

Advanced Real-Time Hierarchical Task Network:
Long-Term Behavior in Real-Time Games

Kousuke Namiki, Tomohiro Mori, Youichiro Miyake, Shinpei Sakata, Gustavo Martins
SQUARE ENIX CO., LTD.

namikous@square-enix.com, moritomo@square-enix.com, miyakey@square-enix.com, s-sakata@square-enix.com, mart-
gust@square-enix.com

Abstract
HTN (Hierarchical Task Network) is a widespread technique
in the game industry to achieve long-term behavior and smart
intelligence in NPCs. However, in the more real-time games
of recent years, a situation has emerged where the system is
not functioning effectively. We understand the re-planning
process is the fundamental problem of HTN in real-time
games and propose a new method to solve this problem.

Introduction
In recent years, HTN (Hierarchical Task Network) has been
known as a method to achieve long-term behavior with AI
Characters in game. (Sterren 2013) (Humphreys 2013)
(Straatman et. al 2013) The general HTN system allows for
long-term thinking and consistent behavior, which in theory
improves the player's gaming experience. However, HTN
systems have several vulnerabilities: it can’t respond to
changes in the environment; it can’t respond to events with
stochastic behavior; and it can’t anticipate the behavior of
opponents. (Soemers and Winands 2016) In a real-time
game, HTN has failed to improve the quality of the game
experience beyond what game developers expected because
of these vulnerabilities. In order to overcome these problems,
we propose a method called ART-HTN (Advanced Real-
Time Hierarchical Task Network) to improve long-term be-
havior for real-time games.

 Background
HTN allows NPCs to make smart long-term decisions. For
example, in a sneaking game, the NPC can plan the safest
route to take when entering a stage with many enemies or
make smart long-term plans on how to kill enemies and

Copyright © 2021, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

which items to pick up. Such long-term NPC behavior can
improve the player's experience and make the NPCs seem
intelligent if the game progresses as planned. However, in
many real-time games, the environment is constantly chang-
ing and, over time, the situation can become completely dif-
ferent from what was originally planned, and HTN responds
by remaking the plan in a process called re-planning. How-
ever, the more frequently re-planning is performed, the more
the NPCs lose their ability of long-term thinking, and the
closer they get to the kind of reactive behavior described in
the FSM or BehaviorTree. In order to address this issue,
ART-HTN will make several improvements.

 Functions of ART-HTN
The ART-HTN has three main functions: Simulation Plan-
ner, Multi Scenario Plan and Plan Executor.

Simulation Planner
In the planning process, we use the simulation-based plan
generation method instead of the traditional symbolic plan-
ner. Since it is difficult to run a fast simulation with all the
variables of a 3D game, we create a simple game model that
extracts the main parameters that affect the game’s outcome
and use this model for simulation-based planning. (Sailer,
Buro and Lanctot 2007) Thus, the simulation planner can
consider multiple candidate tasks in a specific situation, and
these multiple tasks become branches of actions to form a
multi-scenario plan.

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

208

mailto:namikous@square-enix.com
mailto:moritomo@square-enix.com
mailto:miyakey@square-enix.com
mailto:s-sakata@square-enix.com
mailto:martgust@square-enix.com
mailto:martgust@square-enix.com

Figure. 1: ST-Network

Multi Scenario Plan
In existing planning methods, plans are output as a single
chain of tasks connected by Precondition and Effect. ART-
HTN replaces this single-chain planning structure with a
planning structure that includes multiple branches. It func-
tions similarly to a game tree in a turn-based game, output-
ting paired data of situations and actions that show the out-
come if the AI character takes specific action in a particular
situation. We call this data Situation Task Network or “ST-
Network” for short (Fig. 1). By exploring the network, the
AI can calculate what actions would be effective in a given
situation.

Plan Executor
The Plan Executor calculates the appropriate situation in the
plan and enumerates nodes close to the current situation as
transition candidates. Among them, it chooses the most ef-
fective action and decides on it. When it comes to the stage
of actually executing actions, the game situation becomes
even more granular. The Plan Executor is also responsible
for resolving the details that are not included in the plan. It
adds actions to the plan during the execution phase, adjusts
the plan’s details to ground it in the actual game situation,
and keeps the plan running.

