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Abstract 
Open-world games promote engagement by offering players 
a high degree of autonomy to explore expansive game 
worlds. Player goal recognition has been widely explored for 
modeling player behavior in open-world games by dynami-
cally recognizing players’ goals using observations of in-
game actions and locations. In educational open-world 
games, in-game reflection tools can help students reflect on 
their learning and plan their strategies for future gameplay. 
Data generated from students’ written reflections can serve 
as a source of evidence for modeling player goals. We present 
a multimodal goal recognition approach that leverages play-
ers’ natural language, written reflections along with game 
trace log features to predict player goals during gameplay. 
Results show that both the highest predictive performance 
and best early prediction performance are achieved by deep 
learning-based, multimodal goal recognition models that uti-
lize both written reflection and gameplay features as input. 
These models outperform unimodal deep learning models as 
well as a random forest baseline. Multimodal goal recogni-
tion using natural language reflection data has significant po-
tential to enhance goal recognition model performance and 
player modeling to support the creation of engaging and 
adaptive open-world digital games.  

Introduction   
Open-world game environments provide players with the 
opportunity to freely explore the game world and accom-
plish milestones in any order (Alexander, 2017; Aung et al., 
2019). While this may facilitate a more personalized and im-
mersive gameplay experience, the numerous possibilities of 
action sequences in such game environments introduces sig-
nificant challenges in game design. For example, game de-
signers need to ensure coherence in the flow of the game’s 
narrative and support players’ progress in the game, regard-
less of the player’s idiosyncratic sequence of in-game ac-
tions (Min et al., 2014; Hooshyar et al., 2019). In educa-
tional settings, digital games contextualize learning and 
problem solving within engaging virtual environments that 
leverage the motivational characteristics of narrative such as 
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believable characters, compelling plots, and storyworld 
events (Riedl & Bulitko, 2013). Effective open-world edu-
cational games should support students to achieve their cur-
rent plans or nudge them towards recommended milestones 
conducive to learning. However, a key challenge posed by 
open-world game-based learning environments is how to ef-
fectively provide such in-game support and maintain a co-
herent storyline, while students’ plans and intentions, which 
are latent from the game’s perspective, are dynamically 
changing during gameplay (Min et al., 2013). 

To address this challenge, player goal recognition has 
been explored in previous work (Min et al., 2016a; Ha et al., 
2012), where the system tries to predict the immediate next 
milestone that a player is likely to accomplish given their 
prior in-game actions. Goal recognition can inform effective 
intervention strategies in educational games (Ha et al., 
2014). Accurate goal recognition models can help guide 
players towards the goals they are trying to achieve or in-
form narrative adaptations for players. Goal recognition 
models can also aid researchers and game designers in un-
derstanding which actions are correlated with different goals 
in the game, as well as challenges that players commonly 
face while working toward in-game goals.  

The non-linear nature of open-world game environments 
usually translates to a set of goals which the players manu-
ally discover by exploring the game. This is particularly 
challenging since player actions can sometimes appear to be 
haphazard and undirected, which may also lead players to 
unintentionally reach certain milestones (i.e., predefined 
goals) without having a particular plan in mind. Prior work 
has explored the use of traditional machine learning algo-
rithms with handcrafted features to address this (Ha et al., 
2011; Mott et al., 2006). Recent work using deep learning 
methods has eliminated the need for feature engineering and 
allowed for more generalizable methods (Min et al., 2014; 
Min et al., 2016b; Min et al., 2017a). 

 

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

37



 

 

In addition to low-level gameplay actions, other modali-
ties such as eye gaze data (Min et al., 2017b) have been in-
vestigated to improve the performance of goal recognition 
models by leveraging an expanded set of predictive features 
that may also indicate player goals. Another source of evi-
dence that may support improved goal recognition in open-
world games is students’ natural language, written reflec-
tions during and after gameplay. Recent years have seen 
growing interest in the role of written reflection in game-
based learning environments (Cloude et al., 2021). While 
students’ written reflections can offer insights about stu-
dents’ strategies and future plans, it may also be a noisy data 
modality since the written reflections might not be clear 
about students’ plans or might not align with students’ goals 
achieved later in the game. This makes students’ written re-
flections challenging to interpret in open-world educational 
games with ill-defined goals. Moreover, to leverage these 
natural language responses as a modality for real-time goal 
recognition, they have to be automatically evaluated, intro-
ducing challenges of dealing with misspelled words and un-
grammatical language. 

