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Abstract

Crosswords puzzles continue to be a popular form of en-
tertainment. In Artificial Intelligence (AI), crosswords can
be represented as a constraint problem, and attacked with
a combinatorial search algorithm. In combinatorial search,
the branching factor can play a crucial role on the search
space size and thus on the search effort. We introduce tiered
state expansion, a completeness-preserving technique to re-
duce the branching factor. In problems where the succes-
sors of a state correspond to the values in the domain of a
state variable selected for instantiation, the domain is parti-
tioned into two subsets called tiers. The instantiation of the
two tiers is performed at different times, with tier 1 first and
tier 2 in a subsequent state. Before a tier-2 instantiation oc-
curs, its set of applicable values can shrink substantially due
to constraint propagation, with a corresponding reduction of
the branching factor. We apply tiered state expansion to a
constraint optimization problem modeled on the Romanian
Crosswords Competition, empirically demonstrating a sub-
stantial improvement. Tiered state expansion allows finding a
full solution, with an average CPU time of up to 1.2 minutes,
to many puzzles that would otherwise time out after 4 hours.

1 Introduction
Crosswords puzzles are a very popular form of entertain-
ment. We address a problem inspired by the Romanian
Crosswords Competition and introduced in the search liter-
ature by Botea and Bulitko (2021). The task is to fill a cross-
words grid with words and black cells. Some words, called
thematic words, give points. The objective is to obtain as
many points as possible. The application has a decades-long
history of annual national-level competitions. The problem
is challenging to AI, which lags behind the performance of
top human contestants. The problem can be represented as a
constraint optimization and tackled with a search algorithm.
As usual in a search, the branching factor (i.e., the number
of successor states to a parent state) can greatly impact the
search space size and search time.

We present tiered state expansion, an approach to reduc-
ing the branching factor. We adopt a few assumptions that
characterize an important and broad class of constraint op-
timization problems. Specifically our states are defined by
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a finite set of variables with a finite discrete domain each.
A state corresponds to an instantiation of zero or more vari-
ables. Successors of a state are defined by selecting an unin-
stantiated variable and instantiating it with some/every of its
possible values. Legal states need to satisfy a set of con-
straints specified in the definition of the problem instance.
An objective function maps states to a solution cost (lower is
better) or score (higher is better). Constraint propagation can
gradually shrink domains of uninstantiated variables based
on values of already instantiated variables.

For example, in a crosswords application, variables can
correspond to slots, where a slot is defined as a horizontal
or vertical sequence of white cells bordered at each end by
either the margin of the grid or by a black cell. The domain
of such a variable is the set of words that fit into that slot.
At a given point in time, a slot (variable) can be instantiated
with a word (value) or uninstantiated. A state comprises all
slots with their corresponding assignment at that time (i.e.,
either filled with a word or uninstantiated).

Tiered state expansion partitions the current domain of a
variable selected for instantiation into two subsets called tier
1 and tier 2. The two tiers are defined so that a tier-1 subset is
likely to contain values that could lead to higher-quality so-
lutions, and a tier-1 subset is preferably significantly smaller
than the current domain before splitting. When the variable
is selected for expansion for the first time, only tier-1 val-
ues are used to generate successor states. An additional, spe-
cial successor state called a placeholder successor leaves the
variable uninstantiated but flags it so that any future instanti-
ations (i.e., in a state down in the subtree of the placeholder
successor) will use only tier-2 values. Thus, tier-1 and tier-2
instantiations for a given variable are separated during the
search and other variable instantiations can occur between
those two. By the time tier-2 instantiations would be per-
formed, the number of remaining tier-2 values can be much
smaller due to constraint propagation. This can result in a
significant reduction of the actual branching factor.

Our algorithmic contributions are applicable to constraint
optimization problems that match the assumptions outlined
earlier in this section. We require only partitioning a variable
domain into two tiers, with tier 1 preferably small, and with
tier-1 likely to contain some values that would lead to high-
quality solutions.

Our ideas are easy to understand and implement. They
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can be implemented as extensions to a search algorithm, or
as new constraints in a constraint satisfaction problem. For
simplicity, we adopt the former approach.

