
Minimizing Coordination in Multi-Agent Path Finding with Dynamic Execution

Aidan Wagner*, Rishi Veerapaneni*, Maxim Likhachev
Robotics Institute, Carnegie Mellon University
{ajwagner, rveerapa, mlikhach}@andrew.cmu.edu

Abstract

Multi-agent Path Finding (MAPF) is an important problem in
large games with many dynamic agents that need to follow
space-time trajectories without inter-agent collisions. Mod-
ern MAPF solvers plan assuming that agents directly follow
the space-time trajectories at known constant speeds without
delays or speedups, resulting in rigid plans which need to
be replanned if there are changes during execution. Instead
we would like agents to be able to follow their computed
paths with dynamic velocities while requiring minimal co-
ordination with others to prevent collisions and deadlocks.
One way to address this problem is to first produce colli-
sion free space-time paths and then compute a coordination
controller that prevents collisions and deadlock during dy-
namic execution. This two step process prevents fully mini-
mizing coordination as the initially planned space-time paths
do not reason about coordination and can be arbitrarily bad.
We introduce a novel paradigm and show how planning in
space-coordination level, rather than space-time, allows us
to simultaneously plan paths and a coordination controller.
Our method, Space-Level Conflict-Based Search (SL-CBS),
builds on the Conflict-Based Search framework and allows
us to reason explicitly about coordination, producing paths
as well as a coordination controller with bounded suboptimal
minimal coordination. We show experimentally that this re-
sults in a 20-50% reduction in coordination compared to the
closest state of the art solver.

Introduction
Multi-agent coordination is required for many real-world
tasks as well as many video games. Multi-Agent Path Find-
ing (MAPF) tries to compute collision-free paths for groups
of agents while minimizing a certain objective, which is usu-
ally the sum of path costs.

In large strategy games with hundreds of diverse agents,
like Age of Empires or Rise of Nations, it is important for
agents to traverse the landscape in a realistic way while
avoiding obstacles and other moving agents. Since each
agent has their own movement abilities, we would like each
agent to be able to traverse their paths with dynamically exe-
cution, speeding up and slowing down arbitrarily as desired
during execution. In known deterministic environments, we

*Both authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

would like to change agent velocities during runtime with-
out replanning agents as replanning requires extra compu-
tation, and can lead to unnatural movement and deadlock
in the multi-agent setting. Instead, planning an initial robust
plan and a coordination protocol could let agents follow their
paths with dynamic velocities, eliminating any additional re-
planning and leading to natural looking coordination at the
expense of computing the initial robust plan and the coordi-
nation protocol to prevent collisions and deadlock.

Motivating example: Imagine a game with a large num-
ber of diverse agents that can move at different speeds, e.g.
infantry, knights, elephant riders, catapults. Computing col-
lision free paths in space-time without velocity reasoning
would require each agent to follow a uniform constant unit
velocity, preventing dynamic speed differences between dif-
ferent agents. On the other hand, incorporating velocity into
the state would increase our state space and planning time.
Finally, neither of these two solutions output space-time tra-
jectories that would allow dynamic changes in velocity dur-
ing execution (like horses getting tired and needing to slow
down) and would require these to be explicitly planned ini-
tially or additional replanning afterwards. We would like to
just plan 1) A set of paths for agents to follow and 2) A
coordination controller that sends coordination commands
during execution to prevent collisions. Therefore during ex-
ecution, agents can follow their paths as slow or fast dynam-
ically as wanted, and only need to stop when requested by
the coordination controller. Crucially both these are com-
puted only once initially, removing the need for replanning
under dynamic execution.

Our goal in this work is specifically to find a set of colli-
sion free paths and a coordination controller that minimizes
the amount of coordination required for agent to dynami-
cally follow the paths. To this end, we reformulate the clas-
sic MAPF problem to explicitly reason about coordination
by planning in respect space-coordination level instead of
space time. Our key insight is that planning in space-level
allows us to simultaneously plan paths and a coordination
controller. Our contributions are
1. Defining the minimum coordination problem under dy-

namic execution.
2. Demonstrating how planning in space-level rather than

space-time allows reasoning about both paths and coor-
dination simultaneously.

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

61



3. Building on top of the Conflict-Based Search framework
and creating Space-Level Conflict-Based Search (SL-
CBS) which is a bounded suboptimal solver that can re-
turn bounded minimum coordination paths.

Related Work
There are several MAPF works that compute collision free
paths. Conflict-Based Search (CBS) is a popular complete
and optimal MAPF solver that uses a high-level constraint
tree (CT) to resolve conflicts and low level planner than
plans individual agents in respect to the constraints. There
have been many follow up works that speed up CBS by re-
ducing the CT size by employing suboptimality, explicitly
pruning branches, selectively expanding branches, adding
sets of constraints, detecting symmetries, and improving
high-level heuristics (Barer et al. 2014; Li, Ruml, and
Koenig 2021; Boyarski et al. 2015, 2021; Li et al. 2019,
2020, 2021).

