
Game System Models: Toward Semantic Foundations for
Technical Game Analysis, Generation, and Design

Rogelio E. Cardona-Rivera,1,2 José P. Zagal,2 Michael S. Debus3

1School of Computing, University of Utah, Salt Lake City, UT, USA
2Entertainment Arts and Engineering Program, University of Utah, Salt Lake City, UT, USA

3School of Architecture, Design, and Conservation, Royal Danish Academy of Fine Arts, Copenhagen, Denmark
rogelio@eae.utah.edu, jose.zagal@utah.edu, mdeb@kglakademi.dk

Abstract
Game system models introduce abstractions over games in
order to support their analysis, generation, and design. While
excellent, models to date leave tacit what they abstract over,
why they are ontologically adequate, and how they would
be realized in the engine underlying the game. In this paper
we model these abstraction gaps via the first-order modal µ-
calculus. We use it to reify the link between engines to our
game interaction model, a player-computer interaction frame-
work grounded in the Game Ontology Project. Through for-
mal derivation and justification, we contend our work is a use-
ful code studies perspective that affords better understanding
the semantics underlying game system models in general.

Introduction
There is a wealth of formal models in three broad game de-
sign domains: players, interfaces, and game systems. These
domains mutually inform and constrain each other (Juul
2007), but relationships between their models remains un-
clear. We aim toward their unified understanding via a for-
mal code studies approach (Aarseth 1997).

To date, game system models are most common and var-
ied. These models represent one or more facets of game
design (e.g. mechanics), and computationally support the
facet(s) via automated analysis or generation.

However, while models help frame their respective phe-
nomena, they by definition introduce an abstraction gap with
the underlying phenomena that is represented.

This gap makes it challenging to use these models –
e.g. for game production, research benchmarking – partly
because games are often realized via a game engine: “mod-
ules of simulation code that do not directly specify the
game’s behavior (game logic) or game’s environment (level
data)” (Lewis and Jacobson 2002). The gap tacitly obscures
the computational foundation that explains what the model’s
underlying engine logic is, how that logic impacts what the
model means, and how the engine supports it (Cardona-
Rivera 2020). As a result, it is not trivial to identify what
must be implemented to enable a chosen model, nor obvious
to know how it must be implemented.

We propose a computational framework that codifies the
abstraction gap from game engines to game system models.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our framework exposes the depth of abstraction that must be
clarified to more-precisely state what a game system model
abstracts over, what that means, and how it is realized.

Our contribution is a formal games language grounded in
computational science, which models game systems as ab-
stractions over game engines via the µ-calculus (Kashima
and Okamoto 2008)—a first-order modal logic with fixpoint
operator µ that can describe the properties of state-transition
systems. Our language is summarized via the game inter-
action model, which adequately expresses game systems as
described by Zagal’s (2014) game ontology project, recently
unified and expanded in systematic detail by Debus (2019).

Related Work
Researchers (Ebner et al. 2013) and practitioners (Dormans
2009) have called for a common, formal, and conceptual lan-
guage to better understand video games. This led to much re-
lated work we only summarize below. Our work is unique in
its combined (a) correspondence to design theory and prac-
tice, (b) technology-agnostic formal detail, and (c) breadth.

Game System Models
Game description languages (Ebner et al. 2013) and frame-
works (Grünvogel 2005) are game system models—formal
representations of game systems that support analysis, gen-
eration, and design. They differ in level of abstraction: lan-
guages describe systems in terms of elements; frameworks
break elements down into properties and relations.

Languages – e.g. Inform (Nelson 2001), VGDL (Schaul
2013), HyPED (Osborn, Lambrigger, and Mateas 2017) –
are narrower in scope than our proposal. These support spe-
cific game genres: interactive fiction design, 2D tiled game
generation, and action game analysis, respectively.

In contrast, frameworks are more expressive and closer
to us. They allow creating languages, thereby support-
ing many game genres. Examples include Dormans’ Petri
net-based Machinations (2009), Smith et al.’s answer set
programming-based LUDOCORE (2010), Martens’ linear
logic-based Ceptre (2015), Thue and Bulitko’s Markov
decision processes-based experience manager framework
(2018), and Robertson and Young’s classical planning-based
General Mediation Engine (2018).

What game system models – languages and frameworks
alike – have in common is also what distinguishes our work.

Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2022)

10

PlayerGame System

Presentation

Performance

Observation

Articulation

Game World
States

Goals

Language

Dynamics
State-

and Goal-

Transitions

Mechanics
Actions

Events

Refinements

Output Channel

Input Channel

Interface
⇢ ⇢

Figure 1: Our proposed game interaction model, a games-variant of Abowd’s (1991) human-computer interaction model (whose
items are italicized). Solid arrows denote information flow between the Game System, its Interface, and the Player. Boldface
items contain more-atomic elements below. Dotted arrows denote information dependencies: Dynamics depend on Mechanics,
and in turn on the Game World. We logically derive the Game System from the Game World abstraction over game engines.

Namely: existing models implicitly commit to abstractions
that afford expressing some games more easily than others.

In languages, it is easier to express games that ontologi-
cally rely on elements provided by the language’s abstrac-
tions. In frameworks, it is likewise easier to support games
that ontologically rely on properties and relations provided
by the framework’s abstractions. In contrast, we develop a
framework that directly examines these abstractions.

