
Transformer-Based Value Function Decomposition for Cooperative Multi-Agent
Reinforcement Learning in StarCraft

Muhammad Junaid Khan, Syed Hammad Ahmed, Gita Sukthankar
Department of Computer Science

University of Central Florida
Orlando, FL US

{junaid k, hammad.ahmed}@knights.ucf.edu, gitars@eecs.ucf.edu

Abstract

The StarCraft II Multi-Agent Challenge (SMAC) was cre-
ated to be a challenging benchmark problem for cooperative
multi-agent reinforcement learning (MARL). SMAC focuses
exclusively on the problem of StarCraft micromanagement
and assumes that each unit is controlled individually by a
learning agent that acts independently and only possesses lo-
cal information; centralized training is assumed to occur with
decentralized execution (CTDE). To perform well in SMAC,
MARL algorithms must handle the dual problems of multi-
agent credit assignment and joint action evaluation.

This paper introduces a new architecture TransMix, a
transformer-based joint action-value mixing network which
we show to be efficient and scalable as compared to the
other state-of-the-art cooperative MARL solutions. TransMix
leverages the ability of transformers to learn a richer mixing
function for combining the agents’ individual value functions.
It achieves comparable performance to previous work on easy
SMAC scenarios and outperforms other techniques on hard
scenarios, as well as scenarios that are corrupted with Gaus-
sian noise to simulate fog of war.

Introduction
StarCraft poses many exciting research challenges for AI
agents (Ontañón et al. 2013), stemming from both the myr-
iad macromanagement (strategic gameplay choices related
to production and expansion) and micromanagement (tac-
tics related to movement and targeting) tasks that occur dur-
ing full gameplay. Even though humans typically play Star-
Craft in a centralized way in which the single human player
controls all the units, the StarCraft II Multi-agent Challenge
testbed (Samvelyan et al. 2019) treats engagements as a co-
operative multi-agent problem in which each AI agent con-
trols a single unit and has limited visibility. SMAC pro-
vides a set of battle scenarios as benchmarks for cooperative
multi-agent reinforcement learning (MARL), unlike PySC2
(Vinyals et al. 2017) which is designed for a single learn-
ing agent controlling all the units. During execution, each
SMAC agent conditions its decisions on the partially observ-
able limited area of view; enemy units do not have the op-
portunity to adapt and are controlled by the built-in heuristic
controller. Scenarios include the initial positions, count, and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

types of units, as well as terrain feature information. Some
of the SMAC scenarios are designed to encourage learning
agents to acquire a micro-trick such as kiting or focusing
fire. A scenario can be symmetric or asymmetric, based on
the unit counts of allies and enemies, and homogeneous or
heterogeneous according to the unit types of each side.

Multi-agent reinforcement learning is significantly more
challenging than single agent tasks due to the problem
of credit assignment: it’s difficult for agents to determine
whether it was its own action selection that yielded rewards
or another agent’s choices. A naı̈ve solution is to concate-
nate each agent’s individual state-action spaces and treat it
as a single-agent problem (Gupta, Egorov, and Kochender-
fer 2017). Both learning and execution are centralized and
a single joint reward is learnt which cannot be decomposed
into independent agents’ contributions. The primary concern
with this approach is the curse of dimensionality, as it cre-
ates a drastic growth in the total number of unique global
states resulting in exponential space and time complexity.

With a decentralized paradigm, agents independently
condition only on their local observations without inter-
agent communication and without a joint action-value func-
tion (Tan 1993). Due to its decentralized nature, parallelism
can be exploited, leading to faster learning but with no con-
vergence guarantees. These limitations can be addressed
by centralizing the learning and decentralizing each agent’s
execution — known as Centralized Training with Decen-
tralized Execution (CTDE) (Oliehoek, Spaan, and Vlassis
2011).

The release of the SMAC environment has spurred a burst
of innovation in multi-agent value learning algorithms, such
as QMIX (Rashid et al. 2018), QPLEX (Wang et al. 2021),
QTran (Son et al. 2019), and Qatten (Yang et al. 2020). A
key distinction between these algorithms is the credit as-
signment process which factorizes joint action-values into
individual action-values for every agent. To do this many
MARL techniques make limiting assumptions about the
value function to facilitate the learning process. Adhering
to the IGM (Individual-Global-Max) principle (Son et al.
2019) avoids incompatible agent policies: an action selected
using the joint action-value function should be equivalent to
the greedy action selections of individual agents.