In this paper, we present a long short-term memory 
(LSTM)-based multimodal goal recognition framework 
with decision-level fusion of multimodal data. We examine 
the effectiveness of incorporating students’ written reflec-
tions as evidence of planning and intent along with low-level 
gameplay action logs for the task of goal recognition. In the 
current context, we define goal recognition as the task of 
identifying students’ subgoals in an open-world educational 
game in which students seek to achieve a single overarching 
objective of solving an interactive science mystery. We 
measure the performance of multimodal goal recognition 
models using both accuracy and early prediction metrics 
(Min et al., 2016b). The performance of our deep learning 
models are evaluated against a random forest baseline using 
gameplay data collected from 156 middle school students 
interacting with an open-world educational game called 
CRYSTAL ISLAND. Our evaluation reports what combination 
of predictive features based on written reflections and game-
play log modalities achieve the highest predictive perfor-
mance on multimodal player goal recognition. 

Related Work 

Player modeling is a computational task for modeling player 
cognition, behavior, and affective states to enable player-
adaptive game experiences. Player modeling has a wide 
range of applications including procedural content genera-
tion, adaptive feedback, and game balancing (Yannakakis et 
al., 2013; Hooshyar et al., 2019). Dynamically recognizing 
players’ goals and intentions, a key player modeling task, in 
open-world games holds great promise for designing inter-
active narratives and providing adaptive support. To effec-
tively model uncertainty, classic plan and goal recognition 
frameworks have leveraged probabilistic models (Charmiak 

and Goldman, 1993; Pynadath and Wellman, 2000; Ha et 
al., 2011; Geib and Goldman, 2009). More recently, Pereira 
et al. (2020) explored plan recognition-as-planning tech-
niques for designing heuristics that can quickly and effec-
tively estimate player goals. Min et al. (2016a) presented ac-
tion embedding-based LSTM networks for player goal 
recognition in open-world game environments and reported 
improved performance compared to the previous state-of-
the-art techniques. While multimodal machine learning has 
been widely explored for different aspects of player model-
ing such as affect (Henderson et al., 2020) and interest (Em-
erson et al., 2020) modeling, there is limited work for mul-
timodal goal and plan recognition. Min et al. investigated 
multimodal goal recognition, which achieves improved pre-
dictive performance compared to unimodal baselines by uti-
lizing player gaze as predictive features (Min et al., 2017b).  
 In this work, we investigate the utility of reflection as ev-
idence of player intent in open-world educational games. 
Reflection is both a backward and forward-looking process, 
where players reflect on their actions and prior learning and 
formulate future steps to achieve their learning goals (Cui et 
al., 2019). Prompting players to reflect on their learning and 
gameplay encourages them to actively think about their ac-
tions and make purposeful decisions that better align with 
their goals (Rogers, 2001). Written reflection prompts are 
often incorporated in educational game-based learning envi-
ronments to encourage self-regulated learning in players 
(Villareale et al., 2020; Cloude et al., 2021). To date, there 
has been little work investigating written student reflection 
data as an input modality for dynamically recognizing play-
ers’ in-game goals. Reflection prompts encourage players to 
think about their strategy for successfully completing the 
game, making it a useful exercise that helps players ideate a 
plan that can be leveraged by goal recognition models. We 
hypothesize that this source of evidence is beneficial for 
goal recognition in open-world games in which players may 
not have well-defined subgoals and may discover subgoals 
while exploring the game.  