One exception that makes commitments more explicit is
work we take inspiration from: the framework of opera-
tional logics (OLs). An OL represents an ensemble of ele-
ments across game systems, interfaces, and players (Osborn,
Wardrip-Fruin, and Mateas 2017, p. 2, emphasis added):

[OLs] tie together low-level and abstract mechanics [in the
game system] with the presentation of sensory stimuli [via
an interface] to players to enable an understanding of what
the game is doing and how it functions.

These ensembles are computationally-realizable in many
ways, hence their pluralized framing (e.g. camera logics,
collision logics). But as noted by Martens (2015, p. 51): “We
lack good specification tools for inventing new operational
logics, or combining elements from several.” Our framework
embodies this systematicity and compositionality—akin to
OLs in overall aims, yet complementary to them. Instead of
modeling game design phenomena that spans game systems,
interfaces, and players as OLs do, we conceptualize these as
distinct environments with properties and relationships that
afford building games via their principled orchestration.

Trends in Game Description Frameworks
Our work is distinct from game description frameworks to
date in underlying game ontology and abstraction rationale.

Underlying Game Ontology Modern frameworks appeal
to intuitions of what is ontologically important to the games
they support, but what led to said intuitions is unfortunately
left unstated (Aarseth and Möring 2020). As noted by Os-
born (2018, p. 8–9):

Other approaches to describing game designs have onto-
logical issues as well as pragmatic ones. [e.g.] the Game
Ontology Project [...] decompose[s] games with base terms
that come from effectively infinite grammars [...] This would
mean [one] would have to complete a huge ontology-
development project before being able to do any serious
work.

Ontology development is non-trivial, and we do not cri-
tique the pragmatic choices made for developing OLs or
other frameworks. But in contrast to prior work, we explic-
itly build toward ontologies developed over several decades
within game studies as unified by Debus (2019).

Abstraction Rationale Frameworks to date start with the
base assumption that their respective formalism – Petri nets,
answer set programming event calculi, linear logic, Markov
decision processes, planning, etc. – is epistemologically ad-
equate (McCarthy 1981) for reasoning over the genres of
games of interest to the modeler. However, no framework
has been accompanied by formal argumentation that justi-
fies such adequacy for its level of abstraction.

While this does not preclude a framework from being use-
ful it does beg the question that motivates and differenti-
ates our work: what are current game system models ab-
stracting over? We explore one answer in this paper, using
a pragmatic abstraction rationale. That is, our game inter-
action model abstracts over a novel game engine model we
develop, itself built from elements that: (a) we minimally
need to represent to eventually support reasoning over De-
bus’ unified ontology of games, and (b) feature as common
enough across game engines to warrant their representation.

Overview and Background
We develop the game interaction model, a framework to
model player-computer interaction in terms of game sys-
tems, players, and interfaces between them (Fig. 1). We fo-
cus on the game system, complementing Martens and Ham-
mer (2017), who model the interface from player to system.

We model the game system in three stages. First, we de-
velop a formal model of game engines. Second, we derive an
abstraction of engines via a parameter-space partition that
results in a model of the game world: the bridge between
engines and systems. Third, we develop the rest of the game
system model around the game world by representing me-
chanics and dynamics that the world supports. Our modeling
work relies on the concepts and formalisms we detail next.

Concepts
Our game interaction model is a games variant of Abowd’s
(1991) formal human-computer interaction model.

Abowd frames HCI as a four-stage cycle: (1) a user ar-
ticulates a desired action via an interface, (2) the interface

11

Game World

East

West

North

South

G

P

T

at(Player,S)

at(Player,N)

at(Player,W)

at(Player,E)

Game Engine CVW AVWAbstraction

Figure 2: We model a game engine as a specialCVW that includes geometry G, physics P, and time T. AnAVW is an abstraction
that partitions a CVW to identify “what ludologically counts” as the Game World; e.g., what locations a Player can be at.

Goal Type Description
Ultimates (“Games that...”)

Win Effect an evaluation when an end state is reached
Finish Effect no evaluation when an end state is reached
Prolong Conclude against designer or player intent

Imperatives (“Players must...”)

Choose Select an element from a finite set
Configure Manipulate elements into a “correct” state
Create Bring a new entity into existence
Find Locate a particular entity
Obtain Bring a particular entity under control
Optimize Accumulate a requested amount of a particular entity
Reach Navigate to a particular location
Remove Eliminate an existing entity
Solve Select a “correct” element from a finite set
Synchronize Bring at least two elements into spatiotemporal unity

Table 1: Ultimate goals determine a game’s end. Imperative
goals are closer-to-gameplay, and required to satisfy an over-
arching ultimate. Boldface words are space, time, entity, and
mechanics concepts present in the UGO’s goal typology.

translates input into code that possibly performs a system
state change, (3) the system presents the resulting change
or diagnostic information to the user, and (4) the user up-
dates their mental model by observing the interface. To us,
the users are players, and the systems are games.

In turn, the game system model is a computational rendi-
tion of the Unifying Game Ontology (UGO, Debus 2019),
a classification of game elements across six facet categories
and three properties. In the UGO, games are artifacts that
represent space, time, entities, mechanics, goals, and ran-
domness facets. Our prior work highlights how goals are key
(2020): the UGO’s typologies for space, time, entities, and
mechanics all manifest within the goals one (see Table 1).
Finally, each facet may manifest explicitly or implicitly, stat-
ically or dynamically, and discretely or continuously.

Formalisms
We derive the game system model as an abstraction over a
game engine represented as LaValle’s (2019) virtual world
(VW): a computational model of stimuli to render. We argue
there are two such worlds to distinguish (Fig. 2). The con-

crete one is defined by the engine. The abstract one is de-
fined by the game designer, and we term it the game world.

