
On the Challenges of Generating Pixel Art Character Sprites Using GANs

Flávio Coutinho,1,2 Luiz Chaimowicz1

1Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
2Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil

fegemo@cefetmg.br, chaimo@dcc.ufmg.br

Abstract

We pose the problem of generating pixel art character sprites
facing one side (e.g., right), given their images facing an-
other one (e.g., front), as an image-to-image translation task
and investigate the use of the Pix2Pix architecture to solve
it. Aiming to improve the results on unseen data, we propose
and investigate two architecture modifications: (a) represent-
ing images using color palettes, and (b) adding a histogram
loss term to the generator. We compare the results qualita-
tively and quantitatively using FID and L1 distances between
the generated and target images. Results indicate that repre-
senting images with color palettes encourages overfitting, and
the histogram loss leads to slightly improved results.

Introduction
Recent advances in the field of Machine Learning have led to
the development of different Procedural Content Generation
techniques (Summerville et al. 2018; Khalifa et al. 2020). In
the particular case of cosmetic game assets such as images,
generative adversarial networks (GANs) (Goodfellow et al.
2014; Radford, Metz, and Chintala 2015) can be leveraged,
if enough data is available. Some works investigated the
generation of pixel art characters or landscapes using differ-
ent methods such as DCGANs (Horsley and Perez-Liebana
2017), VAEs (Gonzalez, Guzdial, and Ramos 2020), and
conditional DCGANs (Serpa and Rodrigues 2019; Hong,
Kim, and Kang 2019; Jiang and Sweetser 2021; Yang et al.
2022; Coutinho and Chaimowicz 2022), but the obtained re-
sults are not as good as with the generation of photorealis-
tic images using the same or similar techniques (Isola et al.
2017; Karras, Laine, and Aila 2018). Improving the qual-
ity of the generated content can benefit the asset creation
pipeline, for instance, through the use of mixed-initiative
systems (Liapis, Smith, and Shaker 2016), or empowering
non-technical users to create artistic content.

For the special case of generating pixel art images, ex-
isting works typically employ the same or slightly adapted
techniques that have been proposed for realistic images, but
some characteristics of the task make it particularly chal-
lenging. For example, there are no large datasets of pixel
art openly available; with a smaller spatial resolution, the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

amount of information each pixel conveys is much greater
than in photos; the use of colors is frequently restricted to a
small color palette.

In this work, we study the generation of pixel art im-
ages through generative adversarial networks by selecting
the task of generating pixel art characters in a target pose
(e.g., facing right) by using an image of another pose as an
input (e.g., facing front). We frame such a problem as an
image-to-image translation task (Pang et al. 2021) and ana-
lyze the performance of a general single-modal supervised
architecture called Pix2Pix (Isola et al. 2017), which we
use as baseline. When using diverse but small datasets, we
can observe that the generated images have low quality with
the test data, either resulting in blurry images or containing
high-frequency noise. Hence, we proceed by proposing two
other variations to the baseline architecture: (a) representing
images as grids of indices in a palette, instead of using the
RGB space; and (b) adding a loss term to the generator that
steers the generated images towards having the same color
histogram of the source image.

The palette-based variation presented worse results for
unseen data, but the one with the histogram loss yielded
slightly improved sprites. Nevertheless, both experiments
provided insights regarding the generation of pixel art im-
ages with GANs. Our contributions are the characterization
of tasks involving the generation of pixel art, the negative
results from representing images as indices in a palette, and
the possibility for image improvement through the use of a
differentiable histogram loss.

Related Work
We first define the Image-to-Image Translation problem and
present how different works approached it.

Image-to-Image Translation
The problem of Image-to-Image Translation can be de-
scribed as transferring images from a source into a target do-
main while preserving some information (Pang et al. 2021)
and has seen much development with deep generative mod-
els, such as VAEs and GANs.

