
A Demonstration of Blabrecs, an AI-Based Wordgame

Max Kreminski, Isaac Karth
University of California, Santa Cruz

{mkremins, ikarth}@ucsc.edu

Abstract
Blabrecs is an AI-based modification to the popular
wordgame Scrabble. In Blabrecs, English dictionary words
may not be played; instead, players may only play nonsense
words that are approved by a classifier trained on a list of En-
glish dictionary words. Gameplay therefore revolves around
inventing plausibly English-sounding nonsense words and
learning how to fool the classifier. In this paper, we briefly
introduce our design goals for Blabrecs; describe the process
by which Blabrecs was designed; and present two distinct im-
plementations of the game’s AI judge.

Introduction
Blabrecs is an AI-based (Treanor et al. 2015) rules modifi-
cation to the popular wordgame Scrabble. In Blabrecs, as in
Scrabble, players take turns drawing letter tiles from a bag
and placing these tiles on a grid to form words, which are
then scored based on letter frequencies and tile score mul-
tipliers to award players with points. Unlike Scrabble, how-
ever, Blabrecs does not use an English dictionary to deter-
mine what letter sequences constitute valid words. Instead,
it uses a classifier trained on the dictionary to accept or reject
letter sequences. Actual dictionary words are disallowed;
only nonsense sequences that the classifier misclassifies as
words are allowed to be played.

Blabrecs is implemented as a web page1. It offers a text
box into which words can be inserted for testing, plus an ed-
itable table of definitions for each valid word (so that play-
ers can build up a lexicon of imaginary words as they play)
and a listing of the Blabrecs rules as they differ from those
of Scrabble. The current version of Blabrecs offers two dis-
tinct classifiers: one based on a Markov chain and one based
on a convolutional neural network. The players may switch
between these classifiers freely; this allows them to develop
a sense of how the classifiers differ in terms of what letter
sequences they are likely to approve or disallow as words.

Since its initial release in December 2020, Blabrecs has
been widely shared on social media. It has also been cov-
ered in several news outlets, including New Scientist2; The

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://mkremins.github.io/blabrecs
2https://www.newscientist.com/article/mg24933162-600-why-

you-should-trust-reindeer-to-pick-stocks-over-politicians

Next Web3; the board game news site Dicebreaker4; and the
linguistics podcast Because Language5. This suggests to us
that the game has resonated with audiences in at least some
of the intended ways.

Design
We had several design goals for Blabrecs. First, we wanted
to create a game that highlights the absurdity of trying to
delineate English-language words as “valid” or not, whether
by computational process or human-authored dictionary. We
find Scrabble’s focus on dictionary memorization and flaky
AI-based spelling checkers frustrating for similar reasons:
in both cases, an external authority is imposed between the
individual and their own language, often with alienating re-
sults. From this angle, Blabrecs can be viewed as a protest
against the increasingly AI-mediated phenomenon of lin-
guistic prescriptivism.

We also wanted to demonstrate how gameplay could be
used to help players develop an intuitive feel for how an AI
system works. In the course of Blabrecs gameplay, players
are strongly incentivized to discover and exploit quirks in the
AI gatekeeper’s evaluation process; additionally, players can
compare and contrast how words are evaluated by two dif-
ferent classifiers. As a result, players may come away from
Blabrecs with a stronger intuitive sense of how their writing
might be evaluated by the kinds of AI systems used here.

Finally, we wanted to create a game in which players build
up a private language with one another as they play. In each
Blabrecs play session, as players play new words, they are
added to a table of player-editable definitions, allowing the
players to collectively decide on meanings for the words
they have invented. Some of these words may live on within
the group of players as in-jokes, mirroring the way that a
private lexicon is invented between the players in tabletop
language creation games like Dialect (Thorny Games 2018).

To validate the high-level gameplay concept, the design
of Blabrecs began with a Wizard of Oz prototype in which a

3https://thenextweb.com/neural/2020/12/14/new-ai-scrabble-
mod-only-allows-words-that-dont-exist

4https://www.dicebreaker.com/games/scrabble/news/scrabble-
variant-nonsense-words-blabrecs-ai

5https://becauselanguage.com/17-words-of-the-week-of-the-
year-2020

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

243



human played the role of the AI, judging letter sequences as
valid or invalid on the basis of intuition. Several rounds of
playtesting revealed that the invention of feasible nonsense
words to bypass a gatekeeper agent could produce a com-
pelling play experience, so we went forward with a compu-
tational version of the game.

Implementation
Markov Chain Classifier
The initial implementation of the Blabrecs classifier is based
on a Markov chain trained on the ENABLE word list6,
which is often used as a baseline English dictionary for word
games. To train the model, we first turn each word in the
word list into a sequence of character trigrams; for instance,
the word “apple” is turned into the sequence ["ˆap",
"app", "ppl", "ple", "le$"] (where the ˆ and $
characters represent the start and end of a word respec-
tively). Then we calculate and store the frequency of each
trigram relative to other trigrams that begin with the same
two-character prefix.

