
tile2tile: Learning Game Filters for Platformer Style Transfer

Anurag Sarkar and Seth Cooper
Northeastern University

sarkar.an@northeastern.edu, se.cooper@northeastern.edu

Abstract
We present tile2tile, an approach for style transfer between
levels of tile-based platformer games. Our method involves
training models that translate levels from a lower-resolution
sketch representation based on tile affordances to the orig-
inal tile representation for a given game. This enables these
models, which we refer to as filters, to translate level sketches
into the style of a specific game. Moreover, by converting a
level of one game into sketch form and then translating the
resulting sketch into the tiles of another game, we obtain a
method of style transfer between two games. We use Markov
random fields and autoencoders for learning the game filters
and apply them to demonstrate style transfer between levels
of Super Mario Bros, Kid Icarus, Mega Man and Metroid.

Introduction
Machine learning-based methods have come to be increas-
ingly applied for creative applications, particularly in the do-
main of visual art. One such popular application has been
neural style transfer—the use of convolutional neural nets
for rendering the content within an image in various styles.
Since being introduced by Gatys, Ecker, and Bethge (2015),
a large body of research has centered around improving and
experimenting with various methods for style transfer (Jing
et al. 2019) as well as developing user-facing style trans-
fer tools (Champandard 2016). Models such as CycleGAN
(Zhu et al. 2017) and pix2pix (Isola et al. 2017) have be-
come especially popular for their ability to learn translation
functions between sets of images, thereby enabling a wide
variety of artistic applications and installations.

Relatedly, a subset of Procedural Content Generation via
Machine Learning (PCGML) (Summerville et al. 2018)
methods have come to focus on more creative applications
of ML beyond just generating levels for a given game.
These have centered around reasoning about the design
spaces of multiple games taken together and have involved
domain transfer (Snodgrass and Ontañón 2016) and com-
binational creativity-based methods for content generation
(Guzdial and Riedl 2018b; Sarkar et al. 2020). Sarkar and
Cooper (2020) recently proposed the term Game Design via
Creative Machine Learning (GDCML) to classify this cre-
ative subset of PCGML, further calling for taking inspiration

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from existing creative ML approaches in visual art and mu-
sic to inform new creative ML approaches for games. One
such application is style transfer for games. Despite the re-
cent rise of GDCML works, videogame style transfer has
remained underexplored. Traditional style transfer methods
in the visual art and image domains are pixel-based and
thus not well suited for games. In having to satisfy func-
tional constraints, games in several PCGML works have typ-
ically benefited from precise, discretized tile-based repre-
sentations. Thus, a style transfer method suited for games
could also utilize such tiled representations.

In this work, we introduce tile2tile, an approach for style
transfer between tile-based platformer games. Our method
is inspired by pix2pix but instead of learning to translate
between sets of images, we learn to translate between sets
of tile-based levels, hence the name. More specifically, we
train models to convert levels from a game-agnostic form
based on tile affordances to game-specific tile representa-
tions. Then by converting a level from game A to the sketch
form and then using the model to convert the resulting sketch
form to a level from game B, we obtain a method for trans-
ferring style between games. We demonstrate our approach
using Markov random fields and convolutional autoencoders
to transfer style between levels of the platformer games Su-
per Mario Bros., Metroid, Mega Man and Kid Icarus. This
work thus contributes:
1. An approach for style transfer between tile-based games
2. A demonstration of the approach using Markov random

fields and convolutional autoencoders

Background
Neural style transfer was introduced by the seminal work of
Gatys, Ecker, and Bethge (2015) and has since been the sub-
ject of a wide variety of research, with a survey given by
Jing et al. (2019). While traditionally this referred to trans-
ferring styles of individual images, the pix2pix model (Isola
et al. 2017) enabled the notion of learning translation func-
tions between sets of images by training on pairs of images,
in turn allowing for style transfer-adjacent applications be-
tween different image domains. We use a similar paired ap-
proach for training our models, but operate in the tile do-
main of game levels rather than the pixel domain of im-
ages. To our knowledge, the only prior work attempting style
transfer within games is the work of Dadfar, Huang, and

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

53



Figure 1: tile2tile style transfer pipeline. In this example, an original Mario level is converted to sketch form using a tile-to-
affordance mapping and then a trained model converts the sketch to a Metroid level.