After the introduction of the original GAN (Goodfellow
et al. 2014), another work proposed the deep convolutional
GAN (DCGAN) as a set of architecture choices that experi-
mentally induced results with better quality, such as the use

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

87

Work Task Method Dataset Sizes Repres.
Horsley and Perez-Liebana (2017) (Uncond.) Characters, faces, and creatures Based on DCGAN 1,210; 517; 36 RGB
Serpa and Rodrigues (2019) Shaded and segmented sprite from sketch Two-headed Pix2Pix 530; 85 RGB
Gonzalez, Guzdial, and Ramos (2020) Domain transfer of sprite given target class Convolutional VAE 7,204 HSV
Jiang and Sweetser (2021) Color from grayscale image Adapted from Pix2Pix 870; 36 YUV
Yang et al. (2022) Photo to/from pixel art landscape Adapted from CycleGAN 500 RGB
Coutinho and Chaimowicz (2022) Target side from source side sprite Adapted from Pix2Pix 912; 408; 294; 208 RGBA

Table 1: Related works that generated pixel art images.

of strided convolutions instead of pooling layers, and the use
of batch normalization (Radford, Metz, and Chintala 2015).
To allow some level of control of the generation process,
another work introduced the conditional GAN (Mirza and
Osindero 2014), a method to indicate what type of content
the system should create. In Pix2Pix, Isola et al. (2017) in-
troduced a general architecture for different image-to-image
translation tasks by proposing to condition the generation
process on the image in a source domain while doing su-
pervised training for the generator to create its version in a
target domain (e.g., grayscale to colored images). In addi-
tion to the adversarial loss of the generator, to enforce the
condition, there is an L1 distance term between the images
in the target domain and the ones created by the generator.
The total generator loss is then:

L(G) = LcGAN (G,D) + λLL1(G) (1)

The architecture had good results in different translation
tasks, such as (both ways) semantic labels to photos,
grayscale to colored pictures, sketches to photos, day to
night, and photos with missing parts to inpainted ones. We
observe that none of the experimented tasks involved pixel
art images, or any type of shape deformation – which are two
characteristics of the problem we are posing in this work.

Pixel Art Generation
Most development in deep generative models focuses on
creating photorealistic images. Table 1 gathers some recent
works that targeted the creation of pixel art images.

Horsley and Perez-Liebana (2017) trained a model based
on DCGAN to generate pixel art sprites of human-like char-
acters, faces, and creatures. The proposed model is uncondi-
tional (i.e., generates images from noise) and the generated
images resemble the training set but present a lot of noise
even in background areas. The system also suffered from
mode collapse, with different z values mapping to similar
resulting images.

Gonzalez, Guzdial, and Ramos (2020) trained a convo-
lutional VAE to transfer pixel art images to a different do-
main, using Pokémon sprites with their associated in-game
types (e.g., grass, fire, water) as the domain. With a small
dataset of 7,204 images, the authors pre-trained the model
with the Anime Face Dataset1 (63,632 images). The result-
ing images were generally blurry, with the colors sometimes
resembling the ones in the target domain, and the shape was
not very well defined.

1https://www.kaggle.com/datasets/splcher/animefacedataset

Serpa and Rodrigues (2019) used a Pix2Pix-based ar-
chitecture in which the generator had two heads to out-
put a shaded grayscale image and a body-part segmented
sprite from line sketches of characters. The generation of
the shaded grayscale sprite yields images close to the ground
truths, especially for character poses similar to the ones seen
during training – but the ones from radically different poses
were still deemed useful as a starting point for artists to re-
fine. In the case of the body-part segmented sprites, the gen-
erated images had a lot of intra-segment noise and used a
different color palette mapping for the segments. One ap-
pointed cause of the noisy images was the small size of the
datasets (530 and 85 images), especially as there were many
different poses a character could take.

Jiang and Sweetser (2021) tackled the problem of color-
ing pixel art sprites given a grayscale version. They used
the Pix2Pix architecture and represented images in the YUV
color space. They used datasets with sizes 870 and 36 im-
ages, and the resulting images produced feasible coloriza-
tion in most cases.

Yang et al. (2022) proposed a system based on Cycle-
GAN (Zhu et al. 2017) to translate pixel art and real pho-
tos of landscapes bidirectionally. Using only 500 images in
the pixel art domain, the authors observed that the pixel grid
was not sufficiently evident as it should be in the pixel art
domain. Also, edges were noisy, and a still high number of
colors was used, even with the target domain being typically
composed of just a tiny palette.

Coutinho and Chaimowicz (2022) used an adapted
Pix2Pix architecture to generate images of pixel art charac-
ters facing a target pose from an image of it facing a source,
the same task we investigate in this work. Trained with four
datasets, the models could reproduce the training data with
L1 distance close to zero but yielded blurry images or high-
frequency color noise for the validation data, especially in
small but relatively highly diverse datasets.

In all such works, the datasets were small, considering
that deep generative models are typically trained with a
number of examples in the order of tens or hundreds of thou-
sands to show enough generalization capability. Still, some
of the results had sufficient quality to be used or were at least
very promising.