Dataset 

CRYSTAL ISLAND is an open-world educational game for 
middle school science (Figure 1). The objective of the game 
is to investigate a disease outbreak among a team of scien-
tists on an island and present a diagnosis. In this work, we 
consider ten different key milestones in the game as sub-
goals accomplished by students: speaking with the camp’s 
cook to learn about the recently eaten food, speaking with a 
sick patient, speaking with the lead scientist, testing an un-
contaminated sample, testing a contaminated sample, sub-
mitting a diagnosis, speaking with the camp’s virus expert, 
speaking with the camp’s bacteria expert, speaking with the 
camp’s lab technician, and solving the mystery, achieve-
ment of which collectively helps players complete the mis-
sion of the game. These milestone events, which we treat as
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Reflection Response Next Goals Achieved 

I am almost certain that I finally found the contaminant, 
bread/toast! It tested positive for viruses, so along with my 
other data, I'm almost certain the disease is the influenza vi-
rus! 

Submitted diagnosis 
Solved mystery 
 
 

What i learned is viruses and other things my next plan is to 
collect more information 

Speaking with the camp cook 
Speaking with the camp’s lead scientist 
Speaking with the camp’s bacteria expert 
Speaking with the camp’s virus expert 

The sickness is passing from one person to the other Speaking with the camp cook 
Speaking with the camp’s lead scientist 

Table 1. Sample reflection responses and subsequent goals achieved.

in-game goals, were selected by considering the potential of 
goal recognition models to guide adaptive gameplay.  
 Students can accomplish the in-game goals in any order, 
and the way they navigate the environment may not be op-
timal for solving the mystery in the game. It is possible to 
successfully complete the game without accomplishing all 
the aforementioned goals. Completion of certain events, 
such as reading a microbiology book or obtaining a positive 
test result for the first time, may trigger a reflection prompt 
that asks students to write about what they have learned in 
the game thus far and what they plan to do moving forward. 
While some students’ responses might be more specific than 
others, a majority of their reflections present a high-level 
idea of players’ overall understanding of the game content 
and their strategy. The reflection responses may not refer to 
the in-game goals directly since players may not be explic-
itly aware of the existence of these in-game goals until they 
achieve them. In total, students receive up to five reflection 
prompts during gameplay, and each prompt is spaced out at 
least five minutes after the previous one. Responses to these 
prompts are logged as their written reflection responses. 

 
Figure 1. CRYSTAL ISLAND game-based learning  

environment 

 In this work, we used a CRYSTAL ISLAND dataset contain-
ing logs from student interactions with the game during two 
studies conducted in 2018 and 2019, respectively. The com-
bined dataset consists of game interaction logs of 156 stu-
dents with ages between 13 and 14 years. A total of 729 
written reflection responses with an average of approxi-
mately 20 words each were submitted by the students during 
gameplay. The students played the game until they success-
fully completed the game or 100 minutes of gameplay had 
elapsed. CRYSTAL ISLAND logged students’ game interac-
tion data as well as their written reflection responses during 
gameplay. 

Goal Recognition Framework 

Deep learning frameworks do not necessarily require man-
ual feature engineering and thus are readily generalizable 
across different domains (Min et al., 2016b). In this work, 
we use an LSTM-based deep learning model that effectively 
models students’ low-level action sequences and natural 
language-based reflection responses simultaneously to pre-
dict the next goal that the student will accomplish in the 
game. At each timestep of gameplay, goal recognition mod-
els are trained to predict the immediate next sub-goal that 
will be achieved by the student, so the prediction task is cast 
as a 10-class classification problem. 

Data Preprocessing 
Our feature set consists of actions, locations, previously 
achieved goals, and written reflection responses. There are 
24 distinct locations on the map that the player can visit. We 
consider 9 action types: movement, editing a worksheet, ac-
complishing a goal, conversing with a non-player character 
(NPC), scanning an object to test for contamination, reading 
books and articles, attempting a reflection prompt, interact-
ing with a poster, and submitting a worksheet. For each acti- 

39



 

 

 