Çelik (2021) and a demo by Google Stadia (Google 2019)
but both focus only on transferring visual image style on
to the game without considering affordances and are pixel-
based rather than tile-based.

Related to style transfer, a key focus of recent creative
PCGML research has been to learn, reason about and lever-
age design spaces spanning a number of games, rather than
learn distributions of individual games. This has involved
generating new types of content by recombining learned
game graphs (Guzdial and Riedl 2018a), blending latent
representations (Sarkar, Yang, and Cooper 2019), learning
affordance-based tile embeddings across multiple games
(Jadhav and Guzdial 2021) and performing domain adap-
tation (Snodgrass and Ontañón 2016). The last of these is
particularly related to our work but differs in learning di-
rect mappings between the levels of two games and focusing
on generating new levels for the target domain, whereas we
learn models that map a unified affordance-based represen-
tation to the tiles specific to a game and focus on transferring
the style of a given level. Additionally, we refer to levels
in the affordance-based representation as sketches, borrow-
ing vocabulary from (Snodgrass 2019; Snodgrass and Sarkar
2020) who use sketches to refer to lower-resolution level
representations indicating only solid and non-solid tiles. The
set of affordances we use is a simplified subset of those
used by Sarkar et al. (2020) to blend levels of multiple
platformers. Their tile-based affordances were in turn in-
spired by the pixel-based affordance work of Bentley and
Osborn (2019). Recent game blending work (Sarkar et al.
2020; Sarkar, Yang, and Cooper 2020) i.e. generating new
games by blending levels/mechanics of existing ones, is re-
lated to style transfer but differs in that it focuses on blend-
ing together different games where as we learn to map from
one game to another. Closely related to our work is also
the recent work of Chen et al. (2020) who generated Mario
levels using an input image, thus performing a version of
style transfer. Our work differs in attempting style transfer
between game levels. Similar to them, we also use Markov
models and autoencoders, both of which have been used in
several prior PCGML works. Snodgrass and Ontañón (2017)
used both Markov chains and Markov random fields for gen-
erating platformer levels while autoencoders have been em-
ployed for level repair (Jain et al. 2016) as well as learning
level design patterns (Guzdial et al. 2018).

Method
Overview The overall tile2tile approach is depicted in
Figure 1. This method of transferring style between levels

of two games A (source) and B (target) consists of:
1. Converting the source level from A into a low-resolution

representation (sketch) based on tile affordances
2. Translating the level sketch into the original tile repre-

sentation of game B using a trained model (filter)
Thus, central to the approach is the concept of tile affor-

dances. In general, affordances (Bentley and Osborn 2019)
for an object refer to the types of in-game actions and in-
teractions that it permits. The key idea that enables our
proposed approach is that while games differ in their spe-
cific tile-based representations, they can be considered to
share a unified affordance-based representation. For exam-
ple, goombas appear in Mario while metroid creatures ap-
pear in Metroid but both of these are enemies that can harm
the player; similarly, Mario features coins while Metroid
features various powerups but both can be considered as
having the affordance of being collectible. Hence by defin-
ing a common affordance-based level representation shared
by a set of games, and combining it with a model that maps
from affordances to the specific tiles of a game, we ob-
tain a method of style transfer by converting a level from
a source game to the affordance representation and applying
the model for the target game to map this affordance repre-
sentation to the original tiles of the target game.

