fighter | —3.96 | < 0.0001
Scifi Tactician | —3.96 | < 0.0001

Western | Fighter | —3.75 | < 0.0001

Western | Tactician | —3.81 | < 0.0001

Table 1: Z and p values generated by Wilcoxon signed-
rank tests. These tests determine the p-value for whether
the playthrough generated by part 1 data for a playstyle was
rated as matching that playstyle in part 2.

Results

Data derived from Part 1 of the study were fed into the al-
gorithm and it generated playthroughs that were evaluated
on whether they matched the given playstyles in Part 2. The
following were the playthroughs for the scifi domain:

* Generated from Fighter data: The player shoots the em-
pire guards at the front gate. The player enters through
the gate into the main hall. The player shoots the au-
tomated turrets, destroying them. The player shoots the
lock on the door to the core room, unlocking it. The
player walks into the core room. The player overloads
the core, setting off an alarm. The player defends the
core by shooting empire reinforcements until it’s about
to explode. The player escapes from the base. The core
explodes, destroying the base.

Generated from Tactician data: The player enters through
the loading bay door. The player sneaks past the bay
workers to the main hall. The player disables the auto-
mated turrets by hacking their control panel. The player
shoots the lock on the door to the core room, unlocking
it. The player disables the core’s alarm system to stop it
from activating. The player places a remotely triggered
explosive on the core. The player escapes from the base.
The player triggers the explosive on the core, destroying
the base.

Table 1 shows how participants rated how well the
playthroughs generated by the algorithm matched the
given playstyle. The first stated purpose of our evaluation
was to determine whether people would recognize spe-
cific playstyles used to create playthroughs, and our re-
sults show that they can. Participants overwhelmingly rated
playthroughs generated with a given playstyle’s data as
matching that playstyle. However, Table 1 does not address
our second stated purpose of the evaluation: whether peo-
ple would differentiate playstyles in playthroughs within a
single domain. An additional test was performed comparing
the difference between participant ratings for the playstyles
used in each playthrough. The results of this test can be seen
in Table 2.

The results in Table 2 confirm that participants rated
playthroughs generated for a given playstyle as matching
that playstyle more than the ratings they gave for the other
playstyle in all four cases. In other words, people success-
fully differentiated playstyles in playthroughs within each
domain.
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Domain | Playthrough | Comp A D
Scifi Fighter F>T | —4.01 | <0.0001
Scifi Tactician T>F | —4.01 | < 0.0001

Western Fighter F>T | -354 | ~0.0001

Western Tactician T>F | —=3.70 | ~0.0002

Table 2: Z and p values generated by Wilcoxon signed-rank
tests. These tests determine the p-value for the given com-
parison for the corresponding generated playstyle. Fighter is
shortened to F' and Tactician is shortened to 7" in the com-
parison (Comp) column.

Discussion and Conclusion

In this paper, we presented a new heuristic for incorporat-
ing action and proposition preferences using a relaxed plan
graph. We conducted a user study to verify that the algo-
rithm could take preference data about playstyles as input
and generate playthroughs that matched those playstyles as
output. The results we describe above provide strong sup-
port for the claim that RPGPREF is successful in guiding
a planner to generate plans which recognizably conform to
and differentiate specific playstyles.

One limitation of the approach, however, is that we make
a simplifying assumption that the simulated player knows all
information about the domain. If a player faces two doors
and one door leads them to puzzles while the other leads
them toward combat, the player may not realize the differ-
ence in selecting either door, but the playstyle heuristic op-
erates with full knowledge. In this case, a player may simply
choose randomly, making this heuristic an inaccurate model
of player intent. Our future work will simulate how a player
plays with partial knowledge and changes their knowledge
of the game world as they play.

An additional limitation involves the artificial nature of
our evaluation. While the participants were able to recog-
nize that the playthroughs matched a specific playstyle, a
different approach to the evaluation could involve analyzing
players in a real game environment. Participants could play
a level of a game and, with data about that gameplay turned
into a preference set, our system could attempt to predict
what the players would do on subsequent levels. This was
beyond the scope of the work on this heuristic algorithm as
it would involve determining an accurate way to turn game-
play data into preference sets, but future work could involve
such an approach, perhaps by leveraging data mining and
machine learning techniques.

Our algorithm is a foundation for future work on
preference-aware multi-agent planners (MAPs) that incor-
porate human players’ action choice. Torrefio et al. men-
tion that “’[p]reference-based MAP is an unstudied field”
(Torrefio et al. 2017), so we hope to be able to incorporate
this heuristic in a cooperative multi-agent planner with dif-
fering playstyles defined for different agents, giving us the
ability to determine how those playstyles interact while play-
ers pursue similar or identical goals. While the heuristic pre-
sented here will likely need to be a part of a planner designed
for this purpose, the heuristic itself should be useful for each
agent’s planning process, so this is a valuable first step.



Appendix
Planning Terminology

A more comprehensive discussion of planning approaches
can be found in several foundational papers (e.g., (Fikes and
Nilsson 1971; Kambhampati, Knoblock, and Yang 1995;
Hoffmann and Nebel 2001)). We provide a brief characteri-
zation of key aspects here:

* A state is typically a characterization of the truth values
of relevant predicates that are taken to be true or false at
a given point in time.

* An initial state is a special state that represents the condi-
tions of the world at the point when an agent is expected
to start taking actions leading towards its goal(s).

* A goal state is special state that represents a collection of
conditions in the world that some agent is attempting to
make true.

* A step is the description of an action taken in a plan lead-
ing towards the plan’s goal state. Steps typically are com-
posed of a set of preconditions — predicates describing
conditions that must hold in the state where the step is to
be executed in order for the step to succeed, and effects
— predicates describing conditions that will hold in the
state resulting from the step’s successful execution.

e A plan is typically a pairing of an initial state, a goal
state, and a sequence of steps intended to be executed
from the initial state in order to change the world into the
goal state.
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