Reasoning about computing paths and coordination that
can be followed at dynamic unknown velocities has been
substantially less studied. Several works have worked on
”K-Robust” MAPF which compute paths that can be exe-
cuted with k delays without collisions (Atzmon et al. 2018;
Chen et al. 2021). These works do not require additional
coordination during execution, but are limited to instances
where each agent is delayed at most k times. We instead
want a method that can handle arbitrary delays, speed-ups,
and general heterogeneous execution speeds. Various other
works tackle non-constant velocities (van den Berg, Lin, and
Manocha 2008; Kou et al. 2019) or reason about inter-agent
communications (Boardman, Harden, and Martı́nez 2021;
Wang, Sahin, and Bhattacharya 2022) but none reason about
coordination and dynamic execution without the need for re-
planning.

Temporal Plan Graph
The closest relevant work is Hönig et al. (2016) which intro-
duces a post-processing technique MAPF-POST that allows
agents to follow the initial plan with their own dynamic ex-
ecutions, i.e. with their own velocity constraints, as long as
they are never making negative progress (moving in the op-
posite direction of the initial planned path). Specifically, they
create a Temporal Plan Graph (TPG) that maintains visita-
tion orders of agents on states of contention to prevent dead-
lock. During execution, agents just need to query the next
state of contention and check if traversing it will violate the
visitation order or not. If traversing the next state would vi-
olate the visitation, the agent is required to wait until it does
not. Reducing the number of these states of contention there-
fore reduces the amount of coordination overhead as well as
decreases the number of instances where agents may need
to wait. Using the TPG and the corresponding TPG proto-
col allows agents to dynamically traverse their paths faster
or slower without needing to replan.

Planning a set of collision free paths using any MAPF
method, computing the TPG, and then following the paths
with arbitrary velocities during execution using the TPG
for coordination therefore describes the type of solution we

want. However, this procedure does not attempt to reduce
the amount of coordination needed.

Coordination Under Dynamic Execution
The standard MAPF problem takes in a graph G with ver-
tices V and edges E, and N agents Ai, i ∈ {1...N}
with unique start and goal locations, and returns collision
free space-time trajectories πi(t) for each agent. Typical
MAPF methods work on a graph defined by a 2D gridworld
with vertices corresponding to non-obstacle cells, unary cost
edges between adjacent vertices (4-connected), point-mass
robots occupying a single vertex, and aim to minimize the
maximum or sum of path travel times. Time is discretized
into unit timesteps with agents taking exactly one timestep
to traverse edges, requiring agents during execution to fol-
low the paths with a constant known velocity.

We aim to remove the constraint of agents following their
paths at velocities known during planning. Instead, we al-
low dynamic execution of agents running at arbitrary non-
negative speeds during execution, and use a coordination
controller to prevent collisions and deadlock. Our goal is to
compute the paths as well as a coordination controller that
minimizes the amount of coordination required. We change
the standard MAPF problem to explicitly reason about coor-
dination of paths alongside the actual paths themselves. This
initially dramatically complicates our planning problem as
we must plan paths as well as the coordination protocol. We
start by first formally defining our problem set-up by defin-
ing dynamic execution, coordination, and our objective of
minimizing coordination.

Problem Set-up
Definition 1 (Dynamic execution). For a given set of N
agents, Ai, i ∈ {1...N}, and agent paths πi, dynamic ex-
ecution allows agents to traverse their paths with arbitrary
velocity ≥ 0 across the path to their goal unless specified to
stop and wait by a coordination controller.

Let each agent Ai have a path πi consisting of adjacent
states, with πi(0) = Starti and πi(end) = Goali. Dynamic
execution allows agents to dynamically/arbitrarily speed up
and slow down as needed, so the location of an agent at time
t, πi(t), can only be determined during execution. Agents
are not allowed to backtrack as this is unwanted and subop-
timal behaviour. This fits our video game use case of having
different diverse agents travelling at different dynamic ve-
locities during execution.
Definition 2 (Coordination controller). The coordination
controller specifies stop and continue coordination com-
mands to agents based on the locations of other agents.

The coordination controller (CC) aims to prevent colli-
sions and deadlock during dynamic execution. Notice how
the controller cannot specify concrete timesteps when agents
should stop and continue, as with dynamic execution, agents
locations are not tied to specific timesteps. Also note that the
controller cannot modify any paths but only acts as a sort of
smart traffic light. Therefore the controller can only control
where agents should stop and continue based on the loca-
tions of other agents during dynamic execution.

62



Definition 3 (Coordination commands). A stop command
for agent Ai along their path πi is defined by a stop location
s ⊂ πi and the locations of other agents Sj ⊆ πj . For-
mally, a stop command is issued during dynamic execution
at timestep t for Ai when πi(t) = s and ∃j ̸= i, πj(t) ∈ Sj .
Every stop command has an corresponding continue com-
mand for agent Ai to continue past s when ∀j ̸= i, πj(t) /∈
Sj .

We abuse notation and let Sj ⊂ πj denote a subset of lo-
cations along the sequence πi. Conceptually, the use of the
controller can prevent collisions in the same way as a smart
traffic light; stop an agent (Ai) before an intersection (s) un-
til all opposing agents (Aj) pass it, and then allow the orig-
inal agent to continue. This example demonstrates why the
stop/continue command for Ai depends on the locations of
other agents Aj ; we need to know if they have crossed the in-
tersection yet or not. This coordination prevents replanning
under dynamic execution as desired and instead reduces the
computational burden to figuring out the controller during
planning and having the controller send coordination com-
mands during execution. However note that this definition
requires agents to be able to stop arbitrarily fast. Addition-
ally note that MAPF-POST (Hönig et al. 2016) defines a CC
via their Temporal Plan Graph.