Regarding the image representation, most works pro-
cessed images in RGB. One work used HSV as it was help-
ful to relate the images with their type domains (Gonzalez,
Guzdial, and Ramos 2020), while another used the YUV
space as it yielded more colorful images when compared to
RGB (Jiang and Sweetser 2021). From their experiences, we
note that the image representation can impact the results,

88

and there may be better-suited choices depending on the
task. Lastly, one work used the alpha channel in addition to
RGB and noted that, for the generation of character images
in a transparent background, the additional information, al-
though primarily redundant with the other channels, yielded
images with better-defined shapes (Coutinho and Chaimow-
icz 2022).

In our work, we use an improved version of Coutinho and
Chaimowicz (2022) as a baseline, evaluate its generaliza-
tion capacity in different tasks, and propose two variations:
using palette-indexed colors instead of RGB, and adding a
histogram loss term to the generator.

Pixel Art Characterization
Seeking photorealism in image generation requires the net-
work to solve challenging problems, such as achieving crisp
images with anti-aliased edges, correct shape and texture
with feasible lighting, and so on (Karras, Laine, and Aila
2018). At first glance, generating pixel art could be a sim-
pler objective, but here we show some of its characteristics
that introduce new and specific challenges.

Because of the typical lower spatial resolution, pixel art
images usually encode much more information per pixel
than photos (Kopf and Lischinski 2011). To illustrate, Fig-
ure 1 depicts a sprite in which a single pixel can change the
expression of a character. This characteristic makes noise
and shape deviation much more harmful to the perceived
quality of the generated images than in the case of photos.

Due to historical reasons of hardware limitations, artists
create sprites using a limited number of colors that consti-
tute that sprite’s palette. When generating such images us-
ing deep generative models, especially in the case of small
datasets, the resulting images will likely include many more
colors, extrapolating the intended palette. For example, Fig-
ure 2 shows how different the color histograms are of a pixel
art image and a photo of a similar landscape. The two hy-
potheses investigated in this work originate from the idea of
wanting to guide the generated images towards having the
intended palette.

Regarding the form, pixel art is a stylistic, low fidelity rep-
resentation of whatever it depicts (Silber 2015). That might
hinder the performance of reusing learned weights from
non-pixel art datasets. In addition, different shading and tex-
turing patterns are typically used by artists, such as color
ramps (gradients) and dithering (color mixing – Figure 3),
and those will be likely absent from such datasets.

The reduced size also impacts the frequency distribution
throughout the sprite. Real pictures typically have large re-

Figure 1: How the value of a single pixel changes the char-
acter’s facial expression.

Figure 2: Landscape of a forest in pixel art with its histogram
(top), and a photo/histogram of a similar landscape (bottom).

Figure 3: Shading with color ramps (left), with dithering
(center), and the intentional crisp edges (right).

gions with texture bounded by shape edges, but pixel art
presents both patterns interchangeably and very close to
each other. For example, a person’s face in a picture might
have a large region with similar color (low frequency) for its
cheek, which can be bounded on one side by the face edge
(high frequency). In turn, a pixel art character, typically a lot
smaller, uses much fewer pixels for its cheek, interleaving
low and high frequency much more often.

Another more circumstantial characteristic that presents
challenges to the generation of pixel art is the scarcity of
open and large datasets, especially in comparison to the
ones used in Computer Vision tasks. Table 2 presents the
sizes of some popular datasets with which generative mod-
els are trained with. In contrast with the ones used in our

Dataset Size
Pix2Pix’s Facades 606
Pix2Pix’s Cityscapes 3,475
Pix2Pix’s Night2Day 20,120
FFHQ 70,000
CelebA 202,599

Table 2: Sizes of datasets used in Computer Vision tasks.

89

related works (Table 1), their sizes are 1-4 orders of magni-
tude higher. Adding to that problem, some data augmenta-
tion techniques are inappropriate, such as rotation, since no
matter whether it is used with or without interpolation, the
operation results in unpleasant artifacts.

Pix2Pix Baseline
We build on top of the work from Coutinho and Chaimowicz
(2022), which is based on a Pix2Pix architecture for the task
of translating pixel art character sprites from a source into
a target side (e.g., front to right-facing). It processes images
in 64×64×4 (RGBA) and yielded good results for the train-
ing data, but much worse for the validation set. Unlike the
reference work, we implemented data augmentation of hue
rotation and character offset inside the image.