Model Features RF Accuracy LSTM Accuracy RF SCP LSTM SCP RF CR LSTM CR 

GM Actions (A) 34.65 37.4 1.049 0.9736 16.36 29.03 

GM Locations (L) 32.31 38.69 1.1007 0.9359 17.37 38.7 

GM Goals (G) 24.43 50.67 1.0511 0.8446 15.2 34.35 

GM AL 33.04 39.81 1.1087 0.8949 13.48 44.61 

GM AG 19.51 51.75 1.0982 0.8321 10.95 39.94 

GM LG 18.55 54.24 1.1033 0.8132 10.24 45.13 

GM ALG 17.83 52.67 1.106 0.8349 8.93 42.02 

RM Reflections (R) 33.77 44.7 0.9955 0.8789 19.45 25.82 

CM RA 35.2 54.96 1.0383 0.8232 12.78 39.82 

CM RL 30.53 57.89 1.0397 0.8066 18.81 47.34 

CM RG 16.7 55.35 1.0973 0.8083 8.58 39.14 

CM RAL 30.74 57.6 1.0379 0.8202 19.48 47.04 

CM RAG 17.83 53.4 1.0959 0.8282 9.59 40.18 

CM RLG 16.65 54.87 1.1027 0.8185 9.02 44.31 

CM RALG 18.79 56 1.0977 0.8254 9.53 44.2 

Table 2. Comparison of performance metrics of top-1 goal prediction models (RF: Random forest; SCP: standardized conver-
gence point; CR: convergence rate; GM: Gameplay model; RM: Reflection model; CM: Combined model). 

on that the player takes in the game, we construct a 43-di-
mensional gameplay feature vector comprising a feature-
level fusion of (1) an action vector representing the action 
taken by the player at that timestep, (2) a location vector 
representing the location at which they perform the action, 
and (3) a binary vector representing the goals achieved by 
the player up to that point of gameplay. A sequence of such 
gameplay feature vectors for the player’s past 20 actions is 
considered as gameplay input to our LSTM models at each 
timestep of prediction.  
 Each natural language written reflection response of the 
student is represented as the average of their word-level 
ELMo embeddings (Peters et al., 2018). For our experi-
ments, we use an ELMo model that’s pretrained on the 1 
Million Word Benchmark, a dataset comprising approxi-
mately 800M tokens of news crawl data from WMT 2011. 
These ELMo embeddings are of 1,024 dimensions each and 
can have our goal recognition models overfit to the reflec-
tion data, given our dataset has a total of 729 unique written 
responses only. We thus applied Principal Component Anal-
ysis (PCA) on the ELMo embeddings to reduce their dimen-
sionality to 32 dimensions, preserving the dimensions that 
best capture game context and the variation in the written 

reflection response dataset. The written reflection responses 
are passed as input to our model by constructing a sequence 
of such ELMo embeddings for each response previously 
submitted by the player in the game. 

Model Architecture 
Our multimodal goal recognition framework consists of 
three separately trained submodels: a gameplay model, re-
flection model, and a combined model. The gameplay model 
was trained to predict the immediate next accomplished goal 
of the player at each timestep of gameplay using only low-
level action logs (i.e., action performed, current player loca-
tion, and previously accomplished goals) as input features. 
The reflection model was trained separately on previously 
submitted written reflection responses to predict the next 
goal to be accomplished by the player. Both gameplay and 
reflection models output probabilities for each of the 10 pos-
sible goals indicating how probable they are to be the next 
accomplished goal. Both of these probability predictions are 
then passed as input to a third model, freezing the model 
parameters for the gameplay and reflection models. This 
combined model performs a decision-level fusion of these 
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Figure 2. Model architecture for the gameplay, reflection 
and combined models. Numbers in parentheses denote the 

number of units in each layer, except in the case of the 
dropout layers where they denote dropout rates. 