Tiered state expansion is implemented in WOMBAT, an
existing state-of-the-art crosswords puzzle solver. Exper-
iments demonstrate substantial speed and memory gains.
Consequently, tiered state expansion allows to fully solve
puzzle instances that, with standard expansion, would fail
after a four-hour search. We made our code and experiments
available to accelerate progress in this challenging problem.

2 Related Work
The literature distinguishes between solving crosswords
puzzles and several variations of generating crosswords
grids. In the former, a problem instance is defined by a grid
with black cells but no letters and a list of clues. The task is
then to fill the grid with words that match the clues (Littman,
Keim, and Shazeer 2002; Ernandes, Angelini, and Gori
2005; Ginsberg 2011; Chen et al. 2022).

The problem of crosswords grid generation takes as in-
put a list of words and a grid with only black cells. The task
is to fill the grid with words from the list (Mazlack 1976;
Ginsberg et al. 1990; Botea 2007; Anbulagan and Botea
2008). The problem has recently been extended with a score
function (Botea and Bulitko 2021) and with the additional
task to automatically generate black cell configurations as
well (Bulitko and Botea 2021). Similarly to Botea and Bu-
litko (2021), we address a crosswords grid generation prob-
lem with a score function and with the black cells given as
input. This is what we call the optimization crosswords prob-
lem in this paper. It is a stepping stone towards the full Ro-
manian Crosswords Competition problem where black cells
should be added as part of constructing a solution.

Our work is complementary to the approach by Botea
and Bulitko (2021). They perform multiple fast searches,
grouped into two phases with the aim that such searches
collectively are faster than a standard search. A phase-one
search aims at quickly finding a promising partial solution.
A phase-two search sets the initial state to the partial solu-
tion discovered in phase one, rather than starting from an
empty initial state. In contrast, our contribution reduces the
branching factor in a search.

Botea and Bulitko (2021) focused on finding high-score
black cell configurations for an optimization crosswords
problem and mentioned tiered state expansion in passing,
as a readily available feature turned on in their experiments.
In this paper we describe and evaluate the concept of tiered
state expansion in depth.

A simplified version of The Romanian Crosswords Com-
petition problem was posed in the 2018 XCSP Competi-
tion (Lecoutre and Roussel 2019). Thirteen instances are
featured in the competition, with square grids whose sizes
range 3 × 3 to 15 × 15. Eight instances remained un-
solved (Lecoutre and Roussel 2019). Audemard, Lecoutre,
and Maamar (2020) use the same representation as a testbed
for using segmented tables to encode constraints.

Domain-independent AI planning has seen the application
of concepts such as helpful actions (Hoffmann and Nebel

2001) and preferred operators (Helmert 2006). The idea is
to partition the actions applicable in a state into two subsets,
with one subset being heuristically considered likely to con-
tain an action that would result in a (good-quality) solution.
In the Fast Forward system, unhelpful actions can be pruned
away, at the cost of losing the search completeness (Hoff-
mann and Nebel 2001). In Fast Downward, preferred op-
erators can get a higher priority at expansion, compared to
a non-preferred operator (Helmert 2006). A key difference
from our work is that tier-2 successors never get generated
as children of the original parent state. Instead, their instanti-
ation is considered in another state, deeper in the search tree,
at which point the number of tier-2 successors can greatly be
reduced due to constraint propagation.

3 Problem Definition
We address the same problem as Botea and Bulitko (2021).
It is modeled as a type of constraint optimization obtained
from a constraint satisfaction problem (CSP) by adding a
score function on partial or full solutions.

Definition 1. A constraint satisfaction problem (CSP) is a
tuple P = 〈X,D,C〉, where:

• X = {v1, . . . , vn} is a collection of variables;
• D = {D1, . . . , Dn} is a collection of finite domains with
Di corresponding to variable vi;

• C = {C1, . . . , Cm} is a collection of constraints. Each
constraint Cj is a pair 〈tj , Rj〉, where tj ⊂ X is a subset
of p variables and Rj is a p-ary relation on the corre-
sponding subset of domains.