Definition 4 (Coordination Objective). Our goal is to mini-
mize the total coordination as measured by the number of
stop commands that the coordination controller needs to
compute.

We cannot define the coordination as the sum of wait
times of agents as that can only be determined during dy-
namic execution. We therefore aim to reduce the number of
instances that agents need to wait and coordinate with other
agents.

Our problem is to compute a set of paths as well as a
coordination controller that minimizes our total coordina-
tion. Computing an arbitrary set of collision free space-time
paths and then post-processing them to generate a coordi-
nation controller does not allow minimizing coordination as
the space-time paths can be arbitrarily bad in respect to post-
processing for coordination under dynamic execution.

Method
Our main idea is that paths and the coordination controller
can be planned simultaneously. As defined, the CC speci-
fies stop commands for agents at specific locations based on
the location of other agents. Between stop commands, all
agents must be in spatially independent path segments, oth-
erwise under dynamic execution there could be a collision.
Our key innovation is that we can represent a plan and a co-
ordination controller in a single “space-coordination level”
representation.

Space-Level Example
Imagine the blue agent (B) and red agent (R) in Figure 1
that need to plan paths from their respective start S to goal
G locations. A path without any coordination would be fully
spatially independent, but this is not possible. Instead B’s

Figure 1: We plan space-level paths rather than space time
paths. Space-time paths can be viewed as planning trajecto-
ries between copies of the map, with each action necessar-
ily leading to a deeper layer. On the other hand, space-level
paths allow consecutive actions in the same level as well as
an action moving to a deeper level. The transitions between
levels define explicit coordination commands.

path must intersect with agent R’s path at multiple states,
requiring the coordination controller to send stop commands
during dynamic execution. At minimum, the CC must stop
R from blocking (4,3) before B moves out of the way, and
likewise must stop B from blocking (1,3) before R traverses
it. Existing methods first compute space-time paths and then
independently post-process them to determine a CC.

We show that space-level paths contain information for
the individual paths as well as the CC using our example in
Figure 1. Imagine we are given the collision free space-level
paths for R and B. Each path consists of spatially indepen-
dent path segments per level, which connect across layers
to form a path from start to goal. Coordination is required
at these transitions between layers, otherwise for example R
could collide at (4,3) if it does not wait. Each level transition
therefore explicitly defines a CC stop command, with con-
tinue commands given when all agents reach the end of their
path segment on the level (e.g. when R reaches (3,3) and B
reaches (4,4)).

Following Definition 3, our stop condition for R is s =
(3, 3), SB = {(3, 1), (4, 1), (4, 2), (4, 3)}. I.e. if R reaches
(3, 3) while B is in a location in SB , R must stop to prevent
a collision with B. Similarly, our continue command for R is
sent by the coordination controller when B leaves SB , allow-
ing R to continue on its path after B clears the intersection.
These two commands together with the stop and continue
command for B at (4, 4) define the coordination controller.

Coordination Controllers From Space-level Paths
Space-level paths in our space-level representation contain
all the necessary information for the spatial paths as well
as the corresponding CC commands. Mathematically, for a
space-level path consisting of path segments πl

j at level l,
the aggregate path is πj = [π0

j , π
1
j , ...]. Coordination com-

mands for Ai occur at each transition between levels, at level
l with s = πl

i(end) and Sj = πl
j \ πl

j(end), ∀j ̸= i. Each

63



Figure 2: We show an example of Space-Level CBS running
on a scenario with 3 agents (A is blue, B is orange, C is
green). Paths segments at level=0 are in solid and level=1
are dashed with the transition between levels marked by the
small diamond. Conflicts are circled in red, costs are (co-
ordination cost, path cost) tuples. We initially start with no
constraints and have two conflicts. Arbitrarily resolving the
conflict at (2,2,0) with constraints results in either A or B
needing to go to a deeper level, as (2,2,0) cannot be bypassed
other than coordinating. Since both branches have identical
costs, we arbitrarily choose to branch the left node and re-
solve the conflict at (4,2,0). Agent A avoid this conflict by
going a level deeper, while B can spatially avoid it, resulting
in another conflict. At this point we expand the (A,(2,2,0))
high level node which has the least cost and results in a valid
solution, terminating search.

level denotes collision free path segments for each agent to
follow at arbitrary speed until they reach the end of the path
segment, which then denotes a stop command sent by the
CC. Once all agents reach the end of their path segments at
that level, the CC sends continue commands allowing agents
to continue on the rest of their path until the next stop com-
mand. Therefore the transition between levels denotes an ex-
plicit coordination stop and continue command, allowing us
to reason with coordination along paths.