To go from concrete to abstract, we use Cardona-Rivera’s
(2020) theory of game design abstraction as sound approx-
imation: each VW is a partially-ordered set of parameters,
and represents a different layer of information abstraction.
The concrete virtual world CVW is the more-quantitative
one, and it is linked to the more-qualitative abstract virtual
world AVW via a scheme: Υ = 〈CVW, fC , AVW, fA,L,G〉.

An abstraction scheme is motivated when the reasoning to
perform via fC : CVW → CVW (e.g. pathfinding in Euclidian
space) is not efficiently computable. A scheme’s lifting func-
tion L maps information in the CVW onto the AVW, where
the more-qualitative reasoning fA : AVW → AVW (e.g. A∗)
is an order-preserving (i.e. sound) proxy for fC . When fA’s
result is mapped via the grounding function G back into
CVW, there is a loss of information because |CVW| > |AVW|.

Our CVW models a game engine as a special labeled state-
transition system (S,U, γ), where S is a set of states, U is a
set of labels, and γ ⊆ S × U × S is a transition relation.

In turn, our AVW models game worlds as an abstraction
over the CVW via STRIPS (Fikes and Nilsson 1971), as used
for classical planning problems: search problems over dy-
namically constructed state-transition systems. STRIPS de-
pends onL—a set of sentences drawn from a logic language.

The Logic Basis of AVW In STRIPS, L is typically drawn
from a first-order language (FOL). However, our AVW rea-
sons over a CVW that encodes a state-transition system; do-
ing so requires modal reasoning not afforded by FOL. We
thus adopt the FO modal logic µ-calculus (FOMµ)—a mod-
est extension of FOL that can describe state-transition sys-
tem properties (Kashima and Okamoto 2008).

FOMµ formulas are defined in Backus Naur form as:

φ ::= ⊥ | > | pn(t1, . . . , tn) | ¬φ (1)
::= φ ∧ φ | φ ∨ φ | φ→ φ | φ = φ | ∀x.φ | ∃x.φ (2)
::= X | [u]φ | 〈u〉φ | µX.ψ (3)

Eqs. 1 and 2 are the literals and formulas of FOL, respec-
tively; pn ∈ P is an n-ary predicate symbol and ti is a term
symbol. Terms can be constant symbols C, n-ary function
symbols fn ∈ F , or variable symbols x ∈ V .

12

Eq. 3 are FOMµ-specific formulas, defined over a struc-
tureK = 〈S,U, γ,D, Iµ〉. S,U , and γ define a Kripke state-
transition model of worlds (S) and accessibility relations (U ,
γ). Each s ∈ S defines a local discourse domain, and D is
the union of all of them. Iµ is an interpretation—a mapping
from 2S to D. In (3), X is a propositional variable, u ∈ U ,
and ψ is a formula where every free X is positive.

Unlike (term) variables x ∈ V , propositional variables
X ∈ V bind to formulas φ; i.e. X denotes a truth value.
Further, [u]φ denotes that φ holds in all states reachable via
u from the state in which it is asserted. Its dual 〈u〉φ de-
notes that φ holds in at least one such state. Finally, the fix-
point formula µX.φ denotes the X least fixpoint of φ, true
in the smallest subset of states Smin ⊆ S whereby substitut-
ing with Smin all the free X in φ—denoted φ(X)—results
in what is true of X being true of φ(X), i.e. X = φ(X).

For a set of φ asserted in a given s, the interpretation Iµ
gives the semantics of its symbols by mapping:
(1) every c ∈ C and x ∈ V onto an element from D each,
(2) every fn ∈ F onto a domain function F : Dn → D,
(3) every pn ∈ P onto a domain tuple P ⊆ Dn, and
(4) every X ∈ V onto states SX ∈ 2S in which X is true.

The Planning Basis of AVW We use the FOMµ language
to define a STRIPS problem Σ = 〈L, S, γ,A,E, I, g〉.
S ⊆ 2L is a family of states; each s ∈ S is a set of pos-

itive FOMµ sentences denoting what is true in s; sentences
not in s are false. A label in U defines a transition—a triple
〈PRE(u), ADD(u), DEL(u)〉, of precondition, add, and delete
lists respectively, all subsets of 2L. If a transition u is exe-
cuted, the resulting state is given by γ—the function:

γ (s, u) =

{
(s \ DEL(u)) ∪ ADD(u) PRE(u) ⊆ s
s otherwise

(4)

Transitions under the planning agent’s control are its ac-
tions A ⊆ U ; events E ⊆ U are all other transitions.
Given an initial state I ∈ S, the agent must synthesize a
sequence of actions whose execution manifest the goal con-
ditions g ⊆ 2L. These conditions implicitly define a fam-
ily of states Sg; namely, those that satisfy all conditions:
Sg = {s | (s ∈ S ∈ Σ) ∧ (g ⊆ s)}.

By default, a STRIPS agent cannot systematically adopt,
revise, or drop its goals. This has motivated research on goal
reasoning, which seeks to endow agents with said capacity.

