
Sturgeon: Tile-Based Procedural Level Generation
via Learned and Designed Constraints

Seth Cooper
Northeastern University

se.cooper@northeastern.edu

Abstract
This work describes Sturgeon, a system for tile-based level
generation using constraints. We present a small mid-level
constraint API that can be instantiated with various low-level
solvers, including portfolio solvers. We show how this mid-
level API can be used to generate levels incorporating a vari-
ety of constraints, including constraints learned from example
levels and constraints provided by a designer. We incorporate
a flexible constraint-based approach within the system for en-
suring level goals are reachable. Finally, we demonstrate the
effectiveness of the system in a variety of games and show
applications ranging from infilling and repair to expressive
range coverage.

Background
Procedural content generation (PCG) (Shaker, Togelius, and
Nelson 2016) is an approach used in games to automatically
generate content. Recently, procedural content generation
via machine learning (PCGML) (Summerville et al. 2018)
has been proposed as a way to learn to generate game con-
tent from examples of existing content.

In this work we present Sturgeon, a flexible and effi-
cient system for constraint-based PCG applied to the gener-
ation of 2D tile-based levels. The system uses a small, mid-
level API to express constraints over Boolean variables, and
translates these into low-level constraint satisfaction prob-
lems that can be solved with a variety of standard low-level
solvers (e.g. SAT, SMT, or Answer Set). Constraints can be
learned from example levels (such as tile patterns and distri-
butions) or provided by a designer (such as number or loca-
tions of certain tiles).

Previous work in PCG has used tile patterns learned
from example levels, such as WaveFunctionCollapse (Gu-
min 2016), Model Synthesis (Merrell and Manocha 2010) or
n-grams (Dahlskog, Togelius, and Nelson 2014). Several of
the patterns used in this work are directly inspired by these.

Other previous work has incorporated constraint-based
approaches into PCG, often to ensure generated levels have
desired properties. Some of this work incorporates con-
straints learned from example levels, while others are built
specifically to prevent certain classes of problems. This in-
cludes implementing WaveFunctionCollapse using Answer

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a) Tile: Allowable tile
at each location

b) Pattern: Replicate
example patterns

c) Distribution: Match
example tile distribution

d) Reachabilty: Goal is
reachable from start

Figure 1: Impact of adding each type of design rule, build-
ing on the previous, for the cave game. Reachability path
shown in red (unused closed cycles shown in gold).

Set Programming (Karth and Smith 2017), generating mazes
with reachable exits (Nelson and Smith 2016), constraining
the possible solutions in puzzle games (Smith et al. 2012),
and using probabilistic re-sampling to satisfy constraints
(Snodgrass and Ontañón 2016).

We build on this previous work and demonstrate the flexi-
bility of the proposed approach across seven different games
and show how the mid-level API can be used to express use-
ful constraints on the generated levels. We show how the use
of more general constraint solvers can build on example- and
pattern-based approaches to allow a wide variety of learned
patterns and provide extra control through constraints. We
formulate the problem of goal reachability as a graph prob-
lem that can be translated into constraints to ensure gener-

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2022)

26

Function Description SAT-style
implementation

Answer Set
implementation

SMT
implementation

MAKEVAR() Create a new Boolean variable.
MAKECONJ(ls) Create a representation of the

conjunction (and) of the given
literals.

Create new conjunction
variable.

Create new conjunction
variable.

And

CNSTRCOUNT
(vs, lo, hi, wt)

Add a constraint that between
lo and hi of the given variables
(or conjunctions) vs are true,
with weight wt.

atMostK native const-
raints if available, oth-
erwise Boolean-encoded
atMostK constraints†.

Frontend: con-
strained choice rule
Backend:
add weight rule

Pseudo-Boolean
constraints PbLe,
PbGe.

CNSTRIMPLIESDISJ
(l,ms,wt)

Add a constraint that the literal
(or conjunction) l implies the
disjunction (or) of the literals
(or conjunctions) in ms, with
weight wt.

Clause Frontend: rule
Backend: add rule

Implies, Or

SOLVE() Run the solver. Soft constraints directly
supported; multiple hard
constraints (e.g. encoded
cardinality) can be con-
verted to a single soft con-
straints by adding a label
variable‡.

Soft constraints sup-
ported via additional
label variables‡ added
to rules and given to
#minimize (frontend)
or add minimize
(backend).

Soft constraints di-
rectly supported.

GETVAR(v) Get the value (i.e. true or false) of a variable.
GETOBJECTIVE() Get the value of unsatisfied soft constraint weights.
In many special cases, shortcuts can be used: e.g. if there is only one literal in MAKECONJ, it can be used directly; if lo is 1 in CNSTR-
COUNT, a disjunction can be used; SMT can use PbEq when lo == hi; etc.
†In this work we use PySat’s kmtotalizer encoding (Morgado, Ignatiev, and Marques-Silva 2014); since PySat only supported hard
native atMostK constraints, all such soft constraints must be encoded.
‡In this work, label variables are used as additional variables added to hard constraints which can then themselves be used in soft con-
straints or optimizations, e.g. (Belov, Järvisalo, and Marques-Silva 2013).