Space-Level Conflict-Based Search
Conflict Based Search is a popular complete and optimal
space-time MAPF planner. The CBS framework employs
a high-level constraint tree that searches over conflicts in a
best-first manner, and a low level A* search that searches
individual paths while respecting constraints. Our method,
Space-Level CBS, utilizes the CBS framework to plan con-
flict free space-level paths instead of space-time trajectories.
Algorithm 1 shows the standard high level CBS psuedo-code
as described in Barer et al. (2014) with space-level differ-
ences underlined. Figure 2 walks through a small example

of Space-Level CBS.
Low-level planner Instead of searching for space-time
paths, our low-level planner searches for space-level paths.
The key difference is that unlike space-time search where a
successor of state s and time t, (s, t), leads to (s′, t + 1),
we explicitly reason about levels and can choose to remain
in the same level (s′, l) or increase our level (s, l + 1). We
do not allow actions decreasing levels. Therefore within a
level l, all successors are either 1) adjacent states, resulting
in a spatial path segment within the level, or 2) a successor
to the level l + 1, resulting in the end of the path segment
at level l. Note that regular space-time planning is a subset
of our formulation where each level has only one other ad-
jacent successor.
Sum of Individual Costs (SIC) Following our definitions,
the coordination controller is defined by the transitions be-
tween levels with the coordination cost equal to the sum
of levels across agents. Agents resting at their goal ac-
crue no additional cost. Therefore we compute and mini-
mize the sum of levels rather than path cost. However in
some instances this may dramatically increase path lengths,
so we more generally consider minimizing a weighted sum
(1− w) ∗ P + w ∗ L of the sum of path lengths P and sum
of levels L. w = 1 corresponds to purely minimizing coor-
dination. Manipulating w allows the user to directly trade-
off reducing coordination at the expense of path length. The
low-level planner finds a space-level path for a single agent
that minimizes this objective given the other agents’ path
and CC.
Space-level conflicts and constraints Space-level conflicts
and constraints work identically to space-time conflicts and
constraints. If two agents Ai, Aj conflict at the same space-
level location (s, l), then a constraint is placed on each agent
at (s, l) and the low level planner is called to replan while
satisfying the new constraints. Conceptually, when satisfy-
ing the constraint, Ai can 1) avoid coordinating with Aj

by finding a spatial path around s at the same level l, or
2) coordinate with Aj by going to a deeper level and then
traversing over s. Note that since our low-level planner ac-
tion space does not allow swapping (i.e. agent Ai goes
(s, l) → (s′, l + 1) while Aj goes (s′, l) → (s, l + 1))
as changing levels requires staying at the same location
(s′ = s), we do not need edge conflicts.
Enhanced CBS Enhance Conflict Based Search (Barer et al.
2014) uses a wso bounded suboptimal focal search on the
low-level planner and high-level planner based on conflicts
to speed up search. wso ≥ 1 is a hyper-parameter that con-
trols the suboptimality of the search solution. We incorpo-
rate this out of the box in SL-CBS using space-level con-
flicts. With w = 1, SL-CBS will compute paths and a CC
that are wso suboptimal in respect to total coordination cost.

Proving Optimal Minimum Coordination
We prove that with w = 1, wso = 1, our SL-CBS method
of using CBS for computing space-level plans and the CC
based on the levels minimizes the total coordination. Our
proof follows CBS’s main optimality logic with changes
due to our space-level planning and coordination controller.
The proof for wso > 1 bounded suboptimality follows sim-

64



Algorithm 1: SL-CBS high-level
Input: MAPF instance

1: R.constraints = 0
2: R.solution = find individual paths using low-level()
3: R.cost = SIC(R.solution)
4: Insert R to OPEN
5: while OPEN ̸= ∅ do
6: P ← OPEN.pop()
7: if P has no conflicts then
8: return P.solution
9: C ← conflict(Ai, Aj , (s, l)) in P

10: for agent Ai in C do
11: A← new node
12: A.constraints← P.constraints + (Ai, (s, l))
13: A.solution← P.solution
14: Update A.solution invoking low-level(Ai)
15: A.cost = SIC(A.solution)
16: Insert A to OPEN
17: return No solution

ilarly with ECBS’s suboptimality logic and is omitted for
brevity. In practice running with wso = 1 timesout but run-
ning slightly larger wso produces improved results.

Lemma 1. Our space-level representation contains all min-
imal length paths and a sufficient subset of CC’s whith con-
tains an optimal solution.

Proof. Consider a set of paths π∗
i and CC* that result in a

optimal minimum cost solution. Observe that π∗
i will not

repeat states between coordination commands as otherwise
we can obtain a cheaper path by shortcutting the repeated
sections. Our space-level representation does not change the
spatial path planning space of the problem; SL-CBS will still
consider all minimal length paths including π∗

i .
However, our space-level representation does not allow all

possible CC’s as it only considers coordination commands
based on all agents, as opposed to CC* which can send CC
commands on subsets of agents.

Concretely, let each CC* command depend on a sub-
set of agents Y ⊂ {A0, ...AN}, which means the com-
mand will be sent for arbitrary locations of agents in Y ′ =
{A0, ..., AN} \ Y . We can construct a CC*′ which adds ar-
bitrary location constraints on agents in Y ′, resulting on CC
commands dependent on all agents’ locations and has the
same optimal cost as CC*. Our space-level representation
contains CC*′ but not CC*. Thus our space-level represen-
tation does not contain all possible CC’s but contains a suf-
ficiently large set that covers a CC with optimal cost.

Lemma 2. At all times, there exists a node in the constraint
tree that leads to the optimal solution.

