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Abstract
Our research focuses on personalized virtual reality exposure
therapy (VRET) based on the Experience-Driven Procedural
Content Generation (EDPCG) framework. There are existing
approaches for personalized VRET; however, they are sub-
jective and require hand-authored and predefined rules that
may not generalize to all subjects. We propose a framework
to personalize VRET based on predicting subjects’ experi-
ences via physiological sensors and machine learning algo-
rithms. The framework then automatically adapts exposure
parameters based on the subject’s physiological response us-
ing a PCG method. We intend to conduct two human subject
studies for arachnophobia and fear of public speaking.

Introduction
Exposure therapy is known as the most effective psycho-
logical treatment to reduce fear and anxiety responses, and
decrease avoidance (Abramowitz, Deacon, and Whiteside
2019). In this therapy, a subject is gradually exposed to a
feared situation or object in a safe environment, learning to
become less sensitive over time. Studies show that exposure
therapy should be ideally personalized to better fit patients’
needs as it leads to more effective outcomes (Smits, Powers,
and Otto 2019).

Prevailing personalized technology-based exposure ther-
apies require manual modification of exposure parameters
by a therapist to satisfy individual needs. For example, in
(Rizzo et al. 2014) study, the therapist can introduce more
provocative elements in a combat-related VR environment
for patients with Post-Traumatic Stress Disorder.

There is prior work on automatically adapting these
parameters; however, they rely on hand-authored, prede-
fined rules, which may not generalize to all individu-
als. Automated game content generation techniques could
be a promising approach for personalized exposure ther-
apy. These approaches generate automated customized con-
tent in real-time based on user experience and preference.
Specifically, Experience-driven Procedural Content Genera-
tion (EDPCG) (Yannakakis and Togelius 2015) provides a
framework for systematically creating and modifying con-
tent to optimize a user’s experience (could be equivalent to
therapy experience).
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There are several approaches for obtaining user experi-
ence in an EDPCG framework— namely, subjective, ob-
jective, or game-based. In the subjective approach, the user
gives feedback about their experience, which might be sub-
jectively biased and/or intrusive during the session. The
game-based approach assumes that the users’ interaction and
performance in the game represents their cognitive state.
However, these parameters are a low-resolution model of
the players’ experience and are not ideal for exposure ther-
apy. The objective approach attempts to indirectly model the
user’s emotional state through their physiological response.
Although this approach requires wearable sensors, it poten-
tially fits in the exposure therapy context.

Related Work
Virtual Reality Exposure Therapy (VRET)
Virtual Reality-based therapy has been most successfully ap-
plied to exposure therapy, a treatment for anxiety disorders
in which subjects are gradually exposed to anxiety-inducing
stimuli in a safe and controlled environment to become less
sensitive to the stimuli. Using VR therapy, subjects can also
perform activities that may not be practical or safe in real
life, i.e., someone with a fear of flying might take a vir-
tual flight that provides the sights, sounds and smells of an
airplane. VRET has been shown to be effective for treat-
ing different anxiety disorders (Maples-Keller et al. 2017);
however, we focus on the studies that monitor physiological
measures during VRET.

Multiple studies (Lister, Piercey, and Joordens 2010; Ya-
dav et al. 2019; Kahlon, Lindner, and Nordgreen 2019) de-
veloped a virtual classroom with different audience reac-
tions and audience sizes for individuals with fear of public
speaking. The results showed an increase in skin conduc-
tance and heart rate while using VR and a significant de-
crease in pre-post treatment symptoms.

Côté and Bouchard (2005, 2009) developed a VR envi-
ronment including spiders with different levels of difficulty
(size of spiders and their walking pattern) for individuals
with Arachnophobia. The results showed positive changes
in physiological measures after treatment, indicating a de-
crease in anxiety.

Kritikos, Alevizopoulos, and Koutsouris (2021) devel-
oped an adaptive VR environment for Arachnophobia. They
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defined a handful of rules to change a spider’s appearance
and pattern of behaviour to induce the desired anxiety level
in a subject. The level of anxiety is calculated based on the
normalized electrodermal activity changes.