class probabilities to output a final prediction on the next 
goal to be accomplished (Figure 2). We use these final pre-
dictions from the combined model to evaluate our models. 
Since each goal can be accomplished once during gameplay, 
the goal prediction probabilities generated by the gameplay, 
reflection, and combined models are each post-processed to 
set the probabilities of previously accomplished goals to 
zero to improve goal recognition models’ predictive perfor-
mance (Min et al., 2014).  Each of these submodels was 
trained using the Adam optimizer with categorical cross en-
tropy as the loss function. 
 Gameplay model. This model takes the past 20 actions, 
locations and previously accomplished goals as sequential 
input at each timestep of gameplay and passes it through an 
LSTM layer (32 hidden units, 0.1 dropout, 0.1 recurrent 
dropout, 0.01 L2 kernel/recurrent/bias regularization fac-
tor), a dense layer (16 hidden units, ReLU activation), a 
dropout layer (0.2), and a final dense layer (10 hidden units, 
sigmoid activation) that outputs the final probabilities for 
each goal. 
 Reflection model. This model takes the ELMo embed-
dings of the previous written reflection responses of the stu-
dent as sequential input at each timestep of gameplay and 
passes it through a GRU layer (16 hidden units, 0.1 input-
layer dropout rate, 0.1 recurrent-layer dropout rate, 0.01 L2 
kernel/recurrent/bias regularization factor), dense layer (16 
hidden units) and a dropout layer (0.2). The output is then 
passed through a dense layer (16 hidden units), and finally, 
another dense layer (10 hidden units, sigmoid activation) 
that outputs the final probabilities for each goal. 
Combined model. This model accepts a concatenation of 
the prediction probability outputs of gameplay and reflec-
tion models at each timestep and passes this through a drop-
out layer (0.2) and a dense layer (10 hidden units, sigmoid 

activation) that outputs the final probabilities for each goal. 
The model architecture was informed by previous work on 
student knowledge assessment in game-based learning envi-
ronments (Gupta et al., 2021) and preliminary analysis 
based on the training set used in this work. 

Evaluation 

We performed a player-level nested cross-validation to eval-
uate our models with 5 inner folds and 3 outer folds of eval-
uation. In each inner fold, we performed a student-level 80-
20 split on the training set to create training and validation 
sets. In each fold of the nested cross-validation for both the 
gameplay and reflection models, we explored different val-
ues of the number of LSTM hidden units (16, 32, and 64 
hidden units) and dropout rates (0.2 and 0.5) as hyperparam-
eters. For the combined model, we explored different drop-
out rates (0.1, 0.2, 0.5) as a hyperparameter. We evaluate 
our multimodal LSTM-based goal recognition approach 
compared to random forest-based goal recognition models, 
which serve as a competitive baseline. The sequential input 
used for the LSTM models were concatenated to create a 
contiguous feature vector as static input representations for 
the random forest models. The number of trees (50, 100, 
200) in the random forest model was also optimized in a 
similar setup, with 5 inner folds and 3 outer folds of nested 
player-level cross-validation. For fair comparisons, we used 
the same split for the outer and inner folds between LSTMs 
and random forests. For all models, results are reported as 
the average of the 3 outer fold results. 
 Model performance is evaluated on accuracy, standard-
ized convergence point, and convergence rate. The accuracy 
of a model is measured as the micro accuracy of correct goal 
predictions for each action across all students in the test set. 
We evaluate the early prediction performance of our models 
by computing the standardized convergence point and con-
vergence rate of the predictions for each goal. The predic-
tions are considered to converge at a timestep once the 
model consistently predicts the correct next goal from that 
time step onwards. Standardized convergence point (SCP) 
is computed as ∑ (𝑘𝑘𝑖𝑖/𝑚𝑚𝑖𝑖)/𝑛𝑛𝑛𝑛