Given the primacy of goals in games, we represent a goal
transition system as a tuple Θ = 〈Σ, G,R, β〉 per Cardona-
Rivera et al. (2022). Here, Σ is a STRIPS problem as before.
The set G encompasses all possible goal state families Sg .
Particular goal conditions can change in a given state based
on refinements in R. A refinement is isomorphic to a transi-
tion and yields a goal per the goal-transition function β:

β (g, s, r) =

{
(g \ DEL(r)) ∪ ADD(r) PRE(r) ⊆ s ∪ g
g otherwise

(5)

Problem Statement
We offer a solution to the open problem of modeling game
systems at a level of abstraction that is formally justified as
(a) ontologically adequate to represent games, and (b) epis-
temologically adequate to reason over them.

Approach We justify ontological adequacy by supporting
the UGO, justified in turn via theoretical saturation. We jus-
tify epistemological adequacy by formally deriving how our
model may be realized in a game engine. Unlike prior work,
our derivation is agnostic to an implementing engine be-
cause it is based on a mathematical game engine model.

Constructing the Game World Abstraction
In this section, we reify the abstraction gap by representing
a game engine as a CVW, using the Unity Game Engine’s
Entity–Component System (ECS) as a running example. We
then formally derive how an engine is linked to the game
world component (from Fig. 1).

A Formal Model of Game Engines
Game engines are built as a collection of interfaces that
expose all the parameters a game designer has available;
e.g. several of Unity’s parameters appear in its user inter-
face (Fig. 2). To model game engines mathematically, we
rely on the CVW—it represents the smallest set of indepen-
dently manipulable and computationally realizable parame-
ters a designer may use to build games.

We propose a CVW is implicitly defined by a game en-
gine. An engine imposes a particular family of parameters;
each family member computationally models some facet of
the real world (cf. Virtual Reality, LaValle 2019). As such,
there is not a single CVW; each engine defines its own. At
the same time, our community-of-practice has converged on
at least three “fundamental abstractions”—family members
that feature in a wide array of engines (Gregory 2018).

The graphics (G) engine abstraction is a computational
model of geometric information that defines a game’s spa-
tial universe as well as the spatial form of entities within
it. Unity requires that every GameObject—i.e. Entity to be
rendered—define a Transform Component, “used to store
and manipulate the position [and] rotation [...] of the ob-
ject” (Unity Technologies 2021, cf. Transform). It repre-
sents the 3D Euclidian Space E3 and geometric constructs
with position—~p = (x, y, z) ∈ E3—and orientation within
SO(3), the set of all 3D rotations for p—described as unit
quaternions ~q = (1, i, j,k) ∈ R4.

The physics (P) engine abstraction is a computational
model of physical information that defines geometric behav-
ior with respect to motion. Unity requires a Rigidbody Com-
ponent for a GameObject to be put under the control of its
physics engine, which “lets you apply forces to the object
and control [it] in a physically realistic way” (Unity Tech-
nologies 2021, cf. Rigidbody). It represents reasoning about
translation (changes in position) and rotation (changes in
orientation) per linear velocity (V) and acceleration (A),
and their angular counterparts (ω and α), all subsets of R.

The time (T) abstraction is a computational model of
temporal information that manifests via the game loop,
which defines the sequential dynamics of the game. In Unity,
clicking on the Play button III allows an Entity’s Component
values to change (Unity Technologies 2021, cf. Time). By
default, the loop runs at 60Hz over floating point (≈ R) real
world time; i.e. we observe one game frame—game engine
snapshot of all GameObjects—over ∆t = 1/60 seconds.

13

The abstractions G, P, and T are so common that we say
they form part of a communal game engine—a special CVW:
Definition 1 (Communal Game Engine). A model of a
game engine, defined as a tuple C ′VW = (G,P,T,O).
G =

(
E3, SO(3)

)
is a geometric world. P = (V,A,ω,α)

is a physical world of unit-mass rigid-bodies. T = (τ , σ) is
a time scale, where τ ⊆ R is the time domain and σ is the
forward jump operator over a time point t ∈ τ .
σ(t) finds the next time point: sup{t′ | t′ ∈ τ ∧ t′ > t}.

We define it as σ(t) = t+ ∆t with ∆t = 1/60.
Finally, O is a set of game objects. Each game object is a

tuple o = (Gt,Pt, t), where Gt is its geometric state at t, Pt
is its physical state at t, and t is its time index, s.t.:

All Game Objects︷ ︸︸ ︷
∀o ∈ O :

belong to the Communal Game Engine’s...︷ ︸︸ ︷
Gt ∈ G ∧ Pt ∈ P ∧ t ∈ τ ∈ T

Geometric World,
Physical World, and... ...Time Scale.

An o’s state at t is Φ(o, t) = (~pt, ~qt, ~vt,~at, ~ωt, ~αt, t). In turn,
a C ′VW’s state at t is the state of all its objects:

Φ(C ′VW, t) =

C′
VW⋃

o∈O
{Φ(o, t)} (6)

Eq. 6 demonstrates how the C ′VW is a discrete time dy-
namic simulation (DTDS, Garcı́a and Mollál 2005), whose
temporal evolution can be modeled via a state-transition sys-
tem. We distinguish the C ′VW system as concrete: (S,U,γ).

It defines S from all possible values in Eq. 6, U from all
possible changes to values of a t-indexed state Φ(C ′VW, t),
and γ as a state mapping from ti to ti+1 through a tran-
sition. Concrete states and transitions (S × U) define the
C ′VW’s phase space, and we define γ as the commonly used
Newton-Euler-1 method (see Gregory 2018; LaValle 2019).