To evaluate the plausibility of a letter sequence using this
model, we divide it into a sequence of trigrams as before and
look up the frequency of each trigram in the Markov chain.
The per-trigram frequencies are first multiplied together to
determine an overall likelihood score for the input letter
sequence; this score will always be 0 if the sequence con-
tains any trigrams that were not present within the ENABLE
word list, and longer sequences will generally produce lower
scores. Then we check whether this score is above or below
the average likelihood score for real dictionary words of the
same length. If the letter sequence is both more likely than
the average real word of this length and does not appear in
the dictionary, we allow it to be played.

This classifier is quirky. In particular, it can often be con-
vinced to accept words that contain some highly implausible
trigrams if several highly plausible trigrams are also present.
Additionally, with the exception of the first and last trigram
in each word, it pays no attention to where in the word a
trigram occurs. Nonetheless, this classifier was the only one
present when the game was launched, and it seems to mir-
ror the typical player’s intuitive sense of plausibility well
enough to make for interesting play.

Neural Classifier
An alternative implementation of the Blabrecs classifier,
provided by Isaac Karth, makes use of a convolutional neu-
ral network (CNN). This classifier is modeled loosely on
the CNN-based text classifier presented in Step 4 of the
Google Developers text classification guide (Google Devel-
opers 2021), but modified to work in TensorFlow.js (so that
it can be used in a web browser) and to treat characters as
tokens instead of words (since our goal, unusually for text
classification, is to classify sequences of up to 16 letters,
rather than longer passages of text).

Because ENABLE alone proved to contain too little data
to train a good CNN, this classifier was instead trained on

6https://www.wordgamedictionary.com/enable

three word lists: the YAWL7 (a strict superset of ENABLE),
Letterpress8, and Moby9 word lists. These word lists were
concatenated together, and duplicate words were removed.
Additionally, we generated 2,016,000 unique non-word se-
quences of random letters between 3 and 24 letters in length
to use as negative examples; this is approximately six times
as many negative examples as there are positive examples
in the combined word list. For this data generation task, we
used a weighted random process to select letters at the same
rate that they appear in known English words.

To evaluate a player-submitted letter sequence, we use the
classifier to predict its likelihood of being a valid English
word and check whether the predicted likelihood is greater
than 0.82. This threshold was determined by manually test-
ing a large number of words and picking a cutoff that seemed
to match our intuitive notion of word plausibility.

Evaluating the quality of a nonsense word gatekeeper is
difficult and largely intuition-driven. Altogether, though, the
neural classifier seems to match the authors’ intuition for
nonsense word plausibility more reliably than the Markov
chain classifier; in particular, it seems less prone to “false
negatives”, or judging nonsense words as implausible that
the authors consider plausible. Additionally, the neural clas-
sifier’s quirks are less obvious and easy to learn than those
of the Markov chain classifier: it is more difficult to figure
out what features the neural classifier weights most strongly
in its estimation of nonsense word plausibility.

Related Work
In addition to the aforementioned language creation table-
top game Dialect, several other AI-based language games
and explorations served as sources of design inspiration for
Blabrecs. The Scrabble-like word construction game Re-
wordable (Parrish, Simon, and Szetela 2017) is of particular
note for how the designers made use of AI to identify a set
of letter sequences that could be used as cards to improve on
Scrabble’s letter-tile-based gameplay, though in Rewordable
the player does not interact directly with an AI system.

One of the first author’s previous AI-based game
projects—Throwing Bottles at God (Kreminski and
Wardrip-Fruin 2018)—represents an earlier attempt to make
Markov chains playable. Rather than classifying player-
submitted text, Throwing Bottles makes use of Markov
chains as a predictive text algorithm to help the player write
short messages in a particular style; this can be viewed
in hindsight as a failed experiment, whereas Blabrecs has
been much more successful in eliciting the desired player
experience.

Acknowledgements
Max Kreminski would like to thank their family for playtest-
ing the initial Wizard of Oz prototype of Blabrecs.

7https://github.com/elasticdog/yawl
8https://github.com/lorenbrichter/Words
9https://www.gutenberg.org/files/3201/files/SINGLE.TXT

244



References
Google Developers. 2021. Step 4: Build, Train, and Eval-
uate Your Model. https://developers.google.com/machine-
learning/guides/text-classification/step-4. Accessed: 2021-
08-05.
Kreminski, M.; and Wardrip-Fruin, N. 2018. Throwing Bot-
tles at God: Predictive text as a game mechanic in an AI-
based narrative game. In International Conference on Inter-
active Digital Storytelling, 275–279. Springer.
Parrish, A.; Simon, A.; and Szetela, T. 2017. Rewordable:
The Uniquely Fragmented Word Game. https://rewordable.
com. Accessed: 2021-08-05.
Thorny Games. 2018. Dialect: A Game About Language and
How It Dies. https://thornygames.com/pages/dialect. Ac-
cessed: 2021-08-05.
Treanor, M.; Zook, A.; Eladhari, M. P.; Togelius, J.; Smith,
G.; Cook, M.; Thompson, T.; Magerko, B.; Levine, J.; and
Smith, A. 2015. AI-based game design patterns. In Proceed-
ings of the International Conference on the Foundations of
Digital Games.

245