We can view this notion of affordances and tiles as anal-
ogous to the classic style transfer concepts of content and
style where content refers to the underlying structures and
objects within an image while style refers to the high-level
visual characteristics such as color, paint style, textures
etc. Similarly, we can view affordances as representing the
underlying game-agnostic structures and topology such as
generic solid tiles and collectibles (i.e. the content) and the
tiles as representing the high-level game-specific attributes
such as pipes in Mario and powerups in Metroid (i.e. the
style). Thus, under this conception of style transfer, when
transferring style from one game to another, our goal is to
keep the underlying affordances similar while transforming
the high-level game-specific tiles.

To perform this, for each game, we define a fixed map-
ping that translates each of its original tiles to a tile in the
common affordance representation, shared across all games.
By applying this mapping, we obtain lower-resolution ver-
sions of the original levels for each game, which we refer to
as sketches. Then, for each game, we train a model to con-
vert the game’s sketches back to its original tile representa-
tion. We refer to these models as filters for their respective
games, analogous to image filters which similarly transform
the visual characteristics of images. Since each game’s fil-

54



SMB KI MM Met

Figure 2: Example segment from each game shown using
original tiles and corresponding sketch representation.

Aff SMB KI MM Met
X
E
| None
* None None

Table 1: Tile-to-affordance mapping. Background (-) was
the same for each game.

ter converts a sketch into that game’s tile representation, we
hence obtain a style transfer process by converting a level
from a source game into a sketch and then applying the tar-
get game’s filter on that sketch to obtain the same source
level but in the target game’s tile representation. In this work,
we implement filters using Markov random fields and con-
volutional autoencoders.

Tile and Affordance Data We used levels of 4 platformer
games—Super Mario Bros (SMB), Kid Icarus (KI), Mega
Man (MM) and Metroid (Met)—all taken from the Video
Game Level Corpus (VGLC) (Summerville et al. 2016).
VGLC levels are in text format with different characters rep-
resenting different tiles. Since there is overlap in terms of the
same characters being used to represent different tiles across
games, we edited the original tilesets to ensure that each
game had a completely distinct set of tiles. For the affor-
dance tileset common to all games, we opted to use a much
simplified version of the set of affordances used by Sarkar
et al. (2020), settling on the following:

• X: solid (e.g., ground, platforms, breakable)
• |: passable, climbable, (e.g., doors, ladders)
• E: hazard, enemy, (e.g., goombas, spikes, lava, metroids)
• *: collectable, (e.g., coins, powerups)
• -: empty, (e.g. background)
Example levels in their original and affordance represen-

tations are shown in Figure 2. For each game, we defined a
hand-authored mapping from each original tile in the game
to one of the above affordances. The mapping is shown in
Table 1. The number of distinct tiles in SMB, KI, MM and
Met were 14, 6, 16 and 8 respectively. Since the number of
distinct affordance tiles in this work is only 5, the tile-to-
affordance mapping is many-to-one and hence this transla-
tion can be done manually, as the conversion is determin-
istic. However, each affordance tile could map to several

Figure 3: Markov random field training process. Green con-
text sketch tiles were used to predict red game tile.

game tiles and thus we need a model that can appropriately
translate affordance sketches to levels for a particular game.
For this, we test two approaches—Markov random fields
(MRFs) and convolutional autoencoders. The MRFs were
trained directly using whole levels from the VGLC. Au-
toencoders however work with fixed-size inputs and outputs.
Since VGLC levels vary in size and are limited in number,
we trained the autoencoders on segments of levels, as is typ-
ical in most neural net-based PCGML work. For this, we ex-
tracted 15x16 segments from each of the 4 games. This was
determined based on MM and Met having levels whose hori-
zontal and vertical sections are 15 tiles high and 16 tiles wide
respectively. KI levels are also 16 tiles wide while SMB lev-
els are originally 14 tiles high so we added a row of back-
ground tiles as padding at the top of each level. Each tile in a
segment was converted to a one-hot encoding. Thus, the in-
put dimensions for a segment were nx15x16 where n is the
number of unique tiles in that game. To extract segments, we
slid a 15x16 window across each level, one row and column
at a time, giving us 2643, 1171, 3118 and 3762 segments for
SMB, KI, MM and Met respectively. For Met, we extracted
segments only from level 3 of the VGLC.