From Game Engines to Worlds via Goals
We define goals as conditions in a CVW that players are ex-
pected to meet during play. As we prove in Theorem 1, goals
necessarily introduce a level of game engine abstraction.
The intuition is that designers must minimally specify what
“counts” to meet a game’s goals. This indirectly specifies
what does not count, meaning that we at least distinguish
between (more-abstract) goal v. non-goal states.

For example, imagine we are designing a game where the
goal is to reach one of four cardinal locations (Fig. 3).

at(
Pla

yer
, E

)

at(Player, N)
at(Player, S)

at(
Pla

yer
, W

)

Figure 3: The goal state of being at one of four locations
induces a partition of C ′VW’s geometric world, as illustrated.

To do so we must define: (1) what phase subspace counts
as part of each cardinal location, and (2) what it means for
the player to reach one. This partitions our C ′VW into four
geometric subspaces, and distinguishes two states: the state
of being at the goal location, and the state of not being there.
Theorem 1 (Goal State Abstraction). Defining a concrete
goal state for a CVW induces an abstraction over it.
Lemma 1.1 (Goal State Partitioning). Defining a concrete
goal state for a CVW induces a partition over the CVW set.
Proof sketch, Lemma 1.1 (Contradiction of Cases).
Assume we define a concrete goal state sg that does
not induce a partition over the set CVW. Then, either: (a) all
elements of CVW are part of sg , or (b) no elements of CVW
are part of sg; otherwise, there would be a partition. In (a):
if all elements are part of sg , then all conditions are trivially
met and there is no game, and thus there is no sg (⊥). In (b):
if no elements are part of sg , then sg does not exist (⊥).
Proof sketch, Theorem 1 (Direct). Per Ranzato and Tapparo
(2007), defining a set partition induces an abstraction over
the set. Because a concrete goal state induces a set partition
overCVW (Lemma 1.1), it induces an abstraction over it.

The result of goal state abstraction is our game world,
where subsets of the CVW reify as elements of the AVW.

The AVW’s Time Scale Abstracting over C ′VW produces a
side-effect: because C ′VW is a DTDS (Eq. 6), any resulting
AVW is also a DTDS, but at a possibly coarser time scale
(Giambiasi and Carmona 2006). This was described by Za-
gal and Mateas (2010) as going from game world time—
induced by events in the world, measured in an engine’s dis-
crete wall-clock—to coordination time—induced by events
that coordinate agents, measured in turns or actions.

We describe this more precisely: whereas the C ′VW oper-
ates in game world time as recorded in the engine’s time
scale T, the AVW operates in coordination time as recorded
in the game world’s time scale—we denote it as T = (τ̇ , δ).
Thus, the C ′VW andAVW define their own transition systems,
which are linked via their respective time scales. In the limit,
the AVW’s scale can match but not exceed the density of the
C ′VW’s: i.e. τ̇ ⊆ τ (Garcı́a and Mollál 2005).

For example, coordination time might operate over sec-
onds to enforce timed turns in our game. This would relate
T to T as in Fig. 4, effectively making τ̇ the integers I.

To stay linked from onset—when (t0 ∈ τ) = (t0 ∈ τ̇)—
the δ operator must preserve the order of σ (Garcı́a and
Mollál 2005). Thus, T must soundly approximate T.

 Time ScaleAVW
⌧̇ = I

⌧ = R
�60(t0)�50(t0)�40(t0)

10�t

t0 �(t0) �(�(t0))

�t

�(t0)t0

 Time ScaleC 0
VW

Figure 4: When the C ′VW’s time scale τ = R is abstracted
into theAVW’s time scale τ̇ = I, 60 applications of σ(t) “fit”
in 1 application of (the coarser) δ(t) = dte (∵ 60∆t = 1).

14

A Formal Model of Game Worlds
Much like there is not one CVW, there is also no one AVW
that may be defined atop a given one.

For instance, in our previous example from Fig. 3 we
chose to take the C ′VW’s geometric world and partition it
to suit our design needs: i.e., our need to denote the car-
dinal locations in order to state when a player is at one.
But in general, a game designer may construct any num-
ber of AVWs for a given CVW. How to go about building
one depends on what goals a designer wishes to represent.
We could have wanted to represent cardinal and ordinal lo-
cations (i.e., Northwest, Southwest, Northeast, Southeast),
or a different goal altogether. This would impact what the
AVW’s reified subsets mean beyond what the contained el-
ements from the CVW intrinsically represent (which for the
C ′VW are numbers). Had we represented the ordinals for ex-
ample, a portion of North’s subspace would cease to mean
North and would instead mean Northwest (or Northeast).

Further, in the same way that a CVW is implicitly defined
by the engine, an AVW is implicitly defined by whatever is
built with the engine. That is, a technical game designer need
not define theAVW overtly; it will manifest as a consequence
of game programming. The mentioned concept of being at
a location, for example, is indirectly introduced by the code
in Listing 1. This code performs part of the abstraction il-
lustrated in Fig. 3, allowing a designer to check whether
a player is contained within the Mesh (i.e. geometric world
subspace) that bounds a cardinal location.

1 Transform player; // Player ’s geometric state

2 Dictionary <string , Mesh > cardinals; // N,W,S,E

3 bool At(string name) {

4 Mesh loc = cardinals[name]; // assume ok

5 if(! loc.bounds.Contains(player.position))

6 return false; // Player not at given cardinal

7 return true; } // Player at given cardinal

Listing 1: Code to check a Player being at a location (Unity
Mesh), indirectly introducing part of the abstraction in Fig. 3.