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

113



This paper introduces a transformer-based mixing ap-
proach, TransMix1, for joint action-value learning in coop-
erative MARL. TransMix is able to extract global as well
as local contextual interaction amongst individual agent Q-
values, agent histories, and global state information, and can
deal with longer time horizons which helps it achieve better
performance on the hard SMAC scenarios, as well as sce-
narios that are corrupted with Gaussian noise. The next sec-
tion presents background on the mathematical notation used
throughout the rest of the paper.

Background
Decentralized Partially Observable MDP (Dec-
POMDP): MARL tasks are typically modeled as a
Dec-POMDP (Oliehoek, Spaan, and Vlassis 2011), de-
scribed by the tuple M = <N,S,A,P, r,Ω,O,n, γ>
where i ∈ N = {1, 2, 3, ...} is the set of agents while s ∈ S
represents the true or global state in the environment. For
every time step, agent i ∈ N selects an action ai ∈ A ≡ An

based on state s. When the joint action a is executed, a
joint reward r(s, a) is received, resulting in a transition to
the next state s′ based on a transition probability function
P (s

′ |s, a) with a discount factor γ[0, 1).

To make it a partially observable process, each agent i
receives an observation oi ∈ Ω based on the observation
probability function O(oi|s, ai). In addition, not only does
each agent maintain an action-observation history function
τi ∈ τ ≡ (Ω × A∗), it conditions its stochastic policy
πi(ai|τi) on this history as well. The agents seek to achieve a
joint policy Π that maximizes the joint value function Vπ(s)
as well as joint action-value function Qπ(s, a).

Deep Q-Learning: Q-learning algorithms maximize
the action value function Q∗(s, a) = r(s, a) +

γEs
′[max

′

a Q∗(s
′
, a

′
)]. In deep Q-learning, this function is

learned using a deep neural network with parameters θ. This
idea of deep Q-networks was first introduced by Mnih et al.
(2015) who used replay memory to store transition tuples of
the form (s, a, r, s

′
), where r is the reward of taking action

a resulting in a state transition from s to s
′
. The network

parameters, θ, are optimized by sampling batches from this
replay memory in order to eliminate correlations in the tuple
sequence.

Standard DQN-based approaches utilize the temporal dif-
ference (TD) loss to optimize the network, given by the
equation

L(θ) =
b∑

i=1

[(yDQN
i −Q(s, a; θ)2] (1)

where yDQN
i represents the target network which is updated

at regular intervals (rather than at each iteration) and b is the
batch size sampled from the replay buffer.

In order to deal with the problem of partial observability,
a recurrent version of the Q-network (DQRN) (Hausknecht

1Code is available at: https://github.com/junaiddk/transmix

and Stone 2015), has been used where a recurrent neural net-
work (RNN) based agent learns temporal information after
each state transition. In this case, the replay memory stores
the joint action-observation history tuple (τ, a, r, τ

′
) and the

Q-value is calculated using Q(τ, a; θ) instead of Q(s, a; θ).

Training and Execution: Recent MARL value factor-
ization techniques benefit from the usage of a Centralized
Training and Decentralized Execution (CTDE) paradigm
(Oliehoek, Spaan, and Vlassis 2011). Tan (1993) demon-
strated that by sharing individual observations and poli-
cies, independent agents learn a cooperative task substan-
tially quicker at the cost of communication and space
overhead. Without cooperation, the independent Q-learners
may not converge even if exhaustive exploration is as-
sumed. The Centralized Training with Decentralized Execu-
tion paradigm addressed the issues with independent learn-
ing agents (Russell and Zimdars 2003; Tan 1993) and fully-
centralized learning approaches (Foerster et al. 2018; Gupta,
Egorov, and Kochenderfer 2017) by avoiding misleading
agent reward assignments, and eliminating the need for com-
bined action and observation spaces.