Proof. We use induction on the nodes in the constraint tree.
Base case: SL-CBS’s root CT node permits any possible

solution as there are no constraints.
Inductive step: Assume we have a node in the CT that

leads to the optimal solution. If we have no conflicts then this
node is the optimal solution. If we have a conflict at some

(s, l, Ai, Aj), then the optimal solution must have at least
one agent avoid the location. Each child node does exactly
this, therefore at least one child node will lead to the optimal
solution.

Lemma 3. The cost of children CT nodes are ≥ than the
cost of the parent.

Proof. Let us expand a CT node Q by adding the constraint
Ai to avoid a conflict (s, l) in πi and replanning Ai to get
a child CT node Q′ with new low-level path π′

i. Suppose
π′
i has less cost than πi. Then π′

i is also a valid path for
Q as Q no additional constraints on Ai than Q′. This is a
contradiction as πi was generated via an optimal low level
search for Q and thus must have a lower cost than π′

i. Thus
π′
i must result in an overall cost for Q′ ≥ Q.

Theorem 1. Space-level CBS returns the optimal solution.

Proof. By Lemma 1, space-level CBS is searching over a
sufficient space that contains a minimum coordination solu-
tion. By Lemma 2, a node that leads to the optimal solution
is always in the CT. By Lemma 3, the cost of nodes are non-
decreasing. Therefore searching the CT in order of lowest
costs as describe in Algorithm 1, we are guaranteed that the
first valid node we expand will result in a set of paths and CC
that has the optimal minimum cost. With w = 1, the cost of
each CT node is exactly equal to the coordination cost, and
we return a minimal coordination cost solution.

Experimental Results
Our main idea is that we can simultaneously optimize co-
ordination and path lengths. We therefore compare against
a method that first computes paths and then post-processes
them afterwards rather than jointly reasoning about them.
Since our SL-CBS method uses ECBS bounded subopti-
mal focal searches, we compare against computing paths via
ECBS and then post processing using MAPF-POST (Hönig
et al. 2016). MAPF-POST (Hönig et al. 2016) introduces a
CC based on a temporal plan graph post-processing step on
a given space-time plan. However, MAPF-POST only post
processes a given path to construct some CC for dynamic
execution rather than a low-cost CC. We therefore post pro-
cess MAPF-POST to produce a lower coordination cost CC
for fair comparison.

Modified MAPF-POST: The raw MAPF-POST CC does
not minimize the number of spatial coordinates where co-
ordination is required and instead specifies coordination
at all states with spatial overlap. In Figure 1, MAPF-
POST’s CC would have coordination commands for R at
(4, 1), (4, 2), (4, 3) and for B at (1, 3), (1, 2) rather than our
two required commands. We post process MAPF-POST’s
CC by computing spatially independent path segments to
get a more compact representation that reduces total coor-
dination for more fair comparison. Specifically, given a set
of paths and the corresponding MAPF-POST CC, we run all
agents as far as possible until the the MAPF-POST CC sends
a stop command to all of them. This defines a set of spa-
tially independent path segments and levels, and produces

65



25 50 75 100 125 150 175 200
Number of Agents

15

20

25

30

35

40

45

50

Co
or

di
na

tio
n 

Re
du

ct
io

n 
%

 o
ve

r E
CB

S-
PO

ST
+

Map Name: den312d

100 200 300 400 500 600
Number of Agents

10

0

10

20

30

40

50

60

Map Name: empty-48-48

100 200 300 400
Number of Agents

40

50

60

70

80
Map Name: Paris_1_256

20 40 60 80 100
Number of Agents

0

10

20

30

40

50
Map Name: random-32-32-20

SL-CBSw.2 SL-CBSw.4 SL-CBSw.6 SL-CBSw.8

Figure 3: We see how SL-CBS with w = 0.2, 0.4, 0.6, 0.8 is able to provide consistent improvement over ECBS-POST+
across all maps, with larger w values improving coordination reduction. This confirms that jointly reasoning about paths and
coordination can lead to substantial decreases in coordination compared to our ECBS-POST+ baseline. SL-CBS produces large
improvements in Paris 1 256 as it is a big map where SL-CBS can fully utilize its space to avoid extra coordination.

ht chantry 100 200 300 400 100 200 300 400 100 200 300 400
Method Average Coordination Average Path Length Runtime
ECBS 88.4 90.1 93.3 96.1 88.4 90.1 93.3 96.1 1.38 9.72 26.9 83.5

ECBS-POST+ 11.6 17.1 24.6 31.2 Same as ECBS Same as ECBS
SL-CBSw0.2 4.93 10.22 15.19 20.9 91.9 99.5 106 114 0.48 2.69 9.17 21.91
SL-CBSw0.4 4.66 9.31 13.5 18.1 91.6 98.9 105 112 0.52 3.01 10.6 25.4
SL-CBSw0.6 4.35 8.49 12.1 - 91.7 98.7 105 - 0.53 3.13 14.8 -
SL-CBSw0.8 3.98 - - - 92.1 - - - 0.8 - - -

Table 1: We compare our method SL-CBS against our baselines on a ht chantry, across different number of agents (top row). We
observe that as w increases, we reduce average coordination at the expense of longer paths compared to ECBS. Additionally,
our runtime is smaller when w = 0.2, 0.4, but becomes significantly slower for larger w that timeout (dashed entries).

a CC with less coordination required. We denote post pro-
cessing paths found by ECBS as ECBS-POST+. If ECBS
produces the space-time paths corresponding to Figure 1,
ECBS-POST+ would just have a coordination command for
R at (3, 3) and B at (1, 4), which has the optimal coordina-
tion cost of 2.