This model was the base implementation for the other ap-
proaches investigated in the following sections, so we detail
it here. The generator is a U-net that downscales the input
to 1×1 in six Conv-InstanceNorm-LeakyReLU blocks, then
upscales the 512-sized latent code back to the original reso-
lution in six ConvTranspose-InstanceNorm-Dropout-ReLU
blocks. The input for each upscaling block is concatenated
with the output from the corresponding downscaling step.
There is a last convolutional layer with a tanh activation and
4 filters for the RGBA components. In turn, the discrimina-
tor follows the PatchGAN model with 2×2 patches, which
results in an output with a size of 32×32×1 of real/fake es-
timations. Those are checked against zeros (fake) or ones
(real) using binary cross-entropy, and the resulting values
are averaged to get the total cost.

Dataset
The dataset we use in the experiments has 294 pixel art
sprites drawn on four sides, and we focused our tests on
generating right-facing images from front-facing characters.
That is more difficult than translating laterally (usually a
horizontal flip) or frontally (generally keeping most of the
shape and changing only the texture). The train/validation
split was 85%, resulting in 250 sprites used for training the
network.

Each character has three slightly different images for each
side as we assembled the dataset from sprite sheets of walk-
ing animations with three frames. During the split, all frames
of each character remained together either in the train or in
the validation set.

Approaches
In this section, we first present the architecture modification
to represent images as indices in color palettes, and later the
use of a differentiable histogram loss term to the generator’s
cost function.

Palette-Indexed Colors
To enforce the generated images to use only the colors from
the palette of the source image, we changed the color rep-
resentation from RGBA values to indices in an example-
specific palette. The palette is extracted when the image is

loaded, and we defined a maximum of 256 colors per exam-
ple, even though the dataset we use has images with at most
54 simultaneous colors.

Regarding the networks, we changed the last layer of the
generator to have a number of units equal to the maximum
palette size (i.e., 256) and a softmax activation instead of
tanh. Both discriminator and generator networks process
images using one-hot encoding of the color indices. Further-
more, as the color indices do not represent color distances,
we replaced the L1 term from the generator loss (Equation 1)
with a categorical cross-entropy Lcce with the indices of the
target image, scaled by some factor λ:

L(G) = LcGAN (G,D) + λLcce(G) (2)

The generator could perfectly reproduce data seen during
training. At the same time, the quality of the images gener-
ated from the validation data started degrading early in the
process, indicating the model memorized the data even un-
der dropout regularization on both networks.

We extracted each image’s palette by picking the unique
colors and filling the remaining color slots with hot pink,
absent from the training/validation data. Regarding the or-
der in which indices were assigned to the colors, we tested
sorting the colors by their gray value (0.2989R+0.5870G+
0.1140B), by the order of appearance in the image from top
to bottom, from bottom to top, and completely random.

The model with shuffled palettes did not converge while
all others overfit. We noted that when there was semantics
to the color indices in the palettes, the images generated
from the validation set presented different results. Figure 4
illustrates this observation in early iterations (1.2k gener-
ator updates, before overfitting): when the first indices of
all palettes share the semantics of corresponding to either
the characters’ heads or their feet (4th and 5th columns), the
quality of those parts stand out in comparison to the remain-
der of their bodies.

Taking into account the worse results when training with
shuffled palettes, the takeaway is that by moving out of the
RGB space into an indexed representation, we deprive the
model of the semantics embedded into the RGB space. That
led us to hypothesize whether we can define a new space, po-
tentially higher-dimensional, in which colors are represented
by embeddings that encode their role inside the dataset. For
instance, such a representation could include the relation of
colors that appear adjacently or in different patterns, allow-
ing the networks to represent and reproduce textures and
shading techniques more easily.

Histogram Loss
Instead of enforcing the strict use of the same palette of the
input images, we experimented with a second approach to
penalize the generator for producing images with a color his-
togram different from the one from the input. One challenge
here is that for gradient descent to be feasible, all terms of
the cost functions must be differentiable, but calculating his-
tograms naively are not (due to thresholding in bins).

We then resorted to a different method to derive an image
histogram that replaces thresholding with a kernel weighted
contribution to each bin (Afifi, Brubaker, and Brown 2020).

90

Figure 4: Early output of the generators on validation data from palette-indexed colors varying the mapping of colors to indices.