In CTDE, agents are trained in a central setting where
each agent has access to global state information. At train-
ing time, each agent aims to maximize its own action-value
function which leads to the maximization of the team’s joint
action-value function. At execution time each agent selects
its action based on its own learned action-value functions.
The Individual-Global Max (IGM) concept was introduced
by Son et al. (2019) who state that the optimal joint actions
of agents are dependent upon optimal actions of individual
agents i.e.,

argmaxaQtot(τ, a) =


argmaxa1

Q1(τ1, a1)
argmaxa2

Q2(τ2, a2)
...

argmaxaN
QN (τN , aN )

 (2)

Value decomposition networks (Sunehag et al. 2018) cal-
culate Qtot by summing up the individual Qi of each agents
while QMIX (Rashid et al. 2018) applies a monotonicity
constraint. These simplifications to the factorization process
facilitate learning but are unable to represent some classes
of joint action-value functions. Our research attempts to ad-
dress this problem through the usage of a more complex
transformer-based mixing function.

Related Work
Playing a full game of StarCraft requires creating an AI
that can rapidly make both strategic (macromanagement)
and tactical (micromanagement) decisions against oppo-
nents shrouded by fog of war on a large changing map
(see Ontañón et al. (2013) for a comprehensive overview of
StarCraft research challenges). Much of the recent research
on reinforcement learning in StarCraft II has been con-
ducted on micromanagement scenarios executed using either
the StarCraft II Learning Environment (SC2LE) (Vinyals

114



et al. 2017) or the StarCraft II Multi-agent Challenge
testbed (Samvelyan et al. 2019), which is built on top of
SC2LE. SMAC models battles as being executed by mul-
tiple cooperative agents. Rather than tackling the problem
of learning policies for an entire game which requires sig-
nificant computational power (e.g., such as what was used
for DeepMind’s AlphaStar system (Vinyals et al. 2019)),
SMAC evaluates the ability of cooperative agents to learn
micromanagement policies for a single battle. The PyMARL
framework was also released as part of SMAC to facili-
tate the development and performance comparisons of newly
proposed RL algorithms with other popular implementa-
tions (Sunehag et al. 2018; Rashid et al. 2018, 2020; Son
et al. 2019; Wang et al. 2021). The next section provides an
overview of recent work on RL for SMAC.

MARL in StarCraft
Value decomposition networks (VDN) (Sunehag et al. 2018)
introduced the seminal idea of learning a unified reward
value and factorizing it into agent-wise reward values; the
algorithm assumes that the joint value function can be addi-
tively decomposed into individual value functions for each
agent. Since VDN only considers linear value functions,
it does not perform well for complex benchmarks like the
SMAC scenarios that have many agent interdependencies
(Samvelyan et al. 2019). Also unlike later MARL algo-
rithms, VDN does not leverage global state information.

In QMIX, Rashid et al. (2018), improved on VDN by in-
corporating global state information during training and sup-
porting a broader range of non-linear value functions. The
QMIX architecture includes a mixing network conditioned
on the state information which improves the representational
complexity of the value functions. The monotonicity of the
joint value function is ensured through the usage of positive
weights and individual agent networks conditioned on lo-
cal observations only. However QMIX’s loss function tries
to minimize loss across all joint actions for every state; this
can result in incorrect argmax selections when decomposing
non-monotonic functions. Weighted QMIX (Rashid et al.
2020) fixes some issues with the original architecture by as-
signing weights to the projected joint action-values instead
of using equal weights as was done in the original QMIX pa-
per; these weight assignments can either be done centrally or
optimistically.

Son et al. (2019) identified some limitations with the
usage of additivity (VDN) and monotonicity (QMIX) con-
straints. They emphasize that an effective factorization of
optimal joint action-values must instead satisfy the IGM
(Individual-Global-Max) property such that the best joint
action-value is the aggregation of individual agents’ optimal
action-values. Their algorithm QTRAN uses an additional
state-value network to compete a scalar value representing
the state. This value helps minimize the difference in the
total joint reward and the sum of each agent’s individual re-
wards, and therefore supports a variety of non-monotonic
joint action-value functions. QPLEX (Wang et al. 2021) en-
sures compliance to the IGM principle by introducing an
advantage-based function realized with a duplex dueling ar-

chitecture (Wang et al. 2016); it is one of the best performing
SMAC algorithms. In this paper, we benchmark our work
against both QMIX and QPLEX.