Table 1: Description of mid-level solver API and low-level implementations.

ated levels are possible to complete in games with a vari-
ety of player movement rules. We demonstrate support for
designer-provided constraints in a variety of applications,
including level infilling, linking level segments, and level
repair, and show how constraints can be used to explore the
expressive range coverage of the generator.

System Overview
The goal of the system is to generate 2D tile-based levels via
a variety of constraints. A mid-level constraint API, consist-
ing of only a few functions (described below and in Table 1),
is used to express constraints over Boolean variables repre-
senting things such as tile placement and pathfinding proper-
ties of the level, which are then solved by a low-level solver.
We show that the system can be used for a variety of appli-
cations; these applications can use constraints learned from
example levels, constraints to ensure reachability of goals,
and constraints provided by a designer.

In this work, a tile is simply an entity that can have func-
tional (i.e. gameplay) and/or image information associated
with it, and can be placed at a location in the 2D level grid. A
level is then a 2D grid with locations where tiles are placed.
Each level can consist of both a functional grid that defines
gameplay for the level (e.g. using solid or goal functional

tiles) and an image grid that defines what the level looks
like (e.g. using brick or finish line image tiles).

This work also uses tags, which are labels associated with
one or more tiles and can be used to limit what tiles can
be placed at a location. A default tag allows any tile to be
placed. Sometimes the tile/tag distinction is intentionally
blurred: functional tiles can be used as tags to constrain im-
age tile placement. For example, a solid functional tile could
be used as a tag to only allow brick or stone image tiles to be
placed at that location. Each level exists in an infinite grid of
special void tiles and tags, wherever they are not otherwise
defined.

It is possible to generate functional and image grids si-
multaneously by associating tiles with both functional and
image information, or sequentially by first generating a func-
tional grid and then using that to limit image tile placement.
We found the sequential approach can be more efficient, as
reachability does not have to consider what a tile looks like;
it is also possible to generate only a functional or image grid.

Flows for simultaneous and sequential generation are
given in Figure 2. The system takes example functional and
image grids, from which it extracts tiles. It then takes a pat-
tern template to use for extracting patterns, a region defini-
tion (discussed below) to extract tile distributions, and op-

27

Extract tiles
Tile (functional
& image) grid

Set up and
solveSi

m
u

lt
an

e
o

u
s

Extract patterns
and metadata

Tile (func. & image)
patterns and

metadata

Functional grid Extract tiles Tile (funct.) grid

Se
q

u
en

ti
al

Image grid Extract tiles Tile (image) grid

Extract patterns
and metadata

Tile (funct.) patterns
and metadata

Set up and
solve

Functional grid

Extract patterns
and metadata

Tile (image) patterns
and metadata

Set up and
Solve

Image grid

Image tag grid Image out tag grid

Functional grid

Image grid

Functional grid

Image grid

Constraint
specification, reach
templ., out tag grid

Funct. constraint
specification, reach
templ., out tag grid

Funct. pattern
templ.,

regions, tag grid

Pattern templ.,
regions, tag grid

Image constr.
specification

Image pattern
templ., regions

Figure 2: Flows in learning and generation.

tionally, a tag grid to associate tags with tiles. At this point
the generator is ready to generate levels. The generator uses
information extracted from the example levels. It also uses
other design rules, and can incorporate a reachability tem-
plate, an out tag grid, and custom constraints. The mid-level
API is used to create a constraint problem, which is then
solved to generate a level.

We used four types of design rules for level generation.
The design rules are collections of constraints that can be
expressed using the mid-level API, which then uses a low-
level solver to generate the level. For this work we used: tile
rules, requiring one tile placed at each location; pattern rules,
that provide relationships between nearby tiles learned from
example levels; distribution rules, preferring the output tile
distribution to be near the input distribution; and reachability
rules, requiring a path through the level. Figure 1 shows the
incremental effect of each type of rule.

The system is implemented in Python; the mid-level
solver API is implemented as Python functions and uses the
Python modules of the low-level solvers; the design rules are
written in Python using the mid-level API. The system is run
as a collection of command-line scripts.

In the following, we describe the mid-level solver API and
solvers used to implement the API, the various design rules
implemented using the API, and the games used in this work.

Mid-Level API and Low-Level Solvers
The API provides basic functions for creating Boolean vari-
ables, running the solver, and getting the resulting variable
assignments. The API also provides functions for creating
conjunctions of variables, along with functions for adding
constraints on counts and adding implications (which can be
hard or soft). The API and a description of how it uses the
various low-level solvers is given in Table 1.