Experiments: We compare SL-CBS with w = 0.2, 0.4,
0.6, 0.8 to ECBS and ECBS-POST+ across 8 different maps
from Stern et al. (2019). All statistics and plots are the means
across 5 seeds of each method with wso = 1.5 and a time-
out of 2 minutes. SL-CBS with w = 1 timed out on all
instances and is omitted accordingly. ECBS’s coordination
cost is equal to the path length as the amount of coordinated
waits is equal to the path length (as at each timestep, each
agent needs to sync/wait for all other agents to reach their
corresponding location at that timestep). ECBS-POST+ acts
as our primary baseline as described earlier. Along with co-
ordination, we include statistics on the path length and run-
time to see how SL-CBS trades these off. We did not include
the runtime for POST+ in ECBS-POST+ as we did not opti-
mize its implementation.

Minimizing Coordination: We see in Figure 3 that SL-
CBS has a large coordination reduction across many maps.
We additionally observe that increasing w increases coordi-

nation reduction as expected. We also witness that for SL-
CBS with w = 0.4, w = 0.8, this comes with increased
computational burden, with those methods timing out on 3
of the 4 maps as the number of agents increase. Figure 3
additionally shows that the trends of coordination reduction
can change between maps. Paris 1 256 is the largest map
where additional agents cause more congestion in ECBS’s
paths and requires more coordination while SL-CBS is able
to utilize the free space to plan around them. On the other-
hand, empty-48-48 has less free space and with more agents
SL-CBS approaches ECBS’s performance. For some Real-
Time Strategy context, the random-32-32-20 map with low
numbers of agents is similar to Age of Empires scenarios
which have a density of roughly 25 agents per 30x30 tiles;
we see our methods can reduce coordination by 10-40% in
these scenarios. Overall across all 8 maps, SL-CBS with
w = 0.4 reduces coordination by an average of 39% with
stddev of 17% compared to ECBS-POST+.

Path Cost and Runtime: We analyze the results on the
ht chantry map in Table 1 to understand how SL-CBS is
able to reduce coordination. The appendix contains addi-
tional results showing how this holds across different maps.
We observe that SL-CBS produces consistently longer paths
than ECBS, showing how SL-CBS’s joint reasoning allows

66



Figure 4: We compare running SL-CBS with w = 0.85 and
ECBS on random-32-32-20 with wso = 1.2. The left im-
ages compare ECBS’s and SL-CBS’s path. The right im-
ages show the spatially independent path segments found
for level 1 and level 2 of the SL-CBS solution, denoting seg-
ments for dynamic execution along with coordination com-
mands at the end. Agents resting at their goal are shown as
squares. The circled areas highlight congested regions with
overlapping paths in ECBS that have been spaced out in SL-
CBS due to its joint coordination and path reasoning. The
orange circle demonstrates a prime example where ECBS’s
blue path almost entirely overlaps the magenta path, requir-
ing the two agents to coordinate along almost the entirety of
the magenta agent’s path. SL-CBS neatly sidesteps this by
planning the blue agent around magenta.

it to reduce coordination by avoiding possible coordination
points with longer paths. Figure 4 visualises this on a small
scenario. We see that a small increase in average path cost
per agent can lead to significant coordination reduction. In
general across all 8 maps, SL-CBS with w = 0.4 increases
average path cost by 10.6% with stddev of 9.1% while re-
ducing coordination by an average of 39% with stddev of
17%.

SL-CBS’s main bottleneck is its the runtime as w in-
creases or as the scene gets more congested. We see that
w = 0.8, SL-CBS times out at 100 agents, and that with SL-
CBS with w = 0.6 take significantly longer than ECBS with
200 agents. This occurs as SL-CBS with high w’s needs to
reason more and more about coordination, which means it
has to increasingly search over all coordination commands
along with paths themselves. ECBS-POST+ with its sepa-
rate CC generation does not suffer from this runtime issue
at the expense of not being able to change paths to mini-

mize coordination. However, we see that with lower values,
w = 0.2, 0.4, SL-CBS is able to actually decrease planning
time by 3-10x. This behaviour likely arises due to SL-CBS’s
ability to avoid conflicts by assigning agents different coor-
dination levels (as opposed to ECBS which has all agents in
space time at the same level), but was not explored deeper
as reducing runtime is not the aim of our work.

Limitations, Future Work, and Conclusion
Our work demonstrates an initial methodology to simulta-
neously optimize for paths length and coordination, and has
several limitations.

The most severe limitation is that our coordination com-
mands are based on the location of all other agents as op-
posed to a subset. This means that agents will not move as
independently as possible, likely resulting in some overally
cautious behaviour as they may wait when on agents they do
not need to. However, computing coordination on subsets of
agents would require a different approach with likely harsh
runtime implications as we would then need to additionally
reason about which subsets of agents to coordinate/wait on
(exponential such combinations per wait) rather than just if
we should coordinate/wait (boolean per possible wait). Note
we still minimize coordination as the number of coordina-
tion instances are the same regardless of if commands wait
for a subset of or all agents.