As the number of agents in a multi-agent problem in-
creases, the role of context assumes greater importance since
the agent must consider the states of other agents, but only
a small subset of the other agents are relevant to the task
on hand. To overcome this problem, Yang et al. (2020)
proposed incorporating a multi-headed attention module
into the mixing network used for joint Q-value estimation.
Unlike convolutional and recurrent architectures, attention
mechanisms can model far-flung dependencies in input and
output sequences (Vaswani et al. 2017). Instead of propos-
ing enhancements to the mixing of agent network structures,
Hao et al. (2022) sought to scale up to larger multi-agent
problems by improving input sample efficiency. They real-
ized that in a system with a small set of cooperating agents,
sampling all permutations of their ordered representations is
redundant, hence the training sample number can be reduced
by forcing agent-ordering to be permutation invariant.

Our work leverages the transformer model which relies
exclusively on attention to learn data dependencies; also it
can be designed to support permutation invariance. Khan,
Hassan, and Sukthankar (2021) demonstrated promising re-
sults on the usage of transformer networks for macroman-
agement task prediction in StarCraft II; however, their work
was done on a static dataset using supervised learning.
Unfortunately the basic transformer architecture has been
shown to be unstable with the shifting RL objective func-
tion (Parisotto et al. 2020) so embedding transformers into
an online RL agent requires careful training. Fine-tuning
an offline-learnt transformer with online RL training can
improve both overall agent performance and sample effi-
ciency (Zheng, Zhang, and Grover 2022).

Method
This paper introduces our transformer-based value decom-
position and mixing network, TransMix. Our transformer
design is inspired by the approach of Fastformer (Wu et al.
2021). Each agent is represented by a GRU-based DQRN
network. At every time step, agents receive observations
oit ∈ Ω and previous action ait−1 ∈ A. Based on oit and ait−1

the agent network estimates the individual Qi(τ
i, ai) where

τ is the action-observation history and selects the next ac-
tions for each agent by following an ϵ-greedy policy.

The transformer encoder consists of 2 to 6 transformer
layers. The number of transformer layers or depth is based
on the complexity of the task at hand. Once a batch of data
is ready, it is fed to the transformer which ingests individual
Qi, action-observation histories ht

i and global states St.

We calculate the query vector, Q, from the global states
by applying linear transformation and self-attention. This
operation ensures that the most important states get atten-
tion and contribute more towards the global context in learn-
ing the Qtot. Similarly, we apply a separate linear trans-
formation to individual Qi and the resultant is then multi-

115



Figure 1: Complete architecture of TransMix. (a) is the transformer encoder. (b) is the overall architecture of the TransMix. (c)
is the GRU-based agent network. A stack of 2 to 6 transformer encoder layers are used based on the complexity of the task.

plied element-wise with Q vector which gives a global con-
text aware key vector between St and Qi. Next, we apply
self-attention to extract the most relevant information in the
form of global K vector. This K vector is then element-wise
multiplied with transformed ht

i that goes through further lin-
ear transformation to produce global context aware V vector.
Lastly, the transformed states and V vectors are aggregated
together to estimate the Qtot. The complete TransMix archi-
tecture is presented in Fig. 1.

Following the design guidelines of Fastformer, we also
make use of additive self-attention for calculating K and Q
vectors rather than the standard self-attention proposed by
the vanilla transformer design (Vaswani et al. 2017). The
benefits of additive self-attention are many fold. Firstly this
attention mechanism is rather light weight. Second, it re-
duces the total complexity of transformer encoder. Finally,
it improves the inference time of the transformer as well.

The matrices K, V, and Q ∈ RN×d, where N ∈ R512 is
the sequence length or the embedded dimension of the trans-
formation layers and d ∈ R2048 is the hidden dimension. We
also utilize 4 attention heads for our TransMix network. The
linear transformations with sequence length or hidden di-
mension R512 ensure that we can provide a fixed length in-
put to transformer layers which helps to keep the complexity
and computation under control.