One benefit of supporting multiple low-level solvers
is that portfolio solvers that combine multiple individual
solvers can be used. The low-level solvers used are:
• clingo-fe, clingo-be: Answer Set (AS) based

solvers. We used the Python interface to the clingo (Geb-
ser et al. 2011) solver. We used two approaches in this work.
For clingo-fe, we used the standard text-based “fron-
tend” Answer Set Programming language with grounding
and solving. In practice we found this approach to run quite
slowly. Thus, for clingo-be, we used clingo’s “backend”
API directly to construct the program for the solver, and by-
pass the grounding step.
• z3: SMT solver. We use the Python Z3 solver (de Moura
and Bjørner 2008). Although SMT solvers are more general,
we used only Boolean variables.
• pysat-rc2, pysat-fm: Weighted partial max-SAT
solvers, optionally with native cardinality constraints. For
brevity we will refer to these as SAT-style solvers. In particu-
lar, these types of solvers support a mix of hard and weighted
soft constraints, and optionally native atMostK cardinality
constraints. In this work we used solvers provided by the
Python PySat (Ignatiev, Morgado, and Marques-Silva 2018)
library: pysat-rc2, which uses a solver based on the “re-
laxable cardinality constraints” or RC2 approach (Ignatiev,
Morgado, and Marques-Silva 2019), and pysat-fm, which
is based on the “Fu & Malik” approach (Fu and Malik 2006;
Manquinho, Marques-Silva, and Planes 2009). Native cardi-
nality constraints are supported through their use of Mini-
Card (Liffiton and Maglalang 2012).
• rc2&be: A portfolio solver that combines pysat-rc2
and clingo-be. Both solvers are run in parallel and the
first solver to find an optimal solution is used.

Description of Design Rules
Here we describe the design rules used. In some cases they
use game-specific information.
Tile Rules — The basic tile rules create a Boolean variable
for each allowable tile at each location, and then require that
exactly one allowable tile is placed in each location. This is
similar to a “one-hot” style encoding. An out tag grid limits
the allowable tiles at each location. Using the tile rules, the
solver will generate levels with tiles that respect the tags, as

28

For all locations in the grid, for all potential tiles at that location:
MAKEVAR() → tile Each location has a variable for each tile allowed by the tag at that loca-

tion.

For all locations in the grid:
CNSTRCOUNT(tiles, 1, 1, HARD) Exactly one tile variable is true per location.

Table 2: Description of tile rules. tile is the variable for an individual tile and tiles are the variables for all tiles at a location.
For convenience, all void tiles share a single variable that is constrained to be true (using CNSTRCOUNT).

When a pattern is needed:
MAKECONJ(tilesInPattern) → pattern A pattern is the conjunction of its individual tiles.

For all locations in the grid where patterns should be applied, using learned patterns:
CNSTRIMPLIESDISJ

(inputPattern, outputPatterns,HARD)
If a placeable input pattern has output, and any output patterns are place-
able: that input pattern implies at least one of its placeable output patterns.

CNSTRCOUNT(inputPattern, 0, 0, HARD) If a placeable input pattern has output, and no output patterns are place-
able: that input pattern is false.

For all locations in the grid where patterns should be applied:
CNSTRCOUNT(allInputPatterns, 1,∞, HARD) At least one placeable input tile pattern is true.

Table 3: Description of pattern rules. The dotted line indicates that one of the two functions is used depending on if there are
placeable output patterns or not.

For all regions, for all tags, for all tiles in that tag:
CNSTRCOUNT(countedT iles,min,max, SOFT) The number of tiles for a region and tag should be similar to the number

desired, based on the example level.

Table 4: Description of distribution rules. In this work we use a low-weight soft constraint where min and max are ±50% of
the desired number of such tiles.

General:
CNSTRCOUNT(validStartT iles, 1, 1, HARD)
CNSTRCOUNT(validGoalT iles, 1, 1, HARD)
CNSTRCOUNT(invalidStartT iles, 0, 0, HARD)
CNSTRCOUNT(invalidGoalT iles, 0, 0, HARD)

There must be exactly one start tile and one goal tile in valid locations,
and none in any invalid locations.

For all edges:
MAKEVAR() → edge Each edge has a variable for if it is reachable.

For all nodes:
MAKEVAR() → node Each node has a variable for if it is reachable.
MAKEVAR() → open
∀openT ile CNSTRIMPLIESDISJ(openT ile, open,HARD)
CNSTRIMPLIESDISJ(open, openT iles,HARD)

Each node has a variable for if it is open; a node is open iff its
corresponding tile is an open tile.

∀outEdge CNSTRIMPLIESDISJ(¬node,¬outEdge,HARD) A node being not reachable implies all its out edges are not
reachable.

∀outEdge ∀needOpen
CNSTRIMPLIESDISJ(¬openneedOpen,¬outEdge,HARD)

∀outEdge ∀needClosed
CNSTRIMPLIESDISJ(openneedClosed,¬outEdge,HARD)

For an edge, a node required to be open being closed, or a node
required to be closed being open, implies the edge is not reach-
able.

CNSTRCOUNT(inEdges, 0, 1, HARD)
CNSTRCOUNT(outEdges, 0, 1, HARD)

A node has at most one reachable in edge and one reachable out
edge.

MAKECONJ(¬startT ile⊕ ∀inEdge ¬inEdge) → noIn
CNSTRIMPLIESDISJ(noIn,¬node,HARD)

A node that is not the start node and has no incoming reachable
edges is not reachable.