It uses the log-chroma space, in which two of the RGB chan-
nels are used to normalize the third, resulting in two param-
eters (u, v) for each original color component. By doing so,
it is possible to have the color histogram visualized in 2D
(Figure 2 shows examples).

To add some control to the colors of generated images,
the authors of HistoGAN (Afifi, Brubaker, and Brown 2020)
added the target histogram mapped to the latent space of the
last two upsampling blocks from StyleGAN (Karras, Laine,
and Aila 2018). In addition, the generator tries to minimize
the distance from the target histogram to the one from the
generated image.

Since we intend to encourage the generator to use the
same colors from the source image in our task, we added
the histogram loss to the generator cost function. However,
we refrain from adding it as input to the last layers of the
generator as we do not intend to change the histogram. The
generator loss uses a scaling factor λhis and has the form:

L(G) = LcGAN (G,D) + λL1
LL1

(G) + λhisLhis(G) (3)

where the Lhis is the Hellinger distance (Simpson 1987) be-
tween the histograms of the source and target image:

Lhis(Hg, Ht) =
1√
2
||H1/2

g −H
1/2
t ||2 (4)

We tested different combinations of the λhis hyper-
parameter, fixing λL1

= 100 (Figure 5). When the histogram
term is higher than λL1

LL1
, the generator fails to translate

the character to the target side but more rapidly reduces the
histogram loss. In turn, for too low λhis, the loss acts mainly

Figure 5: Results from the histogram loss, varying λhis.

as a regularizer, preventing the model from memorizing the
training data but adding little to no gain over the quality of
the images on the validation set.

Evaluation
We train the baseline with and without augmentation, the
model with indexed images, and the one with the histogram
loss. The models of both versions of the baseline have λL1

=
100. The palette-indexed model used λcce = 0.01 and the
color indices are sorted by their grayness value. Lastly, the

91

Figure 6: Results from all models after 160 epochs.

Model FID L1

train val. train val.
Baseline (no aug.) 0.357 10.830 0.008 0.064
Baseline 6.470 9.901 0.038 0.058
Palette-Indexed 0.057 135.100 0.001 10.250
Histogram Loss 6.072 9.396 0.040 0.060

Table 3: FID and L1 distances between the generated images
and their targets.

model with the histogram loss has λhis = 1 and λL1 = 30.
We compare the results through visual inspection and

quantitatively. For metrics, we used the Frechét Inception
Distance (FID) (Heusel et al. 2017) and the L1 distance be-
tween the generated images and their targets. All tests com-
pare how the model performs on training and validation im-
ages.

All models are trained for 160 epochs in batches of 4. The
discriminators and generators were optimized using Adam
(β1 = 0.5 and β2 = 0.999) with a learning rate of 0.0002.

Figure 6 shows example outputs from the models. First,
we can observe that the baseline without augmentation and
the model with indexed-palette could memorize the training
data and produced degraded images from the validation set.
With data augmentation on the baseline, the quality of the
images from unseen data improved. Lastly, the images gen-

erated from the validation set by the model with histogram
loss yielded slightly better translations, which is endorsed
by the lower FID and similar L1 distance (Table 3).

Conclusion
In this work, we frame the problem of creating character
images on a target pose from a source as an image-to-image
translation problem. First, we investigate the applicability of
the Pix2Pix architecture to the problem and observe that it
struggles to generate believable images from unseen data.
We then raise some characteristics of pixel art that make the
task challenging, such as the use of very few colors from
palettes and the absence of large and open datasets.

We then investigated two hypotheses: representing images
as indices in a palette and adding a histogram loss term to the
generator. The model that processes indices of colors yielded
worse images for unseen data in a clear overfitting situation.
Regarding this approach, instead of using a fixed palette, one
might investigate how a higher-dimensional representation
that embeds not only information about the channels, but
also the colors’ roles in the dataset.

The experiment with the histogram loss term produced
slightly better sprites, especially considering the dataset
used is diverse but very small – 294 images. Compared to
the baseline, the FID for the unseen images was reduced by
5.1%. A possible next step is to feed the target palette into
the generator as an attempt to steer the usage of colors even
more to match the source sprite.

92

Figure 7: Additional results from the trained models with Histogram images slightly less blurry than those from the baseline.

Appendix: Additional Results

Figure 7 shows additional results. An interesting observation
is the better quality of the character in the last validation row
since the generator did see one of its three animation frames

(because of the train/test split) during training.