Expanding the Communal Model Deriving an AVW
from our communal game engine led to our introduction of
T. One may naturally ask whether abstract virtual worlds ex-
hibit enough regular structure to warrant introducing G, P,
and O as analogues to G, P, and O. Is there a communal
game world A′VW worth defining? We believe there is.

The only requirement that such an AVW must satisfy is
that it be a sound approximation of itsCVW (Cardona-Rivera
2020). This means that modeling the communal game world
atop the C ′VW only requires theA′VW to: (1) represent a state-
transition system that soundly approximates the one defined
byC ′VW. While T with analogous G, P, and O offers an epis-
temologically adequate representation for anA′VW, other for-
malisms may do so as well. We therefore turn to our guiding
pragmatic rationale: the desire for ontological adequacy.

For us, justifying our communal game model as ontolog-
ically adequate is tantamount to ensuring that the A′VW is
capable of supporting the UGO as discussed before. This
adds two additional modeling constraints; namely, that the

A′VW can: (2) represent the goal typology from Table 1, and
(3) link to other UGO facets as the goal typology demands.

In service of the above three modeling constraints, we
propose a general-purpose and parsimonious approach to
representing the A′VW—via a FOMµ-backed STRIPS-based
representation. Using FOMµ affords reasoning about the
C ′VW’s concrete state-transition system at theA′VW level, and
using STRIPS guarantees that the A′VW itself codifies its own
state-transition system. In effect, Def. 2 “lifts” (S,U,γ) to
a coarser-grain transition system. Formally:
Definition 2 (Communal Game World). An abstraction of
the C ′VW, defined as a tuple A′VW = 〈L, S, U, I,G〉.
L is a set of FOMµ sentences over a concrete structure

K = 〈S,U,γ,D, Iµ〉, where Iµ : 2S → D and D = C ′VW.〈
S ⊆ 2L, U

〉
are abstract states and transitions, I ∈ S

is the game world’s initial state, and G ⊆ 2S is the set of
possible goal state families for the game world.

Technical game design requires “lifting” the C ′VW into
an A′VW, and precisely defining how operations at the A′VW
“ground out” in the C ′VW it abstracts. Def. 2 supports a com-
munal abstraction scheme Υ′a in that regard:

Υ′a =

〈 Defined by the
Game Engine︷ ︸︸ ︷
C ′VW , Φ ,

Defined by the
Technical Game Designer︷ ︸︸ ︷
A′VW , γ × β , L , Iµ

〉
(7)

Def. 1 Eq. 6 Def. 2 Eqs. 4 and 5
The introduction of goals (see Theorem 1). Iµ : 2S → D

Because A′VW must soundly approximate C ′VW, Φ and
(γ × β) must be bisimilar (“match each other’s moves”).
Bisimulation can be proven via FOMµ, but is out of scope.

A Formal Model of the Game System
Def. 2 contextualizes the rest of our game system model,
which is summarized in Table 2 and detailed as follows.
Definition 3 (Mechanics). A model of world transitions ac-
tionable by player and non-player agents, invariant under
perception, and definable relative to states and goals (see
Lo et al. 2021), defined as a tuple M = 〈A,E,R〉.
A ⊆ U are player actions. E ⊆ U are non-player events.

R are player goal refinements, actionable by all game agents.

Definition 4 (Dynamics). A model of run-time behavior of
world mechanics acting on player inputs, system responses,
and trajectories thereof over time (cf. Hunicke, LeBlanc, and
Zubek 2004), defined as a tupleD = 〈γ, β〉, where these are
transition functions akin to Eqs. 4 and 5, defined in Eq. 10.

Concept Constructs
Game World States (VR, AP), Goals (GR), Language (µ)
Mechanics Actions (AP), Events (AP), Refinements (GR)
Dynamics State- (AP) / Goal-transitions (GR)

Table 2: We map game system model concepts (left) to for-
mal constructs (right) from automated planning (AP), goal
reasoning (GR), virtual reality (VR), and the µ-calculus.

15

Definition 5 (Game System). A model of game artifacts,
defined as a tuple a = 〈A′VW,M,D〉.
A′VW is the game world (Def. 2), M are the mechanics

(Def. 3), and D are the dynamics (Def. 4). a is defined such
that game transitions are the mechanics,

U ≡ A ∪ E ∪R (8)

these transitions are defined per the A′VW’s FOMµ language,

∀u ∈ U : {PRE(u), ADD(u), DEL(u)} ⊆ 2L (9)

and dynamics are defined over the world, its mechanics, and
the history of state- and goal-transitions that may manifest.1

γ : 2S × 2U → S and β : G× 2S × 2R → G (10)

Summative Assessment and Future Work
We review in turn how our work supports our claims that
(a) we expose the depth of abstraction latent in current game
system models, (b) our game system model is ontologi-
cally adequate relative to the UGO, and (c) our game sys-
tem model is epistemically adequate relative to our code-
agnostic justification of realizability via a game engine.

Uncovering Latent Abstractions in Game System Models
Our derivation demonstrates that the depth of abstraction in
game system models to date is tantamount to the depth of ab-
straction between operational and denotational semantics.

Operational concerns are proof-theoretic and give mean-
ing to models in terms of algorithms that identify which out-
puts are obtainable from which inputs. Denotational con-
cerns are truth-theoretic and give meaning to models in
terms of algorithm-agnostic mathematical functions.