We define D∗ as an extension of D that contains a special
symbol ⊥ in each domain for variables with no actual value
assigned yet. This allows to represent partial assignments.

Definition 2. An optimization CSP is a tuple 〈P , f〉, where
P is a CSP and f : D∗ → R+ is a score function.

An assignment s ∈ D∗ is consistent if it violates no con-
straint. A consistent partial assignment is called a partial
solution. A consistent full assignment is a full solution (or
solution for short). A solution is optimal if no solution has a
higher score.

4 Romanian Crosswords Competition
In this work we apply our ideas to the Romanian Cross-
words Competition, a problem introduced in search litera-
ture by Botea and Bulitko (2021). We describe it below to
make the paper more self-contained.

The Competition is an annual contest with human partic-
ipants started in 1965. The task is to create a 13 × 13 grid
filled with words and at most 26 black cells. The input in-
cludes two lists of words (dictionaries), called the thematic
list and the regular list. The thematic list changes every year
and is on the order of a few hundred words. The regular list
contains approximately 135 thousand Romanian words. If
the two lists overlap, the common words are considered to be
thematic and are removed from the regular list. Black cells
cannot have common edges but they are allowed to have
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common corners. White cells have to form a cardinally con-
nected region. Black cells cannot create semiclosures – con-
figurations of black cells such that adding one more black
cell would partition the open/white area of the grid into two
or more areas with the disconnected areas having more than
one open cell each.

Given a configuration of black cells, a word slot is a set
of contiguous white cells in a row or a column where each
end of the slot is adjacent to either the border of the grid or
a black cell. Slots of length 1 can be filled with any letter.
Slots of length 2 can be filled with any combination of two
letters but no two-letter combination can be repeated in the
grid. Slots of length 3 or higher can be filled with words
from the two lists. For simplicity we say that singleton letters
are words of length 1 and two-letter combinations are words
of length 2. We treat them as regular words unless such a
combination is in the thematic list.

Words of length 2 or higher cannot be repeated in a grid.
So-called families of words are forbidden (e.g., writer and
writing cannot both be placed on the same grid).1 All cells
in a (full) solution must contain a letter or a black cell. The
score of a grid is the sum of the lengths of all thematic words.

Constructing a competition grid requires both adding
black cells and words. Similarly to Botea and Bu-
litko (2021), we assume that the black cells are given as in-
put and address only the task of filling in the words. With
the black cells given the remaining problem of filling in the
words can be modelled as an optimization CSP. Apart from
the optimization component (score function) this is a stan-
dard example of a CSP. Word slots are variables and their
initial domains are all words of the corresponding length.

5 Background: Optimization CSP as Search
A standard representation of a CSP as a search problem de-
fines states as consistent partial or full variable assignments
s ∈ D∗. A fully instantiated state (i.e., a full solution) is
a goal state. Frequently the root state is the empty assign-
ment (i.e., with all variables uninstantiated). The successors
of a partial-assignment state s are obtained by selecting an
uninstantiated variable from s and instantiating it with part
or all values in the domain. Each value generates a succes-
sor state obtained from the parent state s by instantiating
the selected variable with that value. Constraint propagation
can shrink the domains of uninstantiated variables. We call
a search space generated in this way a CSP search space.

It is well known that the depth of a CSP search space
is bounded by the number of the variables and that a CSP
search space has no duplicate states. The latter property can
be shown with a recursive argument: As the successors of
the root state are generated by instantiating a single variable
with different values the subtrees of distinct successors of the
root state never overlap. The same argument can be applied
recursively to states deeper in the tree proving the claim.

In CSPs depth-first is a popular search strategy given that
such algorithms are light on memory requirements. When a
problem has an optimization component depth-first branch

1We do not observe the family-of-words constraint as no map-
ping of words into their families is available to us.

and bound, or shorter DFBnB (Land and Doig 1960), can be
used to seek optimal solutions. Besides DFBnB we evalu-
ate a best-first search algorithm, Weighted A* (Pohl 1970),
in this paper. Best-first search requires memory to store the
states in the Open list2 which can be prohibitive. However,
one of the benefits of our contribution is a reduction of the
memory requirements, mitigating this drawback.