Markov Random Field Our first approach to training fil-
ters involves using markov random fields (MRFs) (Clifford
1990). While markov chains (MCs) learn conditional prob-
ability distributions (CPDs) for the current state given one
or more preceding states, MRFs learn CPDs for the cur-
rent state given its surrounding states. Though both MCs and
MRFs have been used previously for level generation (Snod-
grass and Ontañón 2017), we opt to use MRFs since for the
task of style transfer, we already have a source level to begin
with and thus have a set of surrounding tiles for each posi-
tion, unlike when generating levels from scratch where typ-
ically we would only have preceding tiles. Using an MRF
allows us to consider a given tile’s dependencies in all di-
rections. Note that in the proposed tile2tile framework, the
role of the model for a given game is to learn to map affor-
dance tiles to tiles specific to that game i.e. convert a sketch
to a level for that game. Using an MRF, we model this as
learning the probability of a location in the target level be-
ing a certain tile given the affordances of the surrounding
neighborhood of that same location in the source level. We
refer to this neighborhood as the context for the specific cen-
tral tile. Thus, the MRF for a game learns the probability

55



Figure 4: Autoencoder training process.

of tile occurrences given a surrounding affordance context.
We test two contexts - one looking at only the 4 affordance
tiles north, south, east and west of the central tile (MRF-4)
and the other looking at the full 8-tile surrounding context
(MRF-8). An example is shown in Figure 3.

Training an MRF model consists of two steps—1) deter-
mining absolute counts and 2) estimating probability dis-
tributions. We implement MRFs as dictionaries with each
unique context serving as a key and each key mapping to the
distribution of center tiles for that context. To train MRFs
for a given game, we first convert each level to its sketch
form using that game’s pre-defined tile-to-affordance map-
ping. Then, we slide a 3x3 window across each level, mov-
ing one column horizontally and/or one row vertically at a
time, updating the counts of original center tiles (i.e. be-
fore converting to sketch form) for each context that we find
along the way. Thus, after this step, the dictionary stores the
number of times each original game tile appears in the center
for each unique sketch context. In the final step, we convert
each context’s absolute counts into a distribution that we can
sample from when performing style transfer. After training,
we can use the trained MRF for a game T to change the style
of levels from other games to that of T using the pipeline
shown in Figure 1. That is, we convert the source level into
sketch form using the tile-to-affordance mapping and then
similar to training, slide a 3x3 window across the level and
replace the center tile by sampling from the trained MRF.
More specifically, we look up the MRF’s dictionary using
the context and then sample a tile according to the learned
distribution. If the context is not found (i.e. was not seen
during training), we randomly sample a tile with the same
affordance as the current center tile in the source level. Ex-
ample levels are shown in Figures 7 and 8. Note that for
MRFs, the style transfer process by design explicitly keeps
the affordances fixed from source to target.

Autoencoder Our second approach to learning filters is
through the use of convolutional autoencoders. Autoen-
coders (Hinton and Salakhutdinov 2006) consist of encoder
and decoder neural networks. The encoder maps the input
data to a compressed, hidden representation which is then
used by the decoder to learn to reconstruct the original input
in an unsupervised manner. Convolutional autoencoders fea-
ture encoders and decoders made up of convolutional rather
than fully-connected layers. For training the autoencoders
for each game, we collected pairs of level segments from that
game and their corresponding sketch representations. We
then used the sketches as the encoder inputs but computed

