Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2021)

Multi-Agent Cooperation in Games with Goal Oriented Action Planner: Use Case
in WONDER Prototype Project

Gautier Boeda

Advanced Technology Division
Square Enix Co., Ltd., Tokyo, Japan
boedagau@square-enix.com

Abstract

Multi-agent cooperation systems often rely on an external
commander-like entity that will plan for all the agents it man-
ages. When it comes to games development, this entity can
be hidden from the player, which makes the player believe
the characters are actually taking their own decisions. How-
ever, it has limitations. We believe that to achieve truly be-
lievable character-interactions between non-playable charac-
ters, real(non-scripted) communication between the agents
is the key. We will introduce our multi-agent cooperation
system where each Al-agent thinks for itself and communi-
cates with the other agents to cooperate and achieves complex
goals. The system will be demonstrated with a use case in our
WONDER prototype project.

Introduction

As of today, multi-agent cooperation systems often rely on
an external commander-like entity that will plan for all the
agents it manages. Outside of the game industry, this system
is often used to organize secretary tasks on a network(Cao,
Bian, and Hartvigsen 1997) by planning and dispatching the
actions to the agents. When it comes to the game devel-
opment industry, this commander-like entity(Gehlin 2014),
also named Al Director since the development of Left 4
Dead (Booth 2005), does not need to be visible to the player
to exist. If it is invisible, we can compare it to a god-like en-
tity watching and controlling its entities, and if it is visible,
to a coach coaching its team of people. While the goal of this
commander-like entity is to make smarter and believable Al-
driven agents, the player can feel cheated or can think these
agents are unnatural as they are using knowledge they could
not have gotten by themselves. It is particularly true when
it comes to achieve goals requiring more than one agent.
These knowledge come from a 3rd-person entity that is able
to watch everything from above and gives appropriate orders
to the entities it manages. Following our research on char-
acter interaction in games(Boeda 2019b,a, 2018), we be-
lieve that to achieve truly believable and lively non-playable
characters, real communications between the agents is the
key to share knowledge and organize themselves naturally
and smartly. In these research, we highlighted progress in
character interaction around emotion and mood expression,

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

204

Figure 1: WONDER prototype project example: Coopera-
tion scenario where the character has to ask for help to es-
cape from the prison

speech recognition, precise location base information un-
derstanding and independent behaviors. However, some of
these interactions still felt too one sided (controller - respon-
der) due to a lack of communication, dialogue from the re-
sponder despite coherent emotional reactions.

Method

Bringing real(non-scripted) communications between the
agents would make the game world feel more alive and
emergent behaviors could happen thanks to the different
characteristics and state of mind the different characters.
In order to achieve such experiences, we designed a multi-
agent cooperation system based on the Goal Oriented Action
Planning (GOAP)(Orkin 2005) and a simple messaging sys-
tem similar to the multi agent planning language (Brenner
2003) but adapted to our experience.

Cooperation-Based GOAP

Decision-Making Flow The decision making system of
our Al-driven characters is composed of two essentials
pieces. The first one being the goal manager which is used
to select an appropriate goal to achieve at any given time.
Once a goal has been selected, our 2nd essential piece comes
into place: our GOAP planner will try to find a suitable plan
to achieve this goal. This plan will be composed of GOAP

-

IsHungry: False _

Post-Conditions
IsHungry : False
Hold <Apple>: False
There is an <Apple>: False

Hold <Apple>: True
IsNearBy <Apple>: True

Pre-Conditions
Hold <Apple>: True

Figure 2: GOAP Planner: GOAP action effect from node
game state

Node
!
s

Node

Node

Node

Node
Condition 1

Only achievable by self-agent
Condition 1| Achievable by anyone

End Start

Figure 3: Example of GOAP
tagging highlighted

Planning with condition-

actions which will be translated into gameplay actions be-
fore the plan is executed by the agent. A gameplay action
is composed of an action identifier, its execution code, and
necessary information about objects, characters, locations it
needs to interact with during the execution. In comparison,
a GOAP action does not have an execution code, it is only
composed of the necessary information for the GOAP plan-
ner: the action identifier, a way to compute the cost of the
action (the higher the cost, the longer or more difficult the
action is to execute), a list of pre-conditions, a list of post-
conditions and a list of variables. A pre-condition is a con-
dition that needs to be valid on the preceding node game
state to allow this action to be executed from this game state.
A post-condition is a change on the game state this action
brings if executed. An example of a GOAP action applied
to a game state is shown in figure 2. Variables are dynamic
parameters that can be set to conditions to specify them. For
instance, Hold <Apple>: True seen in figure 2 has a
variable <Apple> applied to the condition Hold. A game-
state is a list of conditions representing the state of the game-
world based on the knowledge of the Al-driven character.
As the Al-driven characters do not share knowledge to each
other, they can only know what they see or hear during the
play. As such, when one character will try to find a plan us-
ing GOAP for a said-objective that requires multiple agents
to achieve, this agent cannot plan for the other agents fully.
It can only determine where in a partial plan another agent
can help. The two following sections will detail this process
in details.