In this work we aim at maximizing a score rather than
minimizing a cost. In Weighted A* the evaluation function
is f(s) = g(s)+w×h(s) with w ≤ 1. Solutions found with
such an algorithm have a score no smaller than wC∗ where
C∗ is the optimal score. Function g is the contribution to the
score achieved so far in the current state and h is an admissi-
ble (optimistic) estimation of the additional contribution to
the score that could be achieved on top of the current state.

6 Our Approach: Tiered State Expansion
The main contribution of this paper is tiered state expansion.
We begin with the intuition and illustrate it with a hand-
traceable example. We then present the algorithmic details.

6.1 Intuition
The goal of tiered state expansion is to reduce the branch-
ing factor in search. Tiered state expansion assumes that
successors of a state can be partitioned into two tiers. In-
stead of generating all successors at once when expanding
a state tiered state expansion generates all tier-1 successors
and a single placeholder successor instead of the actual tier-
2 successors. That immediately reduces the branching factor
since there are usually many tier-2 successors.

However, merely delaying generation of tier-2 successors
would not necessarily deliver savings overall. Tiered state
expansion works because when the search comes to gener-
ating actual tier-2 successors, the state with the placeholder
variable instantiation will have other variables instantiated
with actual values which, via constraint propagation, will re-
duce the number of valid tier-2 instantiations to the original
variable. This means that fewer actual tier-2 successor states
will be generated at that point in the search.

Delayed problem-solving is a common technique in
decision-making, both human and AI, motivated by the hope
that the future will reduce the number of possibilities faced
in solving a problem. In fact, sometimes the problem may
disappear entirely. For instance, consider tiered expansion
in best first search, where states get expanded in the order
of their priority (the f -value). When tier-2 values have little
or no contribution to the overall score a placeholder value
assigned to a variable makes little or no contribution to the
heuristic value (and consequently to the priority in the Open
list) of the state. This is because a future instantiation of
that variable can use only tier-2 values. Thus, states with
placeholder values have a low priority to expansion. Thus

2While generally best-first search also requires memory to store
the Closed list, in CSP search this is not necessary due to the fol-
lowing properties: (i) absence of duplicate states eliminates the
need for duplicate detection; and (ii) as soon a goal state is dis-
covered a solution is readily available, with no need to reconstruct
a path backwards from the goal to the root state.
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Figure 1: State s with slots v1 and v2, and the two word lists.

the best-first search will likely keep expanding states whose
variables have tier-1 values and possibly may never even get
to expanding the state with placeholder values by the time a
goal state is reached. In this way generating successors with
tier-2 values is not just delayed but avoided entirely.

In this work tier-1 values correspond to thematic words
and tier-2 values are regular words.

6.2 A Toy Example
Consider the two-slot crosswords puzzle in Figure 1. Its state
s has two variables: v1 (the vertical word slot of length 4)
and v2 (the horizontal word slot of the same length). Sup-
pose the thematic dictionary has two 4-letter words, left and
tent, whereas the regular dictionary has 1000 4-letter words.

For simplicity, assume that the search algorithm is A*.
Suppose the search expands the state s and picks the variable
v1 to instantiate. With the standard state expansion 2+1000
successor states will be generated (Figure 2). Each tier-1
successor will have the g-value of 4 since a 4-letter thematic
word was put it. The h-value is also 4 since there is a possi-
bility of putting a 4-letter thematic word in the slot v2. Thus
each of the two tier-1 successors will have the f -value of
4 + 4 = 8. Each of the 1000 tier-2 successors will have a
g-value of 0 since regular words do not contribute to the so-
lution score. Their h-value is 4 when a thematic word can be
placed on the horizontal slot and 0 otherwise.

With the tiered state expansion the 1000 successors with
tier-2 instantiations for the variable are replaced with a sin-
gle placeholder successor which has no word instantiations
but a Boolean flag indicating future tier-2 instantiations for
that variable (shown by highlighting the slot in yellow in
Figure 3). This reduces the branching factor from 1002 to 3
with corresponding savings in time and Open list.