Acknowledgments
This work was supported by CAPES, CNPq and Fapemig.

93

References
Afifi, M.; Brubaker, M. A.; and Brown, M. S. 2020. Histo-
GAN: Controlling Colors of GAN-Generated and Real Im-
ages via Color Histograms. Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 7937–7946.
Coutinho, F.; and Chaimowicz, L. 2022. Generating
Pixel Art Character Sprites using GANs. arXiv preprint
arXiv:2208.06413.
Gonzalez, A.; Guzdial, M.; and Ramos, F. 2020. Generating
Gameplay-Relevant Art Assets with Transfer Learning. In
Proceedings of the AIIDE Workshop on Experimental AI in
Games, 1–7.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. In NIPS’14: Proceed-
ings of the 27th International Conference on Neural Infor-
mation Processing Systems, volume 29, 2672–2680.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. Ad-
vances in Neural Information Processing Systems, 2017-
December: 6627–6638.
Hong, S.; Kim, S.; and Kang, S. 2019. Game sprite genera-
tor using a multi discriminator GAN. KSII Transactions on
Internet and Information Systems, 13(8): 4255–4269.
Horsley, L.; and Perez-Liebana, D. 2017. Building an au-
tomatic sprite generator with deep convolutional generative
adversarial networks. 2017 IEEE Conference on Computa-
tional Intelligence and Games, CIG 2017, 134–141.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017.
Image-to-Image Translation with Conditional Adversarial
Networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), volume 2017-Janua,
5967–5976. IEEE. ISBN 978-1-5386-0457-1.
Jiang, Z.; and Sweetser, P. 2021. GAN-Assisted YUV Pixel
Art Generation. In Australasian Joint Conference on Artifi-
cial Intelligence, 1–12.
Karras, T.; Laine, S.; and Aila, T. 2018. A Style-Based Gen-
erator Architecture for Generative Adversarial Networks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(12): 4217–4228.
Khalifa, A.; Bontrager, P.; Earle, S.; and Togelius, J. 2020.
PCGRL: Procedural content generation via reinforcement
learning. Proceedings of the 16th AAAI Conference on Arti-
ficial Intelligence and Interactive Digital Entertainment, AI-
IDE 2020, 95–101.
Kopf, J.; and Lischinski, D. 2011. Depixelizing pixel art.
In ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11, vol-
ume 30, 1. New York, New York, USA: ACM Press. ISBN
9781450309431.
Liapis, A.; Smith, G.; and Shaker, N. 2016. Mixed-initiative
content creation. In Procedural Content Generation in
Games: A Textbook and an Overview of Current Research,
chapter 11. Springer.

Mirza, M.; and Osindero, S. 2014. Conditional Generative
Adversarial Nets. arXiv preprint arXiv:1411.1784.
Pang, Y.; Lin, J.; Qin, T.; and Chen, Z. 2021. Image-to-
Image Translation: Methods and Applications. IEEE Trans-
actions on Multimedia, 1–1.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
Representation Learning with Deep Convolutional Genera-
tive Adversarial Networks. 4th International Conference on
Learning Representations, ICLR 2016 - Conference Track
Proceedings.
Serpa, Y. R.; and Rodrigues, M. A. F. 2019. Towards
Machine-Learning Assisted Asset Generation for Games: A
Study on Pixel Art Sprite Sheets. In 2019 18th Brazilian
Symposium on Computer Games and Digital Entertainment
(SBGames), volume 2019-Octob, 182–191. Rio de Janeiro:
IEEE. ISBN 978-1-7281-4637-9.
Silber, D. 2015. Pixel Art for Game Developers. CRC Press.
ISBN 9781482252316.
Simpson, D. G. 1987. Minimum Hellinger distance estima-
tion for the analysis of count data. Journal of the American
Statistical Association, 82(399): 802–807.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games, 10(3): 257–270.
Yang, R.; Wang, Y.; Wang, Y.; and Xu, M. 2022. Applica-
tion of Neural Network in Pixel Art Creation: Bi-directional
Conversion between Photo and Pixel Art with GAN Base
Model. In 2022 2nd International Conference on Con-
sumer Electronics and Computer Engineering (ICCECE),
855–858. Institute of Electrical and Electronics Engineers
(IEEE).
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks. In 2017 IEEE International Confer-
ence on Computer Vision (ICCV), 2242–2251. IEEE. ISBN
978-1-5386-1032-9.

94