We train TransMix in online data collection settings in an
end-to-end fashion. The network is optimized with an Adam
optimizer and standard TD loss (Equation 1). The learning

rate is set to 0.001 for most of the SMAC scenarios with
β1 = 0.9 and β2 = 0.999, and batch size is set to 96. We
also utilize a skip connection that consists of concatenated
Qi and ht

i which is passed through a bottleneck linear trans-
formation. This bottleneck skip connection provides train-
ing stability and helps the network converge while reduc-
ing the dimensionality of the concatenated matrices. Unlike
many other methods, our approach does not use hypernet-
work generated weights extracted from global states. This
makes our approach less dependent on global states com-
pared to others.

Results
We evaluate TransMix on both easy and hard scenarios from
the SMAC (Samvelyan et al. 2019) challenge benchmark. In
SMAC, the focus is on micromanagement tasks in SC2 such
as unit battles. During the battles, we train our RL agents in
an online fashion while the opponents are controlled by the
built-in AI. A battle is considered as “win” if the ally unit
kills an opponent unit. On the other hand a “loss” occurs if
the opponent kills an ally unit or the maximum number of
episodes are reached. When an RL agent damages the oppo-
nent, a reward is received proportional to damage done. Sim-
ilarly, a reward of 10 is received for killing an opponent’s
agent; winning the battle accumulates a reward of 200. The
details of SMAC scenarios are provided in Table 3.

Training and Evaluation
We follow the same evaluation metric proposed by Rashid
et al. (2018). For each SMAC map, the experiment is re-

116



Maps Difficulty TransMix QMIX QPLEX

2m vs 1z Easy 99. 7 95.3 100
3m Easy 100 96.9 100
8m Easy 100 97.7 100
2s3z Easy 100 88.25 100
1c3s5z Easy 97.62 93.37 97.2
MMM Easy 100 95.3 96.9
bane vs bane Easy 100 89.21 98.47
3s vs 5z Hard 95.91 88.7 99.1
3s5z Hard 96.68 88.3 95.9
5m vs 6m Hard 77.41 69.2 73.4
8m vs 9m Hard 96.88 92.2 87.5
2c vs 64zg Hard 92.62 84.38 91.2
10m vs 11m Hard 91.77 89.2 90.12

Table 1: Median win rate on SMAC maps. We train our network for 2M training timesteps on each map. TransMix outperforms
QMIX and QPLEX on most hard SMAC scenarios and ties on easy scenarios.

peated 5 times. We train the model for 2M timesteps on all
the scenarios with a replay buffer capacity of 5000 episodes;
linear ϵ annealing from 1.0 to 0.05 is performed over 50k
steps for easy maps while for the hard maps the range varies
from 250k to 500k steps. After every 10k timesteps, we
pause the training and test our method for 20 test episodes in
a decentralized fashion. Moreover, after every 200 episodes,
we update our target network parameters.

The main results are summarized in Table 1. Since our
approach is based on transformer, which is highly scalable,
we leverage the built-in parallel episode runner environment
for training and testing which substantially reduces the train-
ing time for TransMix. We benchmark our work against both
QMIX (Rashid et al. 2018) and QPLEX (Wang et al. 2021)
which provide a good illustration of the performance of our
method. QMIX is one of the oldest methods to be success-
ful at SMAC, whereas QPLEX is a recent top performer
that incorporates all the value function decomposition im-
provements proposed by earlier authors. Our method always
outperforms QMIX and performs better than QPLEX in the
majority of the hard scenarios.

Effects of Noisy States
This paper also examines whether the usage of the trans-
former makes the MARL agents more robust to fog of
war by injecting noise into the global state (Weber and
Mateas 2009). For these experiments, we add Gaussian
noise, N (0, 0.05), to global states and train our model,
QMix and QPlex from scratch. We follow the same training
approach as discussed earlier and record the win rate. We
observe that our method is less prone to noisy states com-
pared to QMIX and QPlex, and that the performance drop
of our method is less significant compared to others on the
same maps without noisy states. These results are reported
in Fig. 2 and Table 3. As the complexity of the map grows,
the performance drop becomes more significant.