The placeholder successor is placed in the Open list with
the g-value of 0 (since only tier-2/regular words will be el-
igible for placing in the slot v1) and the h-value of 4 since
there is still a possibility of filling the other slot v2 with a
thematic word. So the f -value of the placeholder successor
is 0 + 4 = 4 which is below the f = 8 of the two tier-1
successors. Consequently the search may find a goal state
before ever expanding the placeholder successor, thus never
generating any of the 1000 tier-2 instantiations of v1 at all.

Alternatively, the placeholder successor state may come
up for expansion later in the search process. At that time ei-
ther v1 or v2 needs to be selected for instantiation. Variable
v1 would generate 1000 successors, whereas v2 would gen-
erate only 3 successors (two with thematic words and one

Figure 2: Standard state expansion.

Figure 3: Tiered state expansion.

with a placeholder for the variable v2). According to a pop-
ular variable-selection strategy, variable v2 is thus preferred
as it generates fewer successors. After instantiating variable
v2 with a word such as tent, constraint propagation immedi-
ately excludes from the domain of v1 all tier-2 words that do
not have e as the second letter (Figure 4).

6.3 Algorithmic Details
In tiered expansion we assume that, given the domain D of
a variable v, it is possible to partition D into two subsets
D = T1 ∪ T2 where T1 is the tier-1 subset of values and T2

is the tier-2 subset of values. Note that given a variable v its
domain D = T1∪T2 can shrink as search progresses along a
path due to constraint propagation. When we refer to sets D,
T1 and T2 for a variable v we mean the snapshots at the cor-
responding state in the search, unless specified otherwise.

Consider a state s and a variable v selected for instantia-
tion. A standard expansion of s would generate |D| succes-
sors. In contrast, we separate v’s instantiation in two tiers.
To do so we extend the state definition with a set of Boolean
flags (i.e., binary variables) fv , one for each variable v. That
is a state becomes s = (v1, . . . ,vn, fv1

, . . . , fvn
). In the

initial state flags are set to false. Flag values are copied
from a parent to a successor, unless explicitly changed in
a successor as shown in this section.

Tier-1 expansion generates |T1| + 1 successors. The first
|T1| successors instantiate v with one tier-1 value each. The
(|T1| + 1)-th successor p in tier-1 expansion leaves v unin-
stantiated but sets the flag fv to true, telling that any future
instantiation of v (i.e., in a descendant of p) should consider
only tier-2 values. We call the state p a placeholder suc-
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Figure 4: Delayed expansion of a placeholder state.

cessor since the variable v is left uninstantiated, as a place-
holder for future instantiations with tier-2 values.

For a given variable v tier-1 expansion and tier-2 expan-
sion can be separated in time with a number of other ex-
pansions involving other variables between them. A key ad-
vantage is that prior to the time when tier-2 expansion for
variable v occurs, constraint propagation stemming from the
instantiations of other variables can significantly reduce the
part of T2 still available for instantiating v. This can signifi-
cantly reduce the effective branching factor of the search.

When constraint propagation performed in a state s re-
duces the tier-1 subset of a variable u to the empty set the
flag fu is set to true in state s. This will make the heuristic
presented later in this section more accurate, ensuring that
variable u will not contribute to the heuristic score.

Algorithm 1 shows tiered state expansion, with tier-1 ex-
pansion on lines 5–9, and tier-2 expansion on lines 11–13.

When expanding a state, the selection of the variable to
instantiate (line 2 in Algorithm 1) can greatly impact search
performance. A popular strategy is to give priority to a
variable that leads to fewer successors. Benefits include a
smaller branching factor in search and an early detection of
dead ends (a variable with an empty domain). In a standard
search, this strategy is equivalent to defining r(v) = |Dv|,
where Dv is v’s domain, and preferring variables with a
smaller r(v). In our approach we adapt the strategy as fol-
lows. For a variable v with domain Dv = T v

1 ∪ T v
2 , define

r(v) as |T v
1 |+ 1 if fv = false and |T v

2 | otherwise. We then
prefer variables with a lower r(v).