 Usecase of ART-HTN
In this chapter, we introduce a concrete example of how the
main functions of ART-HTN work together, using a robot
game as the subject. The ART-HTN consists of two modules,
the Planning System and the Plan Execution System. The
Planning System generates the planning data, ST-Network,
and passes it to the Plan Execution System. The Plan Exe-
cution System modifies the received ST-Network partially
if necessary, makes a decision on the optimal move, and de-
composes the task registered in the ST- Network (which is
data that indicates what action a particular character will
take in a specific situation) into Operators that can be exe-
cuted in the game environment. The task is the simple beha-

Figure. 2: Process of ART-HTN Systems

vioral data for running the character in the simulator, while
the Operator is the behavioral data for running the character
in the actual game environment. The task contains only the
essential processing related to victory and defeat, while the
Operator contains many controls related to the expression of
the game, such as the direction of the character's head and
posture.

 The Planning System consists of several subsystems, in-
cluding Goal Maker, High-Level Planner, and Simulation
Planner. At the beginning of the planning process, the Goal
Maker determines the plan's direction. The Planning System
specifies the main goal and sub-goals to be achieved as
much as possible and their importance. This goal acts as a
success condition for the planning and as an evaluation func-
tion for the simulation.

 The High-Level Planner is responsible for rough march
plans for units and logistics plans such as fuel and ammuni-
tion supply. At points where the enemy is likely to be hiding,
the simulation planner can be used to estimate the damage
that would be sustained if the enemy were to engage at a
certain point.

 The Simulation Planner is primarily responsible for battle
planning with the enemy. When it enters into an engagement
with the enemy, or when the High-Level Planner wants to
predict an engagement scenario, the Simulation Planner runs
a battle simulation and generates a battle plan. The plan data
is output as ST-Network and passed to the Plan Executor
(Fig. 2).

 After receiving the plan data, the Plan Executor's role is
actually to move the game characters. The Plan Executor de-
composes the tasks contained in the Situation and generates
Operators. The contents of the Operators are written with
functions supported by the game engine and can be run with
standard AI systems such as BehaviorTree and visual scripts.
The Situation node of the ST-Network has multiple
branches, and the Plan Executor can respond to changes in

209

Figure. 3: An example of Task Assigning

the Situation without replanning, as long as the actions taken
by the opposing players are included in the ST-Network
branches. Due to the robustness of the Plan Executor, the
Planning System can be executed somewhat independently
of the actual game progress. This separation allows for a
longer-term search for superior controls, such as spending a
few seconds in a separate thread to search for advanced
moves.

 Battle Planning
Battle Planning performed by Simulation Planner does not
use symbolic planning but rather a state-space exploration
using a simulator. The simulation is executed at a particular
time step, and the actions of agents participating in the battle
are represented by data called to task. It is a kind of combi-
natorial search problem: what task w should be assigned to
friendly agent a at a specific time t, and what task w could
be executed by enemy e at that time. We show an example
of Task Assigning (Fig. 3). If the problem is solved by brute
force, the number of combinations would be too large to be
executed on a consumer game console. For this reason, we
used three approaches to reduce the number of states to be
searched: meaningful action selection, using opponent mod-
els with Composite Task, and symbol extraction.

Meaningful Action Selection
Given the nature of the game, actions such as moving a few
meters to the left or right are not very effective in the Action
or RTS games we are targeting. When developing enemies
with scripts or BehaviorTree, game developers create char-
acter AI behaviors in large granular actions such as "ap-

proaching the opponent," "moving away from the oppo-
nent," and "searching for obstacles and hiding." In the state-
space search performed by our Simulation Planner, the gran-
ularity of the task to be searched is aligned to a semantically
adequate size to prevent the search for meaningless states.
In random action search, the number of states increases with
meaningless actions such as stepping left or right, but since
the tasks we search actions with meaningful granularity such
as "approaching the opponent" or "moving away from the
opponent," we can prevent unnecessary increases in the
number of states.

Using Opponent Models with Composite Task
The Simulation Planner can handle two types of tasks: Prim-
itive Task, simple behavioral task, and Composite Task, hi-
erarchical task that can have other tasks as child task. If the
Composite Task performs probabilistic state transitions, the
Simulation Planner will copy the Composite Task for each
state transition. It is possible to assign a new Task to an
agent running a Composite Task, but to avoid a pointless
increase in the number of states, the Composite Task can
reject the assignment. This authority of Composite Task pre-
vents the problem of a "hide behind a cover and attack" task
being replaced to a "get closer to the enemy" task while the
character is moving and being canceled by another task be-
fore the Composite Task can have any beneficial effect.