PCG for Rehabilitation
There are a handful of studies that implement PCG ap-
proaches for adaptive rehabilitation. Dimovska et al. (Di-
movska et al. 2010) developed a ski-slalom game for phys-
ical rehabilitation, which places different gates procedu-
rally according to the player’s performance. Correa et al.
(Correa et al. 2014) developed a self-adaptive first-person
shooter game for amblyopia in which the game parameters
were changed via PCG based on the patient’s performance.
Hocine et al. (Hocine et al. 2015) dynamically adjust the
difficulty of a pointing task for upper limb rehabilitation ac-
cording to the patient’s motor ability and performance. Ba-
dia et al. (Badia et al. 2018) designed a VR labyrinth that
promotes emotional self-awareness. They procedurally gen-
erate the maze and adapt the audio-visual elements to repre-
sent and induce emotional states. These studies applied a set
of predefined rules to change the content, assuming the sub-
jects were known ahead of time. Instead, we assume that the
subjects are unknown and show different behaviours; there-
fore, game content needs to be generated and adapted dy-
namically based on each subject’s needs.

Current Work
The main focus of this project is to develop a personalized
virtual reality exposure therapy (VRET) system that adapts
in real-time based on an individual’s needs. Prior studies
have shown the effectiveness of VRET for anxiety disorders
and related disorders (Maples-Keller et al. 2017). The un-
derlying assumption of this work is that personalized VRET
is more effective in terms of treatment than a single VRET
for all subjects.

Consequently, we propose a PCG-based framework for
personalized VRET (Fig. 1). The framework has four main
components. The subject interacts with a VR environment
while physiological sensors collect data such as ECG, res-
piration rate, skin conductance, and temperature. The data
is input to a Stress Estimator component, which predicts
the player experience through our Player Experience Model
(PEM), which includes stress. A Procedural Content Gener-
ator is passed the estimated player experience and adapts the
VR Environment accordingly in order to maintain the desired
PEM for VRET. The desired PEM for VRET is determined
by a therapist or an expert, in order to maximize the effec-
tiveness of therapy (not excessively stressful or tedious).

Based on the proposed system framework, our sub-
objectives are as follows:
• Develop a system that takes as inputs the subject’s phys-

iological response and estimates their stress level. This
system provides objective feedback about the user’s ex-
perience, which can be used in the EDPCG framework. In
progress

• Define an appropriate set of parameters for our system
to adapt for different exposure therapy goals. For exam-

Figure 1: Proposed system framework

ple, in fear of public speaking disorders, the size of the
audience is an exposure parameter, but the environment’s
brightness is not relevant. In progress

• Develop a virtual reality environment that changes the ex-
posure parameters automatically in real-time using PCG
methods. It will also include a relaxing environment to
measure the baseline physiological responses and calm
the subjects whenever required. In progress

• Investigate the feasibility of using transfer learning meth-
ods to leverage the knowledge learned from one subject
for another. The transferred knowledge might lead to sig-
nificantly more rapid progress or improved performance
in terms of finding the best exposure parameter values for
new subjects. Not started

• Conduct two human subject studies, arachnophobia and
fear of public speaking, and explore the effectiveness of
the proposed EDPCG-based system for individuals with
anxiety disorders. Not started