Operational semantics have dominated game system mod-
els to date, which support specifying languages and inter-
preters to abstractly reason over games. Complementarily,
denotational semantics captures the mathematical meaning
that underpins a program written in such a language, and in
this paper we define a mathematical language for game sys-
tem models. We agree with Scott (1970, p. 169) that:

It is all very well to aim for a more “abstract” and a
“cleaner” approach to semantics, but [...] in the end the
[model] still must be run on a machine [...] unless there is a
prior, generally accepted mathematical definition of a lan-
guage at hand, who is to say whether a proposed implemen-
tation is correct?

Ontological Adequacy for Games We support the UGO’s
properties as follows. A facet is dynamic if it is in the do-
main of γ and β, and is static otherwise. Further, a facet
is more-continuous the more it manifests in the C ′VW, and
more-discrete the more it manifests in the A′VW. Critically,
our formalisms only represent explicit facets because by def-
inition the implicit ones appeal to “a person’s cognitive ca-
pabilities” (Debus 2019, p. 150). Thus, being implicit is not
a game system property; it is player-relative.

Of the UGO’s facets, two are overtly reified: mechanics
via Def. 3, and goals via Def. 2. The space, time, and entity

1These do not state what happens if player and system act at
once. We assume a game-tree model; any arbitration scheme works.

Goal Type Representation inA′VW = 〈L, S, U, I,G〉
Win End states Se ⊆ S, and fscore : Se → N in L
Finish Se ⊆ S
Prolong Non-terminal states Sn = S \ Se
Choose When |Us = {u | u ∈ U ∧ PRE(u) ⊆ s}| > 1
Configure Correct states Sc ⊆ S
Create f⊕ : C → 2C in L
Find {entity1, location1, at2} predicates in L
Obtain has2 predicate in L
Optimize Numeric fluents in L (see Fox and Long 2003)
Reach adjacent2 predicate in L
Remove Null constant ε and f	 : 2C → ε in L
Solve When |Us| > 1 results in a state s ∈ Sc
Synchronize ψ ← ∀x, y∃l : at(x, l) ∧ at(y, l) and µX.ψ holds

Table 3: How the A′VW accommodates the UGO’s goals.

facets manifest in both CVW and AVW; as G and P, T, and
O in the former, and via L-encoded abstractions in the lat-
ter. The randomness facet requires a small revision to Eq. 10.
Our discussion simplified it as deterministic. To accommo-
date stochasticity, we set the range of γ as 2S and that of β
as 2G; i.e. transitions may manifest many states or goals.

As we have demonstrated, goals are central: Theorem 1
observes they are sufficient to induce a game design abstrac-
tion. Table 3 summarizes how theA′VW can represent all goal
types and linked facets therein, thereby offering evidence
of our ontological adequacy. Our future work will formally
prove the extent of this coverage.

Epistemological Adequacy for Games Theorem 1 is also
the keystone that links models and engines. The critical
piece to realizing game system models in a game engine is
the abstraction scheme Υ′a from Eq. 7. Its derivation bridges
the abstraction gap for a game system model’s implementa-
tion, and offers evidence of our epistemological adequacy.

Other game system models are “baked in” to the engines
or platforms they are built with, but it is not obvious how one
would implement models outside their reference implemen-
tation. Our work permits mathematically stating (but does
not state for any model but our own in Fig. 1) how a model’s
operations “ground out” in engines. Our future work will
seek implementing other models for comparison.

Conclusion
In this paper, we develop a rigorous link from our novel
mathematical foundation of game engines to our novel
model of game systems the foundation permits expressing.

Def. 1 is worth revisiting: it represents the lowest level of
abstraction one can manipulate in our model. That defini-
tion is deliberate—the C ′VW (and the A′VW abstraction over
it) supports space, time, mechanics, and entities of the Uni-
fying Game Ontology. But for certain games, this is an over-
commitment: what of games with no physics? or of Twine
games, which lack explicit geometric worlds? And what of
games bound by a platform? Future work might explore al-
ternative engine models to answer these questions. At the
same time, we offer a (possibly) striking observation: all the

16

frameworks we cite and the related works they cite—more
than 15, using different formalisms—rely on finite state ma-
chines (FSMs); our model relies on FSMs too. Through in-
ductive generalization per enumeration, we conjecture:
Conjecture 1 (Video Game Systems are FSMs). A finite
state machine is a necessary and sufficient model of compu-
tation that can characterize all video game systems.

We leave this conjecture open. However, if an FSM is suf-
ficient for game systems, we might revise C ′VW to only in-
clude time scale T, as it would ground the FSM at the A′VW
level. This does not invalidate our work, but begs the ques-
tion: how representative is our chosen C ′VW?

In closing, we clarify that we are not interested in for-
mal methods for their own sake. What we model is moti-
vated by game design and game studies concerns; e.g. bet-
ter understanding game engines’ role in shaping the designs
of games, how to better conceptualize cross-platform games
via engines, etc. We hope to help others build on each other
(both within research and practice, and across it) by being
scientifically-grounded and community-relevant.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant No. #2046294. We also
wish to thank Michael Clemens, Justus Robertson, and the
anonymous reviewers who were tremendously helpful with
their comments during peer review.