6.4 Evaluation Function
We use the evaluation function f(s) = g(s)+w×h(s), w ≤
1 for tiered state expansion, where h is an admissible heuris-
tic. Given a state the heuristic optimistically assumes that
all uninstantiated slots with a non-empty T1 set will be in-
stantiated with a thematic word. Uninstantiated slots with
an empty T1 set contribute 0 to the heuristic value with the
benefit that the heuristic is penalized as soon as an uninstan-
tiated slot gets an empty tier-1 set, before the slot is actually

Algorithm 1: TIERED STATE EXPANSION

Input: State s
Output: Set of successor states S

1 S ← ∅
2 Select variable v for instantiation
3 Let D = T1 ∪ T2 be the domain of v
4 if fv = false then
5 for v ∈ T1 do
6 Generate successor c by instantiating v ← v
7 S ← S ∪ {c}
8 Generate successor p by setting fv ← true and

D ← ∅ ∪ T2

9 S ← S ∪ {p}
10 else
11 for v ∈ T2 do
12 Generate successor c by instantiating v ← v
13 S ← S ∪ {c}

14 return S

instantiated with a tier-2 word. More formally, for a state
s = (v1, . . . ,vn, fv1

, . . . , fvn
), define

1Hi (s) =

{
1 fvi = false and vi = ⊥
0 otherwise

Define `vi
as the length of the word slot vi. In other words,

this is the contribution of the slot (variable) vi if it is instan-
tiated with a thematic word. The heuristic is defined as

h(s) =

n∑
i=1

1Hi (s)× `vi .

As we address a maximization problem admissibility
means that h(s) is not lower than the best possible score
obtainable via the uninstantiated slots.

Function g is the score achieved with already instantiated
thematic words. Define

1Gi (s) =

{
1 vi is a thematic word
0 otherwise

Then

g(s) =
n∑

i=1

1Gi (s)× `vi
.

7 Empirical Evaluation
We implemented tiered state expansion in WOMBAT, a
freely available high-performance C++ solver for cross-
words optimization. In the evaluation function we set w =
0.5. In tests we used two sets of puzzles Random and
Evolved, each with 1024 puzzles. A puzzle is a 13 × 13
grid with 26 pre-initialized black cells. The configuration of
black cells differs from puzzle to puzzle. All puzzles use the
thematic dictionary published for 2021, with 445 words, and
a regular Romanian dictionary, with 134277 words. Random
puzzles were generated by randomly placing 26 black cells
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on the grid, and keeping instances with a valid configuration
of black cells (according to the rules presented in Section 4).
Evolved puzzles were previously synthesized with a separate
project, based on deep learning and evolution, and aimed at
obtaining puzzles with higher scores than random puzzles.
Figure 5 illustrates one evolved and one random puzzle.

Our code and data are available at https://www.dropbox.
com/s/13pdcqzfaanmyca/wombat-aiide-22.tgz?dl=0.

Figure 5: Sample puzzles used in our experiments.

The rest of this section is structured as follows. We give a
performance comparison between DFBnB and Weighted A*
(WA*), both with tiered state expansion turned on. This will
establish that Weighted A* performs significantly better in
our tests. Then, we evaluate the impact of tiered state expan-
sion in WA*, on evolved and random puzzles, respectively.
A similar analysis for the impact of tiered state expansion on
DFBnB is left for a future report.

7.1 Weighted A* and DFBnB
Weighted A* and DFBnB are compared in Figure 6. The
horizontal axis is the search time up to one hour and the ver-
tical axis is the average score at that time, over the 1024 puz-
zles at hand (random or evolved). A score can correspond to
a full solution, if available, or a highest-score partial solution
available at that time otherwise. Except for very small time-
outs (e.g., a few minutes), WA* consistently outperforms
DFBnB, with a more pronounced lead for the evolved puz-
zles. The size of the Open list in WA* is moderate, growing
to an average of 59378 states in random puzzles and 7256
states in evolved puzzles, after one hour of searching.