CNSTRIMPLIESDISJ(startT ile, node,HARD)
∀inEdge CNSTRIMPLIESDISJ(startT ile,¬inEdge,HARD)

The start tile locations’s node is reachable and has no incoming
reachable edges.

CNSTRIMPLIESDISJ(goalT ile, node,HARD)
∀outEdge CNSTRIMPLIESDISJ(goalT ile,¬outEdge,HARD)

The goal tile locations’s node is reachable and has no outgoing
reachable edges.

Table 5: Description of reachability rules. The ∀ symbol represents a loop or list over all the relevant variables, and ⊕ is
concatenation of variables into a list. For nodes, tiles referred to are those at the node’s location.

29

✕

… … …

…

…

… … …

nbr-l nbr-plus ring diamond 3gr-col

←
 n

o
 s

tr
id

e

✕

✕

✕

✕

✕

✕

✕

✕

✕

2gr-row

✕

no stride →

✕ ✕

←
 s

tr
id

e
1

1

1
1

zgr-col no-out3

✕ input

output

✕

Figure 3: Pattern templates.

maze tomb platform

walk

fall jump

supercat

walk

fall wall climb wall jump ledge jump

source

open
(destination)

open
(path)

open
(off-path)

closed

Figure 4: Example reachability templates (not a complete list).

in Figure 1(a). Table 2 describes API use.
Pattern Rules — With only tile rules, the tiles will be placed
haphazardly. The addition of pattern rules begins to make
the level look like the example level by replicating local pat-
terns, as in Figure 1(b). Table 3 describes API use.

Pattern rules use a pattern template, which consists of
a collection of corresponding input and output templates.
Roughly speaking, the presence of an input pattern of tiles
constrains the possible output patterns of tiles that can be
present, and some input pattern must be present. The specific
tiles and tags for the patterns used are learned from the ex-
ample levels. Patterns can be learned and applied at each lo-
cation, per-row, per-column, or with an arbitrary stride. For
a specific learned input or output pattern to be placeable at
a location, the tags for the generated level must match those
from the example level for that pattern. Pattern templates
used in this work, shown in Figure 3, are:
• nbr-l, nbr-plus: An individual tile independently
constrains some of it neighbors.
• ring, diamond: An individual tile jointly constrains
some of it neighbors.
• 3gr-col, 2gr-row: Meant to emulate 3-grams and 2-
grams, as in (Dahlskog, Togelius, and Nelson 2014), con-
straining a following column or row based on the previous
one(s). There is no stride along the axis perpendicular to the
direction of the n-gram, so that, e.g. column constraints are
applied only once at the top of each column.
• zgr-col: Crafted specifically for zelda. Similar to a
column n-gram, but each column is 11 tiles long with a stride
of 11 (the height of a room). This causes the n-gram to move
across each row of rooms. The bottom tile of each column
also constrains the top tile of the column below it, which
causes each room to match up with the one below it (primar-
ily for doors).
• no-out3: A 3 × 3 input and no output. Since an input pat-
tern must be present at each location where patterns are ap-

plied, this is meant to emulate WaveFunctionCollapse (Gu-
min 2016).
Distribution Rules — Using tile and pattern rules, the over-
all distribution of tiles may be quite different from the ex-
ample level, with tiles that are rare in the example level oc-
curring frequently in the output, or vice versa. Distribution
rules constrain the output tile counts to be similar to those
in the example data, as in Figure 1(c). Table 4 describes API
use.

We use distributions by tag (i.e. tiles in a tag in the out-
put should be similar to the tiles in that tag in the input), as
well as spatially by regions (i.e. tiles in each corresponding
input/output region should be similar). We use two types of
spatial distributions. global is simply a single region over
the entire level. div divides levels into a coarse N × M
grid of regions, re-scaling if the level sizes are different. For
example, div regions should capture the fact that cloud im-
ages appear at the top of the level but not at the bottom.
Reachability Rules — Thus far, the levels may not be possi-
ble to complete since previous rules do not take into account
player movement and whether the player can reach the goal
of the level from the start. Adding reachability rules ensures
generated levels are completable, as in Figure 1(d). Table 5
describes API use.

The reachability rules are based on a graph constructed
over the level grid. Roughly speaking, each location gets a
node, and there is a directed edge from each node to nodes
that the player could potentially reach from that node. How-
ever, edges can only be part of the reachability path if certain
criteria of open (i.e. traversable by the player) and closed
(i.e. not traversable) functional tiles are met at locations in
the level. As an example, a player might only be able reach
a potential destination node along an edge that represents a
jump if the location under the start of the jump is closed and
all the locations along the arc of the jump are open. We also
assume there are functional tiles that represent the start and

30

goal of the level. The reachability rules require a path in the
graph from the start to the goal. This approach is similar to
Aloul et al.’s pathfinding using SAT work (Aloul, Rawi, and
Aboelaze 2006). However, their work is on an undirected
graph, with all edges always usable, and uses optimization
to find the shortest path.

We noted some potentially interesting side-effects of this
approach. First, it is only required that a path can be found; it
does not have to be short or direct. Thus, the solver can find
quite circuitous paths. Second, in addition to the path from
start to goal, the solver can include additional closed cycles
off the main path in the solution. For clarity, these cycles are
not shown in most figures, but are shown in Figure 1(d).