Maps TransMix QMIX QPlex

3m 99.82 95.31 97.41
8m 96.87 93.75 93.75
2s3z 93.75 81.67 89.15
1c3s5z 93.75 78 83.88
3s5z 84.18 65.76 72.62

Table 2: Noisy global state evaluation. TransMix conclu-
sively outperforms QMIX and QPlex when the global states
are corrupted by noise.

Discussion
The key to our method, TransMix, is the ability to learn the
complex global and local contextual interaction amongst in-
dividual agents’ Q-values, Qi, the agents’ histories, ht

i, and
the global states, St. The transformer correctly learns the
context surrounding the correct choice of action, while re-
maining robust to noisy global states.

Another aspect of our method is that the transformers are
by design permutation invariant and thus do not depend on
ordering. For instance, QMIX has to maintain the individual
value function order which we do not require at all. While
TransMix achieved a better test win rate on hard scenarios
and comparable performance on easy scenarios, like other
SMAC benchmarks, it performs poorly on super hard sce-
narios.

The policies learnt by our method are very interesting.
For instance, for the MMM map, the approach is aggressive.
Each side has a heterogeneous team of 1 medivac, 2 mau-
raders, and 7 marines. The medivac agent remains behind
all other agents while the marauders take the lead since they
have heavy armors, and marines cover up the marauders.

117



Figure 2: Win rate comparison between TransMix (labeled as TMix), QPlex, and QMIX. The top row represents win rate with
regular global states while bottom row represents win rate with noisy global states.

Map Ally Unit Enemy Unit
2m vs 1z 2 Marines 1 Zealot
3m 3 Marines 3 Marines
8m 8 Marines 8 Marines
2s3z 2 Stalkers and

3 Zealots
2 Stalkers and

3 Zealots
1c3s5z 1 Colossi, 3

Stalkers and 5
Zealots

1 Colossi, 3
Stalkers and 5

Zealots
MMM 1 Medivac, 2

Marauders and
7 Marines

1 Medivac, 2
Marauders and

7 Marines
bane vs bane 20 Zerglings

and 4
Banelings

20 Zerglings
and 4

Banelings
3s vs 5z 3 Stalkers 5 Zealots
3s5z 3 Stalkers and

5 Zealots
3 Stalkers and

5 Zealots
5m vs 6m 5 Marines 6 Marines
8m vs 9m 8 Marines 9 Marines
2c vs 64zg 2 Colossi 64 Zerglings
10m vs 11m 10 Marines 11 Marines

Table 3: Details of SMAC Scenarios

This demonstrates that the transformer is good at learning
the appropriate role mapping for different types of units.

Conclusion
This paper introduces TransMix, a value decomposition and
mixing network for cooperative MARL tasks. TransMix
uses a stack of transformer encoder layers trained in an end-
to-end way, learning in a centralized fashion while executing
the learned policies in a totally decentralized fashion. Our
method is capable of representing non-linear value decom-
position functions while maintaining consistency.

Results show that our method always outperforms QMIX
and bests QPLEX on the majority of the hard StarCraft
II Multi-agent Challenge scenarios. Furthermore, TransMix
can still achieve good performance when the global states
are perturbed with Gaussian noise, unlike QMIX. In future
work we seek to improve the performance on super hard sce-
narios by improving the exploration policy.

Acknowledgments
Research was partially sponsored by the Army Research Of-
fice and was accomplished under Cooperative Agreement
Number W911NF-21-2-0103. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