7.2 Impact of Tiered State Expansion in WA*
To evaluate tiered state expansion we considered three con-
ditions: standard/standard with standard expansion of all
states, tiered/standard where the root state uses tiered
expansion but all other states use standard expansion and
tiered/tiered where tiered expansion is used for all states.
We ran two sets of experiments, one with the resources set to
20 minutes and 4GB RAM, and the other with 4 hours and
16GB RAM, as listed in Table 1. When WOMBAT ran out of
memory on a puzzle (e.g., with tiered expansion turned off)
we removed that puzzle from all three conditions. In all other
cases, we considered the score of a full solution, if found, or
the best partial score of the states encountered in the search
otherwise (the choice will be clear from the context).

Figure 6: WA* (solid line) versus DFBnB (dashed line).

For evolved puzzles Table 1 shows statistics averaged
over 817 puzzles. WOMBAT with the condition stan-
dard/standard and 20 minutes and 4 Gbytes of memory
limits did not find a full solution for any of the 817 puz-
zles due to the time limit. Furthermore, its partial solutions
scores are low, with an average of 18.6 and the maximum
of 69. Switching the root state expansion to tiered (condi-
tion tiered/standard) has a moderate effect, increasing the
maximum score to 74 and the average to 19.1.

Switching all state expansions to tiered (condition
tiered/tiered) has a major effect. WOMBAT found full so-
lutions for 810 out of 817 (i.e., 99.1%) of the puzzles. The
average partial/full solution score increased to 148.1 and the
maximum to 168. Note that while WOMBAT in the first two
conditions ran against the time limit of 20 minutes on all
817 puzzles, the average time to find a full solution in the
tiered/tiered condition was 1.2 minutes/puzzle (with the
minimum of 8 seconds and the maximum of 6.3 minutes).

The ratio of the number of states visited to the number of
states expanded is the effective branching factor (BF) of the
search for a given puzzle. Table 1 lists the averages for the
three conditions. For a given time limit, tiered expansion al-
lows WOMBAT to expand on average many more states than
standard expansion (4.9×103 versus 457) because the effec-
tive branching factor is much lower: 1.5 versus 91.4. Each
generated successor requires non-trivial processing such as
constraint propagation. Consequently, the effective branch-
ing factor significantly impacts the state expansion numbers
affordable within the time limit.

As mentioned, the branching factor is reduced signif-
icantly in the tiered/tiered condition. The reduction is
achieved by tiered state expansion via two mechanisms. The
more direct mechanism is the reduction illustrated in Sec-
tion 6. The second mechanism works by allowing the search
to progress deeper within a given time limit. States deeper in
the search tend to have lower branching factors as more vari-
ables are then instantiated, allowing constraint propagation
to remove many choices.

In summary, switching all state expansions from standard
to tiered yielded full solutions for nearly all puzzles and im-
proved the average partial/full score by almost 8 times.

Given that with the standard state expansion (i.e., con-
ditions standard/standard and tiered/standard) WOM-
BAT showed a limited performance with the 20 minutes time
limit, we will now turn to the results with the higher resource
limits (4 hours and 16 Gbytes of memory). Even with the
additional resources WOMBAT in the standard/standard
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Evolved puzzles Random puzzles
Condition Score Time Sol Exp Visited BF Score Time Sol Exp Visited BF

ss (20m/4Gb) 18.6 − 0 457 28K 91.4 11.4 − 0 605 44K 292.3

ts (20m/4Gb) 19.1 − 0 1.1K 16.8K 18.1 12.2 − 0 726 37.9K 191.3

tt (20m/4Gb) 148.1 1.2 m 810 4.9K 6.2K 1.5 76.6 9.2 m 3 74K 93.9K 1.3

ss (4h/16Gb) 24.1 − 0 11.9K 193.1K 23.0 12.0 − 0 9.4K 310.1K 124.9

ts (4h/16Gb) 24.1 − 0 11.5K 207.1K 21.2 12.8 − 0 10.9K 296.2K 95.5

tt (4h/16Gb) 148.1 1.2 m 810 29.9K 31.2K 1.5 83.2 1.1 h 10 876.6K 1.1M 1.3

Table 1: WOMBAT on evolved and random puzzles, with conditions standard/standard (ss), tiered/standard (ts) and
tiered/tiered (tt). Time and memory resources are set to 20 minues and 4Gb RAM (top), and 4 hours and 16Gb RAM
(bottom). We show the average partial or full score (Score), average time to find a full solution (Time), instances fully solved
(Sol), average expanded nodes (Exp), average visited nodes (Visited), and average branching factor (BF). Best values are bolded.

and tiered/standard conditions failed to fully solve any
of the 817 puzzles. The average partial score had a minor
increase to 24.1 and the numbers of expanded and visited
states increased due to the longer running time.