Reachability rules use a reachability template, which de-
fines the directed edges and their associated open and closed
locations. Reachability templates used in this work are (ex-
amples shown in Figure 4):
• maze: Simple template where the player can move in 4 di-
rections to adjacent open tiles. Used for cave and zelda.
• tomb: Template for tomb, where the player moves in 4
directions, but must move in a direction until a closed tile
stops them.
• platform: Basic platforming template, based on the
work of Summerville et al. (Summerville, Philip, and
Mateas 2015). The player can fall through open tiles,
and walk or jump from above closed tiles. Used for
mariobros, marioland, and icarus (which allows
column wrapping).
• supercat: Platforming template for supercat. The
player can fall and walk, but also wall climb, wall jump, and
ledge jump; there is no “standard” jump. These are a simpli-
fication of the actual game’s movement, ignoring things like
velocity and the variations between cats.

Games
The games used in this work are:
• cave: A simple top-down cave map made for this work.
Image tiles from Kenney (Kenney 2022). Inspired partly by
the mazes in (Nelson and Smith 2016).
• tomb: Tomb of the Mask (Happymagenta 2016), a top-
down action/puzzle game where the player must navigate a
maze while avoiding hazards. When the player starts moving
in one direction, they continue in that direction until they hit
an obstacle. Patterns from level 1 were used.
• zelda: The Legend of Zelda (Nintendo 1986), with tile
patterns learned from dungeon 1-1 from the VGLC (Sum-
merville et al. 2016) with minor cleanup.
• icarus: Kid Icarus (Nintendo 1987), with tile patterns
learned from level 1 from the VGLC (Summerville et al.
2016) with minor cleanup.
• mariobros: Super Mario Bros. (Nintendo 1983), with
tile patterns learned from level 1-1 from the VGLC (Sum-
merville et al. 2016) with minor cleanup.
• marioland: Super Mario Land (Nintendo 1989), with
tile patterns learned from level 1-1 from the VGLC (Sum-
merville et al. 2016) with minor cleanup.
• supercat: Super Cat Tales (Neutronized 2016), a plat-
form game where the player controls a cat. The game does
not have a “standard” jump, but the the player can wall

icarus
(2gr-row)

supercat

icarus
(ring)

cave

zelda

tomb

mariobros (3gr-col)

mariobros (ring) marioland

Figure 5: Example generated levels. Reachability path
shown in red. More examples shown in Appendix A.

climb, jump off walls, and leap off ledges. Tile patterns
learned from the tree section of level 1-7 were used.

Solver Comparison and Level Generation
By using multiple low-level solvers, we can compare their
performance. In the following evaluations, for each game
setup (game, flow, pattern and reachability template, region
definition, level size, and solver), we generated 25 levels. We
looked at generation time and range, which we computed as
fraction of tiles different, across all pairs of generated levels.
We aimed for level sizes that could be generated in about
10s or less by most solvers. Evaluations were run on a 2018
MacBook Pro.

As an initial evaluation, we compared all individual
solvers on generating small, functional levels for cave,
icarus, and mariobros.

Results are in Figure 6(top). clingo-fe and z3 were

31

Game Flow Pattern Regions Size Reach. Solver
Sm

al
le

rl
ev

el
s

10
1

10
0

10
1

10
2

10
3

Generate Time (s)

cave FUNCT nbr-plus global 20x20 maze clingo-be
cave FUNCT nbr-plus global 20x20 maze clingo-fe
cave FUNCT nbr-plus global 20x20 maze pysat-fm
cave FUNCT nbr-plus global 20x20 maze pysat-rc2
cave FUNCT nbr-plus global 20x20 maze z3
icarus FUNCT ring global 8x16 platform clingo-be
icarus FUNCT ring global 8x16 platform clingo-fe
icarus FUNCT ring global 8x16 platform pysat-fm
icarus FUNCT ring global 8x16 platform pysat-rc2
icarus FUNCT ring global 8x16 platform z3
mariobros FUNCT 3gr-col global 14x16 platform clingo-be
mariobros FUNCT 3gr-col global 14x16 platform clingo-fe
mariobros FUNCT 3gr-col global 14x16 platform pysat-fm
mariobros FUNCT 3gr-col global 14x16 platform pysat-rc2
mariobros FUNCT 3gr-col global 14x16 platform z3

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Range

L
ar

ge
rl

ev
el

s

10
1

10
0

10
1

10
2

10
3

Generate Time (s)

cave FUNCT nbr-plus global 30x30 maze clingo-be
cave FUNCT nbr-plus global 30x30 maze pysat-rc2
cave FUNCT nbr-plus global 30x30 maze rc2&be
icarus FUNCT ring global 20x16 platform clingo-be
icarus FUNCT ring global 20x16 platform pysat-rc2
icarus FUNCT ring global 20x16 platform rc2&be
mariobros FUNCT 3gr-col global 14x60 platform clingo-be
mariobros FUNCT 3gr-col global 14x60 platform pysat-rc2
mariobros FUNCT 3gr-col global 14x60 platform rc2&be