the loss on the decoder outputs using the original segment.
Thus, through training, the model learned to convert a sketch
of a segment to its original tile representation. This train-
ing process is depicted in Figure 4. Our approach is analo-
gous to denoising autoencoders (Vincent et al. 2008) where
the encoder input is a noisy form of the original and loss
is computed between the decoder output and the original in-
put. We use a translated input where instead of adding noise,
we translate to affordances. The underlying structures in in-
puts/target outputs are identical with only the representation
differing. After training, the autoencoders can perform style
transfer similarly to MRFs. We take a 15x16 segment of the
source game, convert it into sketch form, forward it through
the layers of the autoencoder for the target game which fi-
nally outputs the segment translated to the tiles of the tar-
get game. Example levels are shown in Figure 6. In con-
trast to the MRF, the process does not keep the affordances
fixed explicitly since the autoencoder works at the segment-
level rather than at the tile-level. We use a convolutional au-
toencoder implemented using Pytorch (Paszke et al. 2017).
The encoder and decoder consisted of 3 convolutional and
3 transpose convolutional layers respectively, with both us-
ing Batch-Normalization and ReLU activation. The encoder
inputs were of dimension 5x15x16(=1200) with the 5 chan-
nels corresponding to there being 5 unique affordance tiles.
The decoder outputs were of dimension (nx15x16) where n
varied based on the number of unique tiles in the particu-
lar game. Using the format (in channelsxout channels, ker-
nel size, stride length), the encoder layers were (1200x512,
4, 1), (512x256, 4, 1) and (256xhidden size, 4, 2) while the
decoder layers were (hidden sizex64, 4, 2), (64x128, 4, 1),
(128x(nx15x16), 4, 1). Models were trained for 250 epochs
using binary cross entropy loss and the Adam optimizer with
an initial learning rate of 0.001, decayed by 0.1 each time the
training loss hit a plateau for 50 epochs. We experimented
with several hidden sizes finding 128 and 256 dimensions
to most consistently capture the affordance structures of the
source game. For the rest of the paper, we thus use the 256
(AE-256) and 128-dimensional (AE-128) versions.

Evaluation
Due to the subjective nature of style and aesthetics, eval-
uating style transfer is a challenging problem (Jing et al.
2019). Ideally we could perform a qualitative user study
and elicit opinions from observers regarding the goodness
of style transfer but for this initial work, we perform a quan-
titative evaluation focusing on affordances and tiles.

56



Original SMB SMB as Target

Original KI KI as Target

Original MM MM as Target

Original Met Met as Target

Figure 5: Tile histograms for each original game (left) and that game as the target using MRF-4 (center) and AE-256 (right).

Content As mentioned before, style transfer is often de-
scribed in terms of content and style. Typically, the goal is
to maintain the content of the source image while applying
the desired new style in the target image. This distance be-
tween the content of the source and target image is the con-
tent loss. Analogously, when performing style transfer on a
level from a source to a target game, we want the underlying
affordances related to the overall level topology and struc-
ture (i.e. content) to be close to the source while changing
the higher-level tile representations (i.e. style) to that of the
target. Thus, we compare the tile affordance patterns in the
input source level and the output target level. For this, we

use the Tile Pattern KL-Divergence metric (Lucas and Volz
2019) but use the affordance tiles, not the original game tiles.
To avoid confusion, we refer to this as the Affordance Pat-
tern KL-Divergence metric (APKLDiv) in this work. Thus,
APKLDiv can be viewed as being analogous to the content
loss from visual art style transfer. For MRFs, since the style
transfer process by design keeps the affordances fixed from
source to target, this evaluation would not be useful. How-
ever, it is a useful evaluation for autoencoders since they
have to learn to keep the affordances the same.