𝑖𝑖=1 , where 𝑛𝑛 is the total number 
of action sequences corresponding to the next goal labels, 
𝑚𝑚𝑖𝑖 is the number of actions in the 𝑖𝑖th action sequence and 
𝑘𝑘𝑖𝑖depends on the model’s convergence for that action se-
quence; if the model predictions converge, 𝑘𝑘𝑖𝑖 is the action 
at which the model successfully converges on the correct 
next goal prediction, while for predictions that do not con-
verge, 𝑘𝑘𝑖𝑖 is computed as (𝑚𝑚𝑖𝑖 + 𝑝𝑝)/𝑚𝑚𝑖𝑖, where 𝑝𝑝 is a constant 
penalty parameter (Min et al., 2016b). (We set the penalty 
parameter to 1 in this work). Convergence rate (CR) is com-
puted as the percentage of action sequences for which the 
model’s prediction converges on the correct goal right be-
fore the player actually accomplishes their next goal (Blay-
lock and Allen, 2003). A model has better predictive perfor-
mance if it has higher accuracy and convergence rates and  
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Model Features RF Accuracy LSTM Accuracy RF SCP LSTM SCP RF CR LSTM CR 

GM Actions (A) 34.65 37.4 1.049 0.9736 16.36 29.03 

GM Locations (L) 32.31 38.69 1.1007 0.9359 17.37 38.7 

GM Goals (G) 24.43 50.67 1.0511 0.8446 15.2 34.35 

GM AL 33.04 39.81 1.1087 0.8949 13.48 44.61 

GM AG 19.51 51.75 1.0982 0.8321 10.95 39.94 

GM LG 18.55 54.24 1.1033 0.8132 10.24 45.13 

GM ALG 17.83 52.67 1.106 0.8349 8.93 42.02 

RM Reflections (R) 33.77 44.7 0.9955 0.8789 19.45 25.82 

CM RA 35.2 54.96 1.0383 0.8232 12.78 39.82 

CM RL 30.53 57.89 1.0397 0.8066 18.81 47.34 

CM RG 16.7 55.35 1.0973 0.8083 8.58 39.14 

CM RAL 30.74 57.6 1.0379 0.8202 19.48 47.04 

CM RAG 17.83 53.4 1.0959 0.8282 9.59 40.18 

CM RLG 16.65 54.87 1.1027 0.8185 9.02 44.31 

CM RALG 18.79 56 1.0977 0.8254 9.53 44.2 

Table 2. Comparison of performance metrics of top-1 goal prediction models (RF: Random forest; SCP: standardized conver-
gence point; CR: convergence rate; GM: Gameplay model; RM: Reflection model; CM: Combined model). 

 
Figure 3. Comparison of predictive performance of (a,b) multimodal and unimodal LSTMs (c,d) LSTMs and random forests. 

has lower standardized convergence points, which indicate 
better early prediction performance.  
 In the actual gameplay, players might have multiple goals 
in parallel at any given point. However, our dataset doesn’t 
capture this aspect of interleaved or concurrent goals, intro-
ducing some uncertainty in the goal predictions. To account 
for this inherent uncertainty, we evaluate our models with 
top-k goal predictions, which has been widely used for im-
age classification tasks. Identifying top-k goals of players 
can allow for more opportunities for player-adaptive game-
play, such as directing players towards a system-recom-
mended goal selected from the set of top-k goals, or guiding 

players to perform common action sequences for simultane-
ous progress towards multiple goals. In this work, we report 
the top-k performance of our models for k of 1 and 2. We 
evaluated model performances for top-3 predictions as well 
and observed 88.96% accuracy, 0.4069 SCP and 82.97% CR 
for our LSTM model with responses and gameplay features 
(full results have been omitted due to space constraints). We 
also computed the majority class baseline for our current da-
taset, yielding a top-1 prediction accuracy of 15% for the 
next goal prediction, which is significantly lower than the 
predictive performance of RF (35.2%) and LSTM (57.89%).
 To evaluate the effectiveness of each feature in our 
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model, we performed ablation studies for both the deep 
learning and random forest models. For combined models 
(CMs) that leverage both gameplay and reflection features, 
we used gameplay and reflection submodels pre-trained 
with the game log features and reflection features, respec-
tively, and used these submodels’ predictions (i.e., freezing 
model parameters for the two submodels) to train and eval-
uate the CMs. The results for our ablation studies for top-1, 
top-2, and top-3 predictions are reported in Tables 2-3. The 
predictive accuracy and early prediction results of the best 
performing combined model are compared against those of 
the best performing gameplay submodel and reflection sub-
model in Figure 3(a,b) for top-1, top-2, and top-3 evalua-
tions of goal recognition. Figure 3(c,d) illustrates a similar 
comparison between the best performing deep learning 
model and the best performing random forest model for top-
1, top-2 and top-3 goal recognition evaluation. 