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Range

A
ll

G
am

es

10
1

10
0

10
1

10
2

10
3

Generate Time (s)

cave SIMUL nbr-plus global 20x20 maze rc2&be
icarus SEQFN 2gr-row global 40x16 platform rc2&be
icarus SEQIM nbr-l div-10x4 40x16 N/A rc2&be
icarus SEQFN ring global 20x16 platform rc2&be
icarus SEQIM nbr-l div-10x4 20x16 N/A rc2&be
mariobros SEQFN 3gr-col global 14x60 platform rc2&be
mariobros SEQIM nbr-l div-7x10 14x60 N/A rc2&be
mariobros SEQFN ring global 14x30 platform rc2&be
mariobros SEQIM nbr-l div-7x10 14x30 N/A rc2&be
marioland SEQFN diamond global 16x30 platform rc2&be
marioland SEQIM block2 div-8x10 16x30 N/A rc2&be
supercat SEQFN diamond global 30x20 supercat rc2&be
supercat SEQIM nbr-l global 30x20 N/A rc2&be
zelda SIMUL zgc N/A 33x32 maze rc2&be
tomb SIMUL nbr-plus global 20x20 tomb rc2&be

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Range

Figure 6: Times for generation (setup and solve only) and ranges. For sequential generation in All Games, images were
generated for the functional setup directly preceding.

much slower than the other solvers, and pysat-fm ap-
peared generally slower than pysat-rc2; thus we ex-
cluded them from further evaluations. Additionally, there
does not appear to be much difference in the range of levels
generated, other than clingo-be generating more similar
cave levels.

Next, we compared generation of larger functional
levels on these games using the more efficient solvers
clingo-be and pysat-rc2 and their combined portfo-
lio solver rc2&be. Results are in Figure 6(middle). This ex-
ample highlights a benefit of portfolio solving: clingo-be
appears faster for cave while pysat-rc2 appears faster
for icarus; however, using both, the portfolio solver per-
forms well across all these games (though there was some
overhead in managing the multiple solvers). Thus, from this
point on we used this portfolio solver.

Finally, we generated levels for all games, using either the
simultaneous or sequential flow, using multiple patterns for
some games.

Solver results are in Figure 6(bottom), and example lev-
els generated for each game setup are shown in Figure 5
and Appendix A. These examples were selected to show
the types of levels generated and also highlight some arti-
facts of the generated levels. In icarus levels, note the
use of wrapping by the pathfinding, as well as the change
in the block visuals as one moves up the level. Similarly in
mariobros, clouds only appear near the top of the level.
There are some potentially undesirable artifacts. When using
n-gram patterns for icarus, there is little variation in the
levels as the beginning and end are essentially memorized.
In both cave and tomb levels, some unreachable areas are
generated. In marioland and supercat, there are some

32

visual artifacts, in the form of incomplete pyramids and non-
circular windows, respectively.

Controllability Applications
Here we describe several example applications that demon-
strate the controllability allowed by the system. For each ex-
ample, five levels or images were generated. Example grids,
guides and generated levels and images are given in Ap-
pendix B. The first examples used the mariobros (ring)
setup to generate levels; image generation took <1s for all
these. The remaining WFC-inspired examples were image
only.
• tall-pipe: A 14× 24 level must have exactly one pipe
that reaches the 3rd-from top row (other pipes are okay).
Median and maximum functional generation times were 3.1s
and 3.8s.
• 3?: A 14 × 24 level must have exactly 3 question blocks.
Note that these blocks are not necessarily reachable. Me-
dian and maximum functional generation times were 2.0s
and 2.1s.
• max-gap: A 14 × 24 level where the number of blank
tiles in the bottom row should be maximized. Median and
maximum functional generation times were 2.5s and 3.7s.
• void: A 16 × 40 out tag grid that uses some tags that
only allow void tiles, to carve out where the level can go.
Uses soft pattern constraints. Median and maximum func-
tional generation times were 3.1s and 25.2s.
• infill: A 14× 32 output guide grid that uses hard con-
straints on output tiles, but has an empty area cleared out in
the middle that needs to be filled in. Could be used in co-
creative tools (Partlan et al. 2021) where a designer could
request suggestions for specific areas. Uses soft pattern con-
straints. Median and maximum functional generation times
were 2.6s and 3.0s.
• link: A 14 × 37 output guide grid that uses hard con-
straints on output tiles for two level segments, with an empty
area in between that can be used to link them. This could be
used to link level segments together in approaches where
levels are generated segment-wise and then linked together
into a larger, full level, e.g. (Khalifa et al. 2019; Sarkar and
Cooper 2020). Uses soft pattern constraints. Median and
maximum functional generation times were 3.0s and 3.1s.
• repair: A 14×18 output guide that uses soft constraints.
The input level is not completable and the pipe is missing
tiles near its top-right (highlighed in the red box). The solver
makes minimal changes to repair the level and make it com-
pletable: adding the missing tiles to the pipe and adding a
block so that the pipe can be jumped over. Such an approach
could be used to repair levels generated by other means, e.g.
as in (Jain et al. 2016; Cooper and Sarkar 2020; Zhang et al.
2020). Uses soft pattern constraints. These examples took
notably longer; median and maximum functional generation
times were 10.5m and 24.8m. Also, although different paths
were found, all solutions added the block in the same place.
• flowers-1, flowers-7, skyline-15,
skyline-20: The Flowers and Skyline examples
from WFC (Gumin 2016). These applications all use the
no-out3 pattern rule to emulate WFC’s behavior, along