Our method is also limited to reasoning about spatial
paths and does not take other dynamic constraints like ve-
locity or acceleration into account. These could be incorpo-
rated in SL-CBS by keeping the same high level structure
and solely modifying the low-level planner to include these
constraints which would likely slow down planning.

Future work could tackle these two main limitations
to create more realistic trajectories and coordination con-
trollers. An exciting different direction could also modify
the definition of dynamic execution and coordination with
a different set of assumptions. For example, dynamic ex-
ecution with velocity bounds could allow for a coordina-
tion controller that modulates the velocity of agents rather
than completely stopping them. Including priors on veloc-
ity could also enable methods to reason about and mini-
mize wait time rather than the number of waits. In general,
we hope this work spurs future investigations into jointly
reasoning about coordination during dynamic execution of
multi-agent systems, enabling dynamic movement of agents
without needing to replan.

Our work defines the multi-agent dynamic execution sce-
nario and the corresponding need for a coordination con-
troller under dynamic execution. Under our definition of
coordination, we show that reasoning in space-level rather
than space-time allows us to jointly reason about paths and
the coordination controller, and minimize the total coordina-
tion required. Our method SL-CBS based on the CBS/ECBS
framework produces paths and a controller that provably
minimizes coordination. Experimentally, we validate that
SL-CBS simultaneously optimizes paths and coordination,
and is able to minimize coordination by planning slightly
longer paths that bypass congestion.

67



den312d 50 100 150 200 50 100 150 200 50 100 150 200
Method Average Coordination Average Path Length Runtime
ECBS 53.0 54.7 55.8 57.0 53.0 54.7 55.8 57.0 0.12 0.55 2.97 16.3

ECBS-POST+ 6.29 10.7 16.9 20.5 Same as ECBS Same as ECBS
SL-CBSw0.2 3.99 8.75 12.2 17.4 56.5 62.5 65.4 70.9 0.06 0.32 0.81 2.01
SL-CBSw0.4 3.95 8.36 12.5 16.2 56.4 62.2 66.2 70.3 0.06 0.4 1.63 5.16
SL-CBSw0.6 3.7 7.26 10.2 - 56.2 61.6 64.3 - 0.08 0.65 23.15 -
SL-CBSw0.8 3.07 - - - 56.3 - - - 2.33 - - -

ht chantry 100 200 300 400 100 200 300 400 100 200 300 400
Method Average Coordination Average Path Length Runtime
ECBS 88.4 90.1 93.3 96.1 88.4 90.1 93.3 96.1 1.38 9.72 26.9 83.5

ECBS-POST+ 11.6 17.1 24.6 31.2 Same as ECBS Same as ECBS
SL-CBSw0.2 4.93 10.22 15.19 20.9 91.9 99.5 106 114 0.48 2.69 9.17 21.91
SL-CBSw0.4 4.66 9.31 13.5 18.1 91.6 98.9 105 112 0.52 3.01 10.6 25.4
SL-CBSw0.6 4.35 8.49 12.1 - 91.7 98.7 105 - 0.53 3.13 14.8 -
SL-CBSw0.8 3.98 - - - 92.1 - - - 0.8 - - -

room-32-32-4 25 50 75 100 25 50 75 100 25 50 75 100
Method Average Coordination Average Path Length Runtime
ECBS 27.6 29.4 30.7 34.6 27.6 29.4 30.7 34.6 0.01 0.45 2.86 18.1

ECBS-POST+ 3.35 7.31 9.85 14.1 Same as ECBS Same as ECBS
SL-CBSw0.2 2.78 5.28 8.17 11.34 30.2 32.9 35.3 39.2 0.01 0.1 0.6 1.47
SL-CBSw0.4 2.74 5.14 7.64 10.3 30.1 32.9 34.6 37.9 0.01 0.08 0.45 2.87
SL-CBSw0.6 2.5 4.71 6.37 - 30.0 32.3 33.1 - 0.01 0.11 0.71 -
SL-CBSw0.8 2.1 - - - 29.9 - - - 0.02 - - -

Table 2: We compare our method SL-CBS against our baselines on a large (den312), medium (ht chantry), and small (room-
32-32-4) map across different number of agents (top row of each). We observe that as we increase w, we reduce average
coordination at the expense of longer paths compared to ECBS. Additionally, our runtime is smaller when w = 0.2, 0.4, but
becomes significantly slower for larger w with timeouts denoted by dashed entries.

Appendix: Quick Recap
We provide a quick recap for the skimming reader.

Recommended Background Reading
Readers new to Conflict-Based Search are recommended to
read CBS or ECBS (Sharon et al. 2015; Barer et al. 2014).
Readers unfamiliar with incorporating coordination for dy-
namically following MAPF paths should read (Hönig et al.
2016).

Intended Takeaways
Motivation: Imagine a game with a large number of di-
verse agents that can move at different speeds, e.g. infantry,
knights, elephant riders, catapults. Computing collision free
paths in space-time without velocity reasoning would re-
quire each agent to follow a uniform constant unit veloc-
ity, preventing dynamic speed differences between different
agents. On the other hand, incorporating velocity into the
state would increase our state space and planning time. Fi-
nally, neither of these two solutions output space-time tra-
jectories that would allow dynamic changes in velocity dur-
ing execution (like horses getting tired and needing to slow

down) and would require these to be explicitly planned ini-
tially or additional replanning afterwards.