Discussion 

LSTM models outperformed the non-neural random forest 
baseline for all top-k goal recognition, in terms of both pre-
dictive accuracy and early prediction performance (Figure 
3(c,d)). A possible explanation for this is that the objective 
of deep learning models is to extract high-level interpreta-
tions from low-level features, which aligns with goal recog-
nition’s objective of predicting the higher-level goals of a 
player in a game from their low-level game actions. From 
our ablation studies, we see that we obtain the best predic-
tive performance using a deep learning model that is trained 
using location information and previous written reflection 
responses of players. This suggests that information about 
the players’ recent movements on the map and what they 
said about their strategy in the game are most predictive of 
their next goals in the game.  
 From Figure 3(a,b), we can see that results using only 
gameplay features (trained on the gameplay submodel) are 
outperformed by combined models that utilize both written 
reflection and gameplay features (combined submodel) for 
top-1, top-2 and top-3 predictions, although written reflec-
tion features by themselves are not strong predictors. While 
the SCP and CR are similar for gameplay and combined sub-
models in our top-1 prediction results (Figure 3(a,b)), the 
combined submodel results outperform the early prediction 
performance of the gameplay model for top-2 and top-3 pre-
dictions. A possible explanation for this might be that the 
written reflection responses of players are not very specific 
about the immediate next goal but are more about a goal in 
the near future, which can be captured by top-k predictions. 
Moreover, players can also accomplish multiple goals since 
their last recorded written reflection response, given that 10 
goals may be accomplished by the player while a maximum 
of only 5 reflection prompts can be encountered during 
gameplay. This could lead to better convergence for predict-
ing the next k goals using written reflection responses with 

gameplay features, as opposed to predicting the immediate 
next goal at each timestep. 
 We observe significant improvements in predictive accu-
racy (21.5%), SCP (23.42%), and CR (22.41%) in the best 
performing deep learning model when we compare top-1 
and top-2 prediction results. This phenomenon can be ex-
plained by multiple concurrent goals players might have 
during the gameplay, where the model is not certain of what 
the immediate next goal achieved is. In future work, it would 
be interesting to perform error analysis and investigate 
which pairs of goals are often confused by the model and if 
there are common action patterns between these. 

Conclusion 

Goal recognition shows promise for dynamically identifying 
players’ intentions and enabling player-adaptive games that 
provide coherent interactive narratives and adaptive support 
for individual players. While much of previous goal recog-
nition work for digital games has utilized low-level in-game 
actions for predicting players’ higher-level intentions during 
gameplay, other modalities of data available during game-
play may also serve as additional predictive features for en-
hancing player goal recognition. In this paper, we investi-
gate the effectiveness of utilizing natural language reflection 
responses of players in an open-world educational game as 
an additional modality for top-k predictions of players’ next 
goals. Results show that our LSTM-based multimodal goal 
recognition framework outperformed a random forest base-
line. LSTM models utilizing a combination of written re-
flection responses and gameplay data as features outper-
formed unimodal models utilizing gameplay data only, both 
in terms of predictive accuracy as well as early prediction 
performance. These results demonstrate that reflection-
based natural language data is a promising modality that can 
be included to improve the predictive performance of goal 
recognition frameworks. Written reflection responses could 
serve as a first-hand account of students’ intentions in the 
game, complementing evidence of their past actions taken 
in the game. Directions for future work include investigating 
additional modalities for goal recognition, such as speech 
and body movement, that can be indicative of player en-
gagement. It will also be important to incorporate multi-
modal goal recognition models into run-time game environ-
ments and investigate the fidelity of such models with re-
spect to predictive accuracy and early prediction for driving 
interventions that enhance players’ gameplay experiences. 
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