So far, we have developed a simple environment for
arachnophobia as a case study. The environment includes
a 3D spider with adaptive attributes, i.e., appearance and
movement, based on a study by Linder et al. Lindner et al.
(2019). This paper introduced seven spider attributes and
asked spider-fearful individuals to self-rate each attribute’s
impact on their fear. The goal is to generate a spider with
specific attributes that induces the desired stress level in the
subject, e.g., moderate stress. We apply a Reinforcement
Learning-based PCG (PCGRL) content generator to auto-
matically adapt the spider according to the estimated stress
level. Due to the ongoing pandemic, we utilized virtual sub-
jects based on previous arachnophobia psychology research
(Lindner et al. 2019) to compare our PCGRL algorithm with
baseline algorithms, i.e., random, greedy, and genetic algo-
rithms. The virtual subjects are 100 samples drawn from a
PEM obtained from the study’s findings, i.e., a probabilis-
tic model with a normal distribution of the subjects’ fear for
each spider’s attributes. Therefore, each virtual subject re-
sponds to each spider attribute differently. Fig. 2 shows an
example of running our framework for a subject. The desired
stress level in the figure is set to 7. The figure shows that
the RL agent changed the spider with the attributes repre-
sented in the left side (small, far away from subject, without
hair, brown color, without movement), to the attributes rep-
resented in the right side (large, very close to subject, with
hair, black color, too much movement and human-like loco-
motion).
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Figure 2: PCGRL results on finding the desired stress level
(7) for a subject. The spiders presented in the left and right
side induce stress levels equal to 1 and 7 respectively.

Our initial results are promising, as we found that our ap-
proach outperformed random, greedy, and genetic algorithm
baselines.

Future Work
In the future, we plan to complete every in progress and not
started task from the last section:

• First, we plan to develop a system that estimates the
subject’s stress levels based on physiological responses.
We plan to train two machine learning algorithms,
i.e., a Random Forest and an LSTM, on the existing
datasets (Schmidt et al. 2018) to classify the subject’s
physiological response to “baseline” and “stress” states.
We split the signals into predefined window sizes. The
LSTM takes as input the time-series data within each win-
dow. In order to apply the Random Forest, we extract
physiological features from each window, such as pulse
rate. In order to identify the stress level, we assume that
the membership probability of the “stress” state represents
the corresponding stress level. For example, if a sample’s
membership probabilities are 0.27 and 0.73 for “baseline”
and “stress” states, respectively, we assume a stress level
equal to 0.7 (rounded to one decimal place).

• Second, we intend to find an appropriate set of parame-
ters for specific exposure therapy goals using psycholog-
ical literature and asking experts in the related fields. For
example, Linder et al. (Lindner et al. 2019) found seven
spiders’ factors that usually scare subjects. These factors
can then be used for arachnophobia exposure therapy. We
need to define these parameters for fear of public speaking
as well.

• Next, we use transfer learning to employ the informa-
tion from previous subjects to a new subject. The idea is
that because all the subjects suffer from the same disor-
der, we expect that they may show similar behaviours to
some extent. Therefore, we plan on studying the differ-
ences between two PCGRL content generators; one uti-
lizes the previous knowledge through transfer learning

methods and the other starts without the prior knowledge.

• Finally, we intend to conduct a human-subject study. The
study will start with a simple experiment that presents
relaxing and stressful situations to observe how effec-
tive our VR environment is in terms of inducing stress
in the subjects. We expect to witness significantly differ-
ent physiological responses in these two situations. Then
we compare our proposed framework versus non-adaptive
environments in an arachnophobia test case using non-
phobic individuals. We will compare our framework with
other approaches in terms of different metrics that reflect
exposure therapy effectiveness, such as quickly reaching
and maintaining the desired stress level.

Conclusions
The purpose of this research is to present an EDPCG-based
framework for exposure therapy, wherein it collects user
experience based on objective measures. Therefore, accu-
rately estimating the user’s experience is critical, which af-
fects the framework’s performance directly. Building upon
this, an initial challenge is to find the optimal number and
types of sensors to measure physiological responses, which
is a trade-off between intrusiveness and cost on one hand
and accuracy on the other. Secondly, another challenge is to
evaluate stress level as a multi-classification problem instead
of a binary classification (with/without stress). Studying the
trade-off between the granularity of the multi-classification
problem (number of classes) and the model’s accuracy is
also important. Finally, we are required to evaluate our
framework on real subjects. If it is feasible in terms of time
and difficulty, we are interested in utilizing transfer learning
methods to adapt the learned knowledge from one subject to
another.
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