118



References
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy gra-
dients. In Proceedings of the AAAI Conference on Artificial
Intelligence.
Gupta, J. K.; Egorov, M.; and Kochenderfer, M. 2017. Co-
operative Multi-agent Control Using Deep Reinforcement
Learning. In Sukthankar, G.; and Rodriguez-Aguilar, J. A.,
eds., Autonomous Agents and Multiagent Systems, 66–83.
Cham: Springer International Publishing.
Hao, X.; Wang, W.; Mao, H.; Yang, Y.; Li, D.; Zheng, Y.;
Wang, Z.; and Hao, J. 2022. API: Boosting Multi-Agent Re-
inforcement Learning via Agent-Permutation-Invariant Net-
works. arXiv preprint arXiv:2203.05285.
Hausknecht, M. J.; and Stone, P. 2015. Deep Recurrent Q-
Learning for Partially Observable MDPs. In AAAI Fall Sym-
posia.
Khan, M. J.; Hassan, S.; and Sukthankar, G. 2021. Leverag-
ing Transformers for StarCraft Macromanagement Predic-
tion. In IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), 1229–1234.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518: 529–533.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2011. Opti-
mal and Approximate Q-value Functions for Decentralized
POMDPs. CoRR, abs/1111.0062.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game AI Research and Competition in StarCraft.
IEEE Transactions onComputational Intelligence and AI in
Games, 5(4): 293–311.
Parisotto, E.; Song, F.; Rae, J.; Pascanu, R.; Gulcehre, C.;
Jayakumar, S.; Jaderberg, M.; Kaufman, R. L.; Clark, A.;
Noury, S.; et al. 2020. Stabilizing transformers for rein-
forcement learning. In International Conference on Machine
Learning, 7487–7498. PMLR.
Rashid, T.; Farquhar, G.; Peng, B.; and Whiteson, S. 2020.
Weighted QMIX: Expanding monotonic value function
factorisation for deep multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 33:
10199–10210.
Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J. N.; and Whiteson, S. 2018. QMIX: Monotonic
Value Function Factorisation for Deep Multi-Agent Rein-
forcement Learning. CoRR, abs/1803.11485.
Russell, S. J.; and Zimdars, A. 2003. Q-decomposition for
reinforcement learning agents. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03),
656–663.
Samvelyan, M.; Rashid, T.; De Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G.; Hung, C.-M.; Torr, P. H.; Foer-
ster, J.; and Whiteson, S. 2019. The StarCraft multi-agent
challenge. arXiv preprint arXiv:1902.04043.

Son, K.; Kim, D.; Kang, W. J.; Hostallero, D. E.; and Yi, Y.
2019. QTRAN: Learning to factorize with transformation
for cooperative multi-agent reinforcement learning. In In-
ternational Conference on Machine Learning, 5887–5896.
PMLR.
Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zam-
baldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo,
J. Z.; Tuyls, K.; and Graepel, T. 2018. Value-Decomposition
Networks For Cooperative Multi-Agent Learning Based On
Team Reward. In Proceedings of the International Con-
ference on Autonomous Agents and MultiAgent Systems,
2085–2087.
Tan, M. 1993. Multi-agent reinforcement learning: Indepen-
dent vs. cooperative agents. In Proceedings of the Interna-
tional Conference on Machine Learning, 330–337.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in Neural Information Pro-
cessing Systems, 30.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou,
J. P.; Schrittwieser, J.; Quan, J.; Gaffney, S.; Petersen, S.;
Simonyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lilli-
crap, T. P.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence,
D.; Ekermo, A.; Repp, J.; and Tsing, R. 2017. StarCraft
II: A New Challenge for Reinforcement Learning. CoRR,
abs/1708.04782.
Wang, J.; Ren, Z.; Liu, T.; Yu, Y.; and Zhang, C. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. In In-
ternational Conference on Learning Representations, ICLR.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International Conference on Ma-
chine Learning, 1995–2003. PMLR.
Weber, B. G.; and Mateas, M. 2009. A Data Mining Ap-
proach to Strategy Prediction. In Proceedings of the In-
ternational Conference on Computational Intelligence and
Games, 140–147. IEEE Press. ISBN 9781424448142.
Wu, C.; Wu, F.; Qi, T.; and Huang, Y. 2021. Fast-
former: Additive Attention Can Be All You Need. ArXiv,
abs/2108.09084.
Yang, Y.; Hao, J.; Liao, B.; Shao, K.; Chen, G.; Liu, W.;
and Tang, H. 2020. Qatten: A general framework for co-
operative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939.
Zheng, Q.; Zhang, A.; and Grover, A. 2022. Online Decision
Transformer. arXiv preprint arXiv:2202.05607.

119