Symbol Extraction
In symbolic planning systems used in the game industry, the
state of the game is often represented by multiple tuples,
called WorldState, and although there is no restriction on the
type of tuple values in principle, bool-valued flags are often
used for convenience. Our Simulation Planner uses state-
space search and works without symbolic planning control
in principle. However, for advanced tactical actions such as
"surround the enemy and then attack them all at once" or
"separate the enemy forces by diversion and then destroy the
main enemy force," symbol-based plan generation has ex-
cellent advantages. In order to introduce symbol control, we
have prepared a helper class called Symbol Analyzer. The
Symbol Analyzer determines whether or not a particular
symbol is established in a Situation. For example, in the case
of the encirclement analyzer, it judges whether or not the
enemy is encircled based on the relative positions of friend
and enemy. The engagement state analyzer determines
whether a battle has started or not. The variables extracted
by the Symbol Analyzer are saved as part of the Situation
data and can be used when assigning tasks to each agent or
determining the Composite Task conditions.

210

 Simulation Planner uses these functions to perform a
state-space search to find a state that satisfies the goal con-
dition and a path to get there. Once a sufficient amount of
paths have been obtained, the evaluation value is calculated
from the terminal node of the ST-Network, and the number
of enemies destroyed and the number of friends destroyed is
propagated backward from the terminal node to the starting
node and included in the evaluation value of the intermedi-
ate node.

 Game Development with Assistant AI
ART-HTN does not use Machine Learning directly, but it is
designed to work with Machine Learning to improve devel-
opment efficiency. In general, the bottleneck of machine
learning using Neural Networks in consumer game develop-
ment is the slow update time of the game. Since a single
frame update of a game includes various processes such as
physics calculation, graphics, and animation, even if draw-
ing processes are disabled to increase the frame rate, it is
difficult to disable model asset loading and animation up-
dates. Even when machine learning using the game applica-
tion itself is accelerated by disabling unnecessary functions
such as graphics, the acceleration of FramePerSecond is
limited to a few dozen times. Learning efficiency can be im-
proved by installing more expensive hardware than a typical
development PC, but the development cost will be higher in
this case.

 In the ART-HTN system, the Planning System is usually
linked to the game engine as a static library, but it can be run
as a C++ program independent of the game engine if neces-
sary, so the Planning System by itself does not necessarily
require the game engine. In addition, since the Simulation
Planner does not have a drawing system and the Physics
Simulation performed in the planner is extremely simple,
the simulation can be performed much faster than running a
game engine. Using Neural Network as the evaluation func-
tion of the Situation, the results of hundreds of hours of sim-
ulations can be used as the evaluation value. It is currently
challenging to provide Neural Network-based decision-
making systems as a game feature because a general-pur-
pose Neural Network inference engine works on all gaming
platforms such as PS5, XBOX Series X, Switch is not stand-
ard yet. However, it is becoming technically and cost feasi-
ble to utilize Neural Networks in the development process.
The system design allows for Machine Learning with Neural
Networks in the development process for level design, en-
emy AI adjustment, and balancing of weapon and armor pa-
rameters.

Figure. 4: a screen shot of the original ART-HTN demo

Figure. 5: a generated ST-Network on ART-HTN demo

 Demonstration
To verify ART-HTN, we made a 3D action game with ro-
bots. The robot, which has an ART-HTN system, fights with
the other enemies (Fig. 4). In this demo, ART-HTN gener-
ates offensive and defensive plans and chooses defensive
plan to survive. By firing smoke grenades to block the en-
emy’s view, the robot attempts to reduce the hit rate of the
enemy’s attacks. ART-HTN generates ST-Network(Fig. 5)
and predicts the wining-rate(blue-color) and defeat-rate(red-
color) of each Situation. The Executor chooses a better task.

 Conclusion and Future Work
It has been more than 15 years since F.E.A.R. (Orkin, J.
2006) introduced the planning method to games in 2005. To-
day, the main memory of game consoles has increased more
than tenfold, and CPU resources have increased as well. As
a result, many of the memory constraints that existed then
are no longer an issue now. Our system is still only able to
compute one-on-one situations, but in the future, we would
like to achieve higher-order tactical in situations where mul-
tiple agents are fighting and improve player’s game experi-
ence.