with the global count constraint, to generate an image
only. Additional constraints are applied to specify the
number of flowers (1 and 7) and windows (15 and 20).
These applications demonstrate the additional control that
can be applied above the standard WFC pattern approach
when using a constraint solver. Median and maximum
times were 30.3s, 3.6s, 6.9s, 6.0s and 36.2s, 4.3s, 14.9, 7.0s
respectively.

Expressive Range Coverage
Here we highlight a use of constraint-based generation for
exploring the expressive range of the generator. Common
approaches to expressive range analysis generate many lev-
els and then analyze them according to properties such as
linearity or leniency (Smith and Whitehead 2010). Addition-
ally, quality-diversity search such as MAP-Elites (Mouret
and Clune 2015) optimize populations of points using simi-
lar behavioral characteristics.

For certain properties of a level, the proposed system can
constrain the allowable range of that property and then gen-
erate a level; when done over a number of properties and
ranges, this can demonstrate the expressive range coverage
of the generator.

Using the mariobros (ring) setup, we explored the
coverage along two dimensions, using number of gap tiles
and number of solid tiles, with 6 ranges per dimension. A
time limit of 10m was used for each 14 × 24 level. Of the
36 possible levels, 19 were found. Most of the levels not
found required few or many solid tiles; 7 timed out. The total
functional level generation took 86.2m, or 2.4m per possible
level. Images are in Appendix C.

Conclusion
In this work we presented a system that uses a mid-level
constraint-based API for generation of 2D tile-based lev-
els and demonstrated it in a variety of games and appli-
cation cases, evaluating its performance and controllability
over generated levels. In the future we would like to expand
to 3D grids and other structures such as graphs; add sup-
port for multiple sequential goals and other mechanics such
as lock-and-key; and explore further performance improve-
ments, particularly to level repair.

Appendix A: Level Images
supercat

33

cave

tomb

zelda

icarus (2gr-row)

icarus (ring)

mariobros (3gr-col)

mariobros (ring) marioland

Appendix B: Applications

tall-pipe

3?

max-gap

34

void infill
* *
* *
* *
* *
* *
* *
* *
* *

* *
* *
* *
* *
* *
* *
* *
* *

- -
- -
- -
- - - - - - - - - - - - * * * * * * * - - - - - - - - - - - - -
- - - - - - - - - - - * * * * * * * * * - - - - - - - - - - - -
- - - - - - - - - - * * * * * * * * * * * - - - - - - - - - - -
- - - - - - - - - - * * * * * * * * * * * - - - - - - - - - - -
- - - - - - - - - - * * * * * * * * * * * - - - - - - - - - - -
- - - - - - - - - - * * * * * * * * * * * - - - - - - - - - - -
- - - - - - - - - - * * * * * * * * * * * - - - - - - - - - - -
- - - - - - - - - - - * * * * * * * * * - - - - - - - - - - - -
- - - - - - - - - - X X * * * * * * * - - - - - - - - - - } - -
- - { - - - - - - X X X X - - - - - - - - - - - - - - - - X - -
X X X X X - - X X X X X X - - - - - - - - - - - - X X X X X X X

link repair
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - Q - - - - * * * * * - S S S S S - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - Q - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - * * * * * - - - - - - - - - - - - - - - -
- - - - - - - < > - - - - - - X * * * * * - - - - - - - - - - - - - } - -
- - { - - - - [] - - - - - X X * * * * * - - - - - - - - - - - - - X - -
X X X X X X X X X X X X X X X X * * * * * X X X X X X X X X X X X X X X X

- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - < - - - - - - - - - - -
- - - - - - [- - - - - - - - - - -
- - - - - - [] - - - - - - - - - -
- - - - - - [] - - - - - - - - - -
- - - - - - [] - - - - - - - - - -
- - - - - - [] - - - - - - - - - -
- - - - - - [] - - - - - - - } - -
- - { - - - [] - - - - - - - X - -
X X X X X X X X X X X - - X X X X X

flowers-1 flowers-7

skyline-15 skyline-20

Appendix C: Expressive Range Coverage

G
ap

til
es

9–
10

7–
8

5–
6

3–
4

1–
2

0
0–

12

13
–2

4

25
–3

6

37
–4

8

49
–6

0

61
–7

2

Solid tiles

Acknowledgments
The authors would like to thank Adam Smith for discus-
sion of Clingo’s backend interface, and Colan Biemer and
Anurag Sarkar for their feedback.