References
Aarseth, E.; and Möring, S. 2020. The Game Itself? Towards a
Hermeneutics of Computer Games. In Proc. of the Int’l. Conf. on
the Foundations of Digital Games.
Aarseth, E. J. 1997. Cybertext: Perspectives on Ergodic Literature.
Baltimore, MD, USA: John Hopkins U. Press.
Abowd, G. D. 1991. Formal aspects of human-computer interac-
tion. Ph.D. thesis, U. of Oxford.
Cardona-Rivera, R. E. 2020. Foundations of a Computational Sci-
ence of Game Design: Abstractions and Tradeoffs. In Proc. of the
16th AAAI Conf. on AIIDE, 167–174.
Cardona-Rivera, R. E.; Gardone, M.; Peterson, L.; Hiatt, L. M.; and
Roberts, M. 2022. Re-examining the Planning Basis of Goal-driven
Autonomy Problems. In Proc. of the Workshop on Integrated Plan-
ning and Execution at ICAPS.
Debus, M. S. 2019. Unifying Game Ontology: A Faceted Classifi-
cation of Game Elements. Ph.D. thesis, ITU Copenhagen.
Debus, M. S.; Zagal, J. P.; and Cardona-Rivera, R. E. 2020. A
Typology of Imperative Game Goals. Game Studies, 20(3).
Dormans, J. 2009. Machinations: Elemental Feedback Structues
for Game Design. In Saur, J.; and Loper, M., eds., Proc. of the 5th
Int’l. NA Conference on Intelligent Games and Simulation, 33–40.
Ebner, M.; Levine, J.; Lucas, S. M.; Schaul, T.; Thompson, T.; and
Togelius, J. 2013. Towards a Video Game Description Language.
In Artificial and Computational Intelligence in Games. Dagstuhl.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence, 2(3-4): 189–208.
Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to PDDL for
expressing temporal planning domains. J. of Artificial Intelligence
Research, 20: 61–124.

Garcı́a, I.; and Mollál, R. 2005. Videogames decoupled discrete
event simulation. Computers & Graphics, 29(2): 195–202.
Giambiasi, N.; and Carmona, J. C. 2006. Generalized discrete event
abstraction of continuous systems: GDEVS formalism. Simulation
Modelling Practice and Theory, 14(1): 47–70.
Gregory, J. 2018. Game engine architecture. CRC.
Grünvogel, S. M. 2005. Formal models and game design. Game
Studies, 5(1): 1–9.
Hunicke, R.; LeBlanc, M.; and Zubek, R. 2004. MDA: A Formal
Approach to Game Design and Game Research. In Proc. of the
Workshop on Challenges in Game AI.
Juul, J. 2007. A Certain Level of Abstraction. In Proc. of the
DiGRA Conf.
Kashima, R.; and Okamoto, K. 2008. General models and com-
pleteness of first-order modal µ-calculus. J. of Logic and Compu-
tation, 18(4): 497–507.
LaValle, S. M. 2019. Virtual Reality. Cambridge U. Press.
Lewis, M.; and Jacobson, J. 2002. Game Engines in Scientific Re-
search. Comm. of the ACM, 45(1): 27–31.
Lo, P.; Thue, D.; and Carstensdottir, E. 2021. What Is a Game
Mechanic? In Int’l. Conf. on Entertainment Computing, 336–347.
Martens, C. 2015. Ceptre: A language for modeling generative
interactive systems. In Proc. of the 11th AAAI Conf. on AIIDE.
Martens, C.; and Hammer, M. A. 2017. Languages of Play: To-
wards Semantic Foundations for Game Interfaces. In Proc. of the
12th Int’l. Conf. on the Foundations of Digital Games, 1–10.
McCarthy, J. 1981. Epistemological problems of artificial intelli-
gence. In Readings in artificial intelligence, 459–465. Elsevier.
Nelson, G. 2001. The Inform Designer’s Manual. Placet Solutions.
Osborn, J. C. 2018. Operationalizing Operational Logics. Ph.D.
thesis, U. of California, Santa Cruz.
Osborn, J. C.; Lambrigger, B.; and Mateas, M. 2017. HyPED:
Modeling and analyzing action games as hybrid systems. In Proc.
of the 13th AAAI Conf. on AIIDE, 87–93.
Osborn, J. C.; Wardrip-Fruin, N.; and Mateas, M. 2017. Refining
operational logics. In Proc. of the 12th Int’l. Conf. on the Founda-
tions of Digital Games, 1–10.
Ranzato, F.; and Tapparo, F. 2007. Generalized strong preserva-
tion by abstract interpretation. J. of Logic and Computation, 17(1):
157–197.
Robertson, J.; and Young, R. M. 2018. Perceptual experience man-
agement. IEEE Transactions on Games, 11(1): 15–24.
Schaul, T. 2013. A Video Game Description Language for Model-
based or Interactive Learning. In Proc. of the 9th IEEE Conf. on
Comp. Inteligence in Games, 1–8.
Scott, D. 1970. Outline of a mathematical theory of computation.
Technical Monograph PRG-2, Oxford University.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Ludocore: A
logical game engine for modeling videogames. In Proc. of the 6th
IEEE Conf. on Comp. Intelligence in Games, 91–98.
Thue, D.; and Bulitko, V. 2018. Toward a unified understanding
of experience management. In Proc. of the 14th AAAI Conf. on
AIIDE.
Unity Technologies. 2021. Unity Scripting Reference. Version:
2021.3. Last checked: 03-05-22.
Zagal, J. P. 2014. Ontology (in games). In Ryan, M.; Emerson, L.;
and Robertson, B., eds., The Johns Hopkins Guide to the Digital
Media. Johns Hopkins U. Press.
Zagal, J. P.; and Mateas, M. 2010. Time in video games: A survey
and analysis. Simulation & Gaming, 41(6): 844–868.

17