We would like to just plan 1) A set of paths for agents
to follow and 2) A coordination controller that sends coor-
dination commands during execution to prevent collisions.
Therefore during execution, agents can follow their paths
as slow or fast dynamically as wanted, and only need to
stop when requested by the coordination controller. Cru-
cially both these are computed only once initially, removing
the need for replanning under dynamic execution.

Main idea: Our main idea is that paths and coordination
can be planned simultaneously. Our key innovation is that
we can represent paths and a coordination controller in a
single “space-coordination level” representation. Agents can
move dynamically at arbitrary speeds between coordination
commands unlike following space-time paths at predeter-
mined velocities, while also eliminating the need to replan.

Coordination & Space-Level CBS: We define coordi-
nation as stop and continue commands that agents respect
during dynamic execution. Our objective is to simultane-
ously compute paths and a coordination controller than min-
imizes the number of these commands. Building on the

68



ECBS framework, we can plan wso bounded suboptimal
space-level paths where each agent’s path contains spatially
independent (from other agents) path segments connected
by transitions between adjacent levels. We show how we
can explicitly reason about coordination commands by in-
terpreting each transition between space-levels as a coordi-
nation command. This formulation allows us to minimize
the total coordination (levels) L or a weighted objective
w ∗ L + (1 − w) ∗ P of coordination L and path cost P .
We subsequently prove that with w = 1, wso = 1 SL-CBS
can theoretically return minimal coordination solutions, but
note in practice only the bounded suboptimal version was
able to solutions in reasonable runtimes.

Results: We test our method on 8 diverse maps and com-
pare it against an improved MAPF-POST baseline from
Hönig et al. (2016). We first show that bounded suoptimal
SL-CBS can return solutions that minimize coordination in
competitive times (and sometimes even faster). In general
we see that SL-CBS reduces coordination by slightly in-
creasing our path cost, highlighting how our joint reasoning
allows us to reduce coordination by planning slightly longer
paths that avoid congestion. Table 2 provides detailed results
on a large, medium, and small map to show how this holds
and varies across different map sizes and scenarios.

With w = 0.2, across all 8 maps we generally reduce co-
ordination by 20-40% with 5-15% increase in path cost
while planning faster than the baseline. With w = 0.4, w =
0.6 we can get an even larger coordination reduction of
30+% while runtime is comparable for a smaller number of
agents and only gets significantly slower for a larger num-
ber of agents. For context, Age of Empires scenarios have a
density of 25 agents per 30x30 tiles. In our experiments on
32x32 maps, SL-CBS with w = 0.2, w = 0.4 always runs as
fast as ECBS and reduces coordination 15-60% with a path
cost increase of at max 6%.

Acknowledgements
This material is partially supported by the National Science
Foundation Graduate Research Fellowship under Grant No.
DGE1745016 and DGE2140739. Rishi V. and Aidan W.
would like to thank Dhruv S. and Shivam V. for their helpful
feedback for writing this paper, and Li, Ruml, and Koenig
(2021) for their open-source codebase.

References
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust multi-agent path finding. In
Eleventh Annual Symposium on Combinatorial Search.

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Seventh Annual
Symposium on Combinatorial Search.

Boardman, B.; Harden, T.; and Martı́nez, S. 2021. Multi-
agent motion planning with sporadic communications for
collision avoidance. IFAC Journal of Systems and Control,
15: 100126.

Boyarski, E.; Felner, A.; Le Bodic, P.; Harabor, D. D.;
Stuckey, P. J.; and Koenig, S. 2021. f-Aware Conflict Pri-
oritization; Improved Heuristics For Conflict-Based Search.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(14): 12241–12248.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin,
D.; Betzalel, O.; and Shimony, E. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfinding.
In Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence.
Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2021. Sym-
metry Breaking for k-Robust Multi-Agent Path Finding.
CoRR, abs/2102.08689.
Hönig, W.; Kumar, T. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-agent path finding with
kinematic constraints. In Twenty-Sixth International Confer-
ence on Automated Planning and Scheduling.
Kou, N. M.; Peng, C.; Yan, X.; Yang, Z.; Liu, H.; Zhou,
K.; Zhao, H.; Zhu, L.; and Xu, Y. 2019. Multi-Agent Path
Planning with Non-Constant Velocity Motion. AAMAS
’19, 2069–2071. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9781450363099.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In IJCAI, volume 2019, 442–
449.
Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New techniques for pairwise symmetry
breaking in multi-agent path finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 30, 193–201.
Li, J.; Harabor, D.; Stuckey, P. J.; and Koenig, S. 2021. Pair-
wise Symmetry Reasoning for Multi-Agent Path Finding
Search. CoRR, abs/2103.07116.
Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 12353–12362.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
van den Berg, J.; Lin, M.; and Manocha, D. 2008. Recipro-
cal Velocity Obstacles for real-time multi-agent navigation.
In 2008 IEEE International Conference on Robotics and Au-
tomation, 1928–1935.
Wang, X.; Sahin, A.; and Bhattacharya, S. 2022.
Coordination-free Multi-robot Path Planning for Con-
gestion Reduction Using Topological Reasoning. CoRR,
abs/2205.00955.

69