References
Aloul, F. A.; Rawi, B. A.; and Aboelaze, M. 2006. Identify-
ing the shortest path in large networks using Boolean satis-
fiability. In 2006 3rd International Conference on Electrical
and Electronics Engineering, 1–4.
Belov, A.; Järvisalo, M.; and Marques-Silva, J. 2013. For-
mula preprocessing in MUS extraction. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 108–
123.
Cooper, S.; and Sarkar, A. 2020. Pathfinding Agents for
Platformer Level Repair. In Proceedings of the Experimental
AI in Games Workshop.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. In Proceedings of the 18th Interna-
tional Academic MindTrek Conference, 200–206.
de Moura, L.; and Bjørner, N. 2008. Z3: an efficient SMT
solver. In Tools and Algorithms for the Construction and
Analysis of Systems, 337–340.
Fu, Z.; and Malik, S. 2006. On solving the partial MAX-
SAT problem. In Theory and Applications of Satisfiability
Testing - SAT 2006, 252–265.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Potsdam
answer set solving collection. AI Communications, 24(2):
107–124.
Gumin, M. 2016. WaveFunctionCollapse. https://github.
com/mxgmn/WaveFunctionCollapse. Accessed: 2022-02-
04.
Happymagenta. 2016. Tomb of the Mask. Game [iPhone].

35

Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: a Python toolkit for prototyping with SAT oracles.
In Theory and Applications of Satisfiability Testing – SAT
2018, 428–437.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2019.
RC2: an efficient MaxSAT solver. Journal on Satisfiability,
Boolean Modeling and Computation, 11(1): 53–64.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair, and recognition.
In Proceedings of the ICCC workshop on computational cre-
ativity and games, volume 9.
Karth, I.; and Smith, A. M. 2017. WaveFunctionCollapse
is constraint solving in the wild. In Proceedings of the
12th International Conference on the Foundations of Dig-
ital Games, 68:1–68:10.
Kenney. 2022. Free game assets. https://www.kenney.nl/
assets. Accessed: 2022-01-07.
Khalifa, A.; Green, M. C.; Barros, G.; and Togelius, J.
2019. Intentional computational level design. In Proceed-
ings of The Genetic and Evolutionary Computation Confer-
ence, 796–803.
Liffiton, M. H.; and Maglalang, J. C. 2012. A cardinality
solver: more expressive constraints for free. In Theory and
Applications of Satisfiability Testing – SAT 2012, 485–486.
Manquinho, V.; Marques-Silva, J.; and Planes, J. 2009. Al-
gorithms for weighted Boolean optimization. In Theory and
Applications of Satisfiability Testing - SAT 2009, 495–508.
Merrell, P.; and Manocha, D. 2010. Model synthesis: A gen-
eral procedural modeling algorithm. IEEE transactions on
visualization and computer graphics, 17(6): 715–728.
Morgado, A.; Ignatiev, A.; and Marques-Silva, J. 2014.
MSCG: robust core-guided MaxSAT solving. Journal on
Satisfiability, Boolean Modeling and Computation, 9(1):
129–134.
Mouret, J.-B.; and Clune, J. 2015. Illuminating search
spaces by mapping elites. arXiv:1504.04909 [cs, q-bio].
Nelson, M. J.; and Smith, A. M. 2016. ASP with appli-
cations to mazes and levels. In Shaker, N.; Togelius, J.;
and Nelson, M. J., eds., Procedural Content Generation in
Games, 143–157. Springer International Publishing.
Neutronized. 2016. Super Cat Tales. Game [iPhone].
Nintendo. 1983. Super Mario Bros. Game [NES].
Nintendo. 1986. The Legend of Zelda. Game [NES].
Nintendo. 1987. Kid Icarus. Game [NES].
Nintendo. 1989. Super Mario Land. Game [Game Boy].
Partlan, N.; Kleinman, E.; Howe, J.; Ahmad, S.; Marsella,
S.; and El-Nasr, M. S. 2021. Design-driven require-
ments for computationally co-creative game AI design tools.
arXiv:2107.13738 [cs].
Sarkar, A.; and Cooper, S. 2020. Sequential segment-
based level generation and blending using variational au-
toencoders. In International Conference on the Foundations
of Digital Games, 1–9.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.

Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z.
2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In Proceedings of
the International Conference on the Foundations of Digital
Games, 156–163.
Smith, G.; and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games.
Snodgrass, S.; and Ontañón, S. 2016. Controllable proce-
dural content generation via constrained multi-dimensional
Markov chain sampling. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelli-
gence, 780–786.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural Content Generation via Machine Learning
(PCGML). IEEE Transactions on Games, 10(3): 257–270.
Summerville, A. J.; Philip, S.; and Mateas, M. 2015. MCM-
CTS PCG 4 SMB: Monte Carlo tree search to guide plat-
former level generation. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and
Ontañón, S. 2016. The VGLC: The Video Game Level Cor-
pus. arXiv:1606.07487 [cs].
Zhang, H.; Fontaine, M.; Hoover, A.; Togelius, J.; Dilkina,
B.; and Nikolaidis, S. 2020. Video game level repair via
mixed integer linear programming. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 16(1): 151–158.

36