211

Biographies of Authors
Kousuke Namiki
Senior AI Engineer: Square-Enix Advanced Technology Di-
vision. He has been involved in the game industry since
2008 and joined SquareEnix in 2012. He worked in the de-
velopment of titles such as
- Final Fantasy VII Remake
- Kingdom Hearts III
- Final Fantasy XV
- Bloodborne
- Steel Battalion: Heavy Armor
- Monster Hunter Diary: Poka Poka Airou Village

as Game AI engineer and QA automation AI engineer.
Currently, he is engaged in research and development of
next-generation AI systems in Advanced Technology Divi-
sion.

Tomohiro Mori
AI Engineer: Square-Enix Advanced Technology Division.
He researched about CharacterAI and Animation in Future
University Hakodate. He joined SquareEnix in 2019. He is
researching AI and Animation
- Full Procedural Animation
- Character AI using Hierarchical Task Network

Youichiro Miyake
Lead AI researcher: Square-Enix Advanced Technology Di-
vision. Graduated from Kyoto University. He has been en-
gaged in the development and research of artificial intelli-
gence in digital games since 2004. He is also the chair of the
Japan Game AI Specialty Group of the International Game
Developers Association, a board member of the Digital
Game Society of Japan, a board member of the Japan Soci-
ety for Arts and Sciences, an editorial board member of the
Japanese Society for Artificial Intelligence, and a CEDEC
committee member.

Gustavo Martins
R&D Engineer: Square-Enix Advanced Technology Divi-
sion. He has been involved in the game industry since 2012,
starting his career at EA Canada as a Technical Artist. He
has worked in the development of titles such as:
- FIFA 14
- Final Fantasy XV
- Kingdom Hearts III
- Resident Evil 2

Currently, he's working as a R&D Engineer at Square Enix,
researching and developing new technologies for games.

Shinpei Sakata
Technical Artist: Square-Enix Advanced Technology Divi-
sion
- Final Fantasy XIV

F.E.A.R. is a trademark or registered trademark of Warner
Bros. Entertainment Inc.
Final Fantasy is a trademark or registered trademark of
SQUARE ENIX HOLDINGS CO., Ltd.
Bloodborne is a trademark or registered trademark of
SONY INTERACTIVE ENTERTAINMENT LLC
Steel Battalion: Heavy Armor is a trademark or registered
trademark of CAPCOM CO., LTD.
Monster Hunter Diary: Poka Poka Airou Village is a trade-
mark or registered trademark of CAPCOM CO., LTD.
Kingdom Hearts III is a trademark or registered trademark
of Disney Enterprises, Inc.
Resident Evil 2 is a trademark or registered trademark of
CAPCOM CO., LTD.
PS5 is a trademark or registered trademark of Sony Inter-
active Entertainment inc.
XBOX Series X is a trademark or registered trademark of
Microsoft Corporation
Switch is a trademark or registered trademark of Nintendo
Co., Ltd.
All other trademarks are the property of the respective
owners.

References
Sterren, W.v.d. 2013 “Hierarchical Plan-Space Planning for
Multi-unit Combat Maneuvers”, GAME AI PRO, chapter
13, pp.169-183, A K Peters/CRC Press.
Humphreys, T. 2013 “Exploring HTN Planners through Ex-
ample”, GAME AI PRO, chapter 12, pp.149-167, A K Pe-
ters/CRC Press.
Straatman, R; Verweij, T; Champandard, A; Morcus, R;
Kleve, H. 2013 “Hierarchical AI for Multiplayer Bots in
Killzone 3”, GAME AI PRO, chapter 29, pp.377-390, A K
Peters/CRC Press,
Sailer, F; Buro, M and Lanctot, M. 2007 “Adversarial Plan-
ning Through Strategy Simulation”, IEEE Conference on
computational intelligence and games 2007
Soemers, D.J.N. and Winands, M.H.M. 2016 “Hierarchical
Task Network Plan Reuse for Video Games”, IEEE Confer-
ence on computational intelligence and games 2016
Orkin, J. 2006 “Three States and a Plan: The AI of F.E.A.R”
Game Developers Conference 2006

212

	Abstract
	Background
	Functions of ART-HTN
	Usecase of ART-HTN
	Battle Planning
	Game Development with Assistant AI
	Demonstration
	Conclusion and Future Work
	Biographies of Authors
	References