To perform this evaluation, for every pair of games S
(source) and T (target), we apply T’s autoencoder on all orig-

57



Source-Target TF-Target vs OG-Source TF-Target vs OG-Target
KI-SMB 0.71± 0.61 1.52± 1.36

MM-SMB 1.39± 1.15 2.13± 1.70
Met-SMB 1.32± 1.19 2.05± 1.63
SMB-KI 0.27± 0.22 0.87± 0.58
MM-KI 1.34± 1.11 1.99± 1.6
Met-KI 1.17± 1.02 1.72± 1.38

SMB-MM 0.45± 0.32 1.08± 0.62
KI-MM 0.38± 0.36 1.8± 0.56

Met-MM 0.82± 0.61 1.23± 0.98
SMB-Met 0.19± 0.16 1.22± 0.74

KI-Met 0.38± 0.38 2.31± 2.14
MM-Met 0.97± 0.74 1.67± 1.45

Table 2: Mean APKLDiv values along with standard devi-
ation using AE-256 for each source-target pair. TF-Target
refers to levels obtained by transferring style from original
source (OG-Source) levels. Values obtained on comparing
with original target (OG-Target) levels are also shown.

KI-to-SMB Met-to-SMB

MM-to-KI SMB-to-Met

MM-to-SMB Met-to-MM

Figure 6: Example style transfers using autoencoders

inal segments of S. This gives us 2 sets of segments—the
original segments of S and the generated segments of the tar-
get game T. We then compute the APKLDiv values between
these 2 sets using their sketch forms, averaging values ob-
tained for patterns of size 2x2, 3x3 and 4x4. The method for
computing these values is given in (Lucas and Volz 2019).
An additional, useful set of levels to consider is the original
levels for the target game T, also in sketch form. Consider
the example of an SMB-to-KI conversion where SMB is the
source S and KI is the target T. For effective style transfer,
we want the APKLDiv values between the style-transferred
KI segments and the original SMB segments to be lower
since the goal is to maintain the affordances of the original
SMB segments while transferring style to KI. On the other
hand, the distance between the style-transferred KI segments
and the original KI segments should be higher because the
affordances of the transferred levels should be closer to the
source SMB segments than the original KI segments. This

shows that the autoencoder is preserving the content/affor-
dances of the source level rather than just generating the
levels it was trained on. Note that each autoencoder was
only trained on levels for its target game. Results for AE-
256 are shown in Table 2. In all cases, the distance between
the style-transferred levels and the original source levels is
lower than the distance between the style-transferred levels
and the original target levels, as we would expect. For space,
we omit results for AE-128 but they followed the same pat-
terns except values in both columns were higher (i.e. it did
slightly worse than AE-256). Overall, this evaluation shows
that the autoencoder for the target game is able to preserve
the content of levels from the source game when tasked with
performing style transfer. As a concrete example, consider
the Met-to-SMB example in Figure 6. The underlying affor-
dances of the SMB level are uncharacteristic of SMB and
are more representative of Metroid. Thus, such SMB levels
translated from Metroid would be closer to original Metroid
than original SMB levels in terms of their affordances.

Style If we consider the underlying affordance-based level
patterns and structures to capture the game-agnostic con-
tent of a level, then the game-specific style is defined by
the game-specific tile representation of those affordance pat-
terns. For example, consider a level from a source game S
which is style-transferred to target game T. If we compare
this new game T level with an original level from game T,
we expect their underlying content (i.e. affordance patterns)
to be different since the former was converted from game
S. For the style to be consistent, we want the tile distribu-
tions to be similar, since they both now represent game T.
To evaluate this, we consider the game-specific tile distri-
butions and compare tile histograms between the generated
levels obtained via style transfer and the original levels of
that game. For each game, we computed the tile histogram
(i.e. the discrete distribution of tiles) using all the original
levels in the game. Then for each pair of games (S, T) where
S is the source and T is the target, we applied the model
for T on each level of S and computed the tile histogram us-
ing all style-transferred levels. For space we show results for
MRF-4 and AE-256 in Figure 5. While not perfect, the tile
distributions obtained after style transfer are similar to those
of the original levels. We do not expect these to be identical
since some amount of difference is a consequence of trying
to match the affordances of the source. The biggest differ-
ence is observed for the ground G tile in SMB. This may be
due to SMB being the only one with separate solid tiles for
the ground (G). Additionally, due to having vertical sections,
the other 3 games have several segments without a ground
row. Hence it is reasonable that when converting from such
segments, the resulting SMB segments have lower propor-
tions of ground tiles than the originals.