Even when the expansion strategy is fixed (e.g., stan-
dard/standard), the branching factor can decrease when
more resources are available (e.g., from 91.4 to 23.0). This
is because additional resources allow to reach greater depths
in the search tree and, as mentioned earlier, states at deeper
levels tend to have a smaller branching factor due to con-
straint propagation.

With the random set of puzzles in use, fewer puzzles allow
for full solutions and partial scores are lower. Consequently
only 88 out of the 1024 puzzles had partial/full solutions for
all six configurations of conditions and resource allocations.
On those 88 puzzles the tiered/tiered condition with 20
minutes and 4 Gbytes found 3 full solutions which raised to
10 puzzles with 4 hours and 16 Gbytes. No full solutions
were found in any condition with standard expansions.

Recall that Table 1 presents statistics for the subset of 88
random puzzles where all three conditions produce at least
a partial score. We will now look at problems fully solved
in an individual condition. On the full set of 1024 random
puzzles tiered/tiered with 20 minutes and 4 Gbytes fully
solved 26 puzzles with an average time of 7.7 minutes. With
4 hours and 16 Gbytes it fully solved 118 puzzles with an
average time of 1.3 hours.

Similarly Table 1 presents statistics for a subset of 817
evolved puzzles where all three conditions produce at least
a partial score. Removing that constraint we see that on the
full set of 1024 evolved puzzles tiered/tiered with 20 min-
utes and 4 Gbytes fully solved 1012 puzzles with an average
time of 1.05 minutes. With 4 hours and 16 Gbytes it fully
solved 1013 puzzles with an average time of 1.07 minutes.
Thus, most evolved puzzles are solved very quickly, with an
average time of just above a minute.

Remarkably the results show that tiered expansion is more
effective for higher quality puzzle instances (i.e., instances
that allow for higher score solutions). This is important in
optimization problems where high-quality solutions, rather
than just any solutions, are desired.

The fact that evolved puzzles allow higher scores, com-
pared to the random ones, appears to be one of the key fea-
tures to explain why evolved puzzles are easier to solve.
Consider two puzzles, the first with a higher optimal score,
and the second with a lower one. Since the latter has a lower
optimal score, and we work with admissible heuristics, the
heuristic evaluations of states in the search state of the sec-
ond puzzle will cover a smaller range of values than the
states in the search space of the first puzzle. As such, the
second puzzle could have more states where the heuristic is
the same, thus making it more difficult for the search to dis-
tinguish between truly promising states and states that will
lead to a deadend. A deeper study of this question would be
interesting and we leave it as future work.

8 Conclusions
In combinatorial search the branching factor can have a ma-
jor impact on the search effort. We have introduced tiered
state expansion, a technique to reduce the branching factor.
Our technique applies to a generic class of constraint opti-
mization problems. We applied this to a challenging problem
inspired by the Romanian Crosswords Competition. Empir-
ical results demonstrate substantial performance gains. In a
few minutes Weighted A* with tiered expansion fully solved
problem instances that were unsolvable in four hours with
the standard expansion.

In future work we plan to explore tiered state expansion to
additional problems, such as graphical models and schedul-
ing. In terms of defining the tiers, a generic recipe would
be to heuristically rank successors of a parent state when a
heuristic evaluation function is available. Then we can split
the set of successors into tier 1 and tier 2 subsets. Choosing
the splitting point can consider criteria such as a point where
a sudden drop in the heuristic evaluation from one successor
to the next is observed. In addition we plan to further ad-
vance AI capabilities in the Romanian Crosswords Compe-
tition, an application where top human performance remains
significantly stronger than AI.
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