Playability Finally, we evaluated the playability of style-
transferred levels. Though MRFs can work with whole lev-
els, since autoencoders can only work with fixed-size seg-
ments, for an even comparison, we evaluated the MRF
playability with segments as well. Using whole levels is ad-
ditionally complicated by the A* agents we use for deter-
mining playability requiring specific start and goal tiles to

58



Figure 7: SMB (top) to KI (bottom) using MRF-8

Figure 8: MM (top) to Metroid (below) using MRF-8

be identified, which is not ideal for a Metroid map, due to
backtracking. Thus, we evaluated both models using 15x16
segments on which we ran the game-specific tile-based A*
agents from (Sarkar et al. 2020) where each game’s agent is
capable of performing the specific jumps in that game. For
each source-target game pair, we applied the model for the
target game on every level of the source game and then de-
termined playability by running the target game’s agent. A
segment is playable if the agent is able to find a path from
start to goal. For each segment, we ran the agent in both the
horizontal and vertical direction. A segment is playable if
either a horizontal or vertical path is found. For each model
and source-target game pair, we computed the percentage of
source levels that were playable after style transfer. Results
are shown in Table 3. We see that performance varies for
different game pairs. Autoencoders do best when the target
is SMB as well as when the source is MM. MRFs do better
when SMB is the source but do poorly when Met is involved
in the transfer though it does well for Met-KI. While future

MRF-4 MRF-8 AE-128 AE-256
KI-SMB 75 67.5 81.25 75

MM-SMB 39.86 43.36 80.42 77.62
Met-SMB 33.07 31.65 72.87 79.54
SMB-KI 75.57 71.59 62.5 60.8
MM-KI 44.76 46.85 49.65 48.25
Met-KI 48.79 46.37 32.87 39.31

SMB-MM 71.34 68.18 59.09 64.21
KI-MM 69.23 63.75 60 67.5

Met-MM 32.63 33.47 38.39 48.28
SMB-Met 85.8 81.25 60.23 63.07

KI-Met 72.15 73.75 61.25 65
MM-Met 46.77 52.45 61.54 60.14

Table 3: Percentage of playable segments obtained for all
models on each possible pair of games. Highest values per
pair are in bold.

work analyzing playability after style transfer would be use-
ful, it is reasonable that transferring style would lead to a dip
in playability and we still obtain reasonably high playability
percentages for several pairs. In the future, we could incor-
porate repair capabilities into the playability agents such as
in (Cooper and Sarkar 2020) as well as explore developing
generalized agents capable of playing both source and target
levels which could in turn lead to generating new types of
mechanics.

Conclusion and Future Work

We introduced tile2tile, a style transfer approach for tile-
based platformer levels, and demonstrated it using Markov
random fields and convolutional autoencoders. In the fu-
ture, we wish to further validate this approach using user
studies and develop an application for users to apply the
trained filters to perform style transfer on pre-existing or
hand-authored levels. Additionally, we could apply the ap-
proach to augment the VGLC by adding style-transferred
levels to the corpus and in general use style-transferred lev-
els to supplement levels for games with insufficient training
data. A further direction would be to generalize the method
to other genres. Our approach should work for tile-based
games broadly as long as a common set of affordances can
be defined between source and target games e.g. a tile-to-
affordance mapping for dungeon-based levels could be used
to train a model for translating Zelda levels to maps for some
other tile-based dungeon crawler.

59



References
Bentley, G. R.; and Osborn, J. C. 2019. The videogame af-
fordances corpus. In Experimental AI in Games Workshop.
Champandard, A. J. 2016. Semantic style transfer and
turning two-bit doodles into fine artworks. arXiv preprint
arXiv:1603.01768.
Chen, E.; Sydora, C.; Burega, B.; Mahajan, A.; Abdullah,
A.; Gallivan, M.; and Guzdial, M. 2020. Image-to-level:
Generation and repair. In Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 189–195.
Clifford, P. 1990. Markov random fields in statistics. Dis-
order in physical systems: A volume in honour of John M.
Hammersley, 19–32.
Cooper, S.; and Sarkar, A. 2020. Pathfinding Agents for
Platformer Level Repair. In Experimental AI in Games
Workshop.
Dadfar, O.; Huang, L.; and Çelik, H. 2021. GAN Theft Auto:
Autonomous Texturing of Procedurally Generated Interac-
tive Cities. In 2021 4th International Conference on Com-
puter Science and Software Engineering (CSSE 2021).
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. A Neural
Algorithm of Style. arXiv preprint arXiv:1508.06576.
Google. 2019. Stadia GDC 2019 Gaming Announcement.
In Game Developers Conference.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M.
2018. Explainable PCGML via game design patterns. arXiv
preprint arXiv:1809.09419.
Guzdial, M.; and Riedl, M. 2018a. Automated game de-
sign via conceptual expansion. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 31–37.
Guzdial, M. J.; and Riedl, M. O. 2018b. Combinatorial cre-
ativity for procedural content generation via machine learn-
ing. In Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence.
Hinton, G.; and Salakhutdinov, R. 2006. Reducing the
dimensionality of data with neural networks. Science,
313(5786): 504–507.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125–1134.
Jadhav, M.; and Guzdial, M. 2021. Tile embedding: a gen-
eral representation for level generation. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for Level Generation, Repair and Recogni-
tion. In Proceedings of the ICCC Workshop on Computa-
tional Creativity and Games.
Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Yu, Y.; and Song, M.
2019. Neural style transfer: A review. IEEE transactions on
visualization and computer graphics, 26(11): 3365–3385.

Lucas, S. M.; and Volz, V. 2019. Tile pattern KL-divergence
for analysing and evolving game levels. In Proceedings
of the Genetic and Evolutionary Computation Conference,
170–178.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic Differentiation in PyTorch. In NIPS
Autodiff Workshop.
Sarkar, A.; and Cooper, S. 2020. Towards game design via
creative machine learning (GDCML). In 2020 IEEE Con-
ference on Games (CoG), 744–751. IEEE.
Sarkar, A.; Summerville, A.; Snodgrass, S.; Bentley, G.; and
Osborn, J. 2020. Exploring level blending across platform-
ers via paths and affordances. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.
Sarkar, A.; Yang, Z.; and Cooper, S. 2019. Controllable
Level Blending between Games using Variational Autoen-
coders. In Experimental AI in Games Workshop.
Sarkar, A.; Yang, Z.; and Cooper, S. 2020. Conditional
Level Generation and Game Blending. In Experimental AI
in Games Workshop.
Snodgrass, S. 2019. Levels from Sketches with Example-
Driven Binary Space Partition. In The 15th AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE).
Snodgrass, S.; and Ontañón, S. 2016. An approach to
domain transfer in procedural content generation of two-
dimensional videogame levels. In Twelfth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.
Snodgrass, S.; and Ontañón, S. 2017. Learning to Generate
Video Game Maps Using Markov Models. IEEE Transac-
tions on Computational Intelligence and AI in Games.
Snodgrass, S.; and Sarkar, A. 2020. Multi-domain level gen-
eration and blending with sketches via example-driven bsp
and variational autoencoders. In International Conference
on the Foundations of Digital Games, 1–11.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games, 10(3): 257–270.
Summerville, A.; Snodgrass, S.; Mateas, M.; and Ontañón,
S. 2016. The VGLC: The video game level corpus. In PCG
Workshop at 1st Joint International Conference of DiGRA
and FDG.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-A.
2008. Extracting and composing robust features with de-
noising autoencoders. In Proceedings of the 25th interna-
tional conference on Machine learning, 1096–1103.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.

60