205

Node

Node

Condition 2

Condition 5

End Start

Figure 4: Detection of node game-state for cooperation
(highlighted in blue)

Condition-Tagging First, an agent has to understand it
needs to cooperate with another agent to achieve a spe-
cific goal. It is done thanks to two key features of our sys-
tem. The first being condition-tagging. As said earlier, in
GOAP planning, to go from a one game state to another,
we use GOAP actions which have pre and post conditions.
In our experience, our GOAP planner is a backward plan-
ner (from goal game state to initial game state), the post-
conditions needs to satisfy the goal game state in order
to validate this action. Then we apply the pre-conditions
to the goal game state to create the following node game
state. To distinguish conditions that can be validated by
any agent to the conditions that can only be validated by
the agent executing the GOAP planning, conditions can be
tagged with a achievable_by_any_agent flag. For
instance, the condition DOOR_IS_OPENED:true will be
tagged with this flag as this condition could be satisfied by
any Al-driven character living in this game world. How-
ever, IS_HUNGRY: false is a condition that depends on
the agent itself. The only agent that can execute an ac-
tion validating this condition can only be the agent execut-
ing the GOAP planning. An example of GOAP execution
with condition-tagging is shown in figure 3. Thanks to these
conditions-tagging, the agent executing the GOAP planner
can now understand from which node game state it is possi-
ble to ask another agent to find a solution if the agent itself
is not able to find a complete plan. The second key feature
will explain this detection process.

Detect Node World-State for Cooperation The second
key feature of our cooperation-based GOAP system is to
detect node game state that could be achieved by other
agent through cooperation. To be cooperation-friendly, these
nodes game state needs to have at least one condition achiev-
able by other characters. The detection is done as follows:
after the GOAP planner execution, if no plan was found,
the cooperation-based GOAP planner will create a list of the
cooperable node game states by going through the whole
GOAP tree search. From the example we have in figure 3,
the algorithm will find the node highlighted in blue in figure
4.

The next step is to validate one condition achievable by
another character by adding a ”cooperation action” and see
if it can then find a plan from each of the cooperable node

Node

Node

Condition 3

Condition 3
Goal
Condition 1

Condition 2

Node

Condition 1

Condition 5

End Start

Figure 5: Planning after adding a cooperation action to the
cooperable node

game state. The meaning of this method is as follows: if
we can find an agent that can do the said-condition, can we
find a plan that satisfy the remaining conditions? At the end
of this search problem, the cooperation-based GOAP plan-
ning will have a list of valid plans that will have at least
one cooperation action, as shown in figure 5. Thanks to this
cooperation-based GOAP system, our agents are now able
to find plans of actions that may rely on cooperation with
other agents. However, even if we found valid plans, it does
not mean we will be able to find an agent that can achieve
the condition achievable by another character we validated
with a cooperation action in each of these plans.

Messaging Component

As shown previously, this GOAP cooperation system alone
is not enough to allow cooperation to happen. The Al-driven
characters still need a communication system to find charac-
ters, request cooperation, and adapt their plan depending on
the reply they will get. To achieve this behavior, each char-
acter has a messaging component. When a character tries
to execute a plan that contains a cooperation action, it will
try to find other agents to discuss with. As each agent has a
perception system that keeps track in the memory of all ob-
jects, characters, locations it has seen during the play, it can
try to initiate a discussion with any character it has encoun-
tered until now. This character will send a RequestTalk
message to one of them, and wait for a reply. Depending on
the other character level of busyness or like dislike toward
the requester character, it may refuse or accept. If the other
character refuses, the agent will have to try to initiate a talk
with another character. In case there are no other character,
the goal is considered unachievable and the agent will can-
cel the chosen goal. On the other hand, if the other character
accept the talk, the agent will send a second message, this
time to ask for a cooperation.

When the other character receives this message, two
checks are done before giving a reply. The first one checks
if the agent is available to execute a cooperation goal or if
it is too busy to execute such goal. The second one checks
if the agent is actually able to satisfy the goal conditions list
given by the RequestCooperation message shown in
the listing 1. While the first check is quite simple, the sec-
ond one implies the character to execute the GOAP planner

206

Message :

{

type: RequestCooperation;

goal: {
conditionl ,

Listing 1: Request Cooperation Message

B8 GoAP visualizer

ExecuteCoop

Figure 6: WONDER prototype project example: GOAP tree
search for a plan to escape from the prison.

to try to find a suitable plan. If found, it will send a positive
reply message to the character asking for cooperation. This
character will then send an EndTalk message and start to
execute its part of the plan. Similarly, when the other agent
will receive the EndTalk message, it will execute its part
of the plan. While both characters are now executing their
plan, there is still one important point the agent asking for
cooperation has to take into account. When this agent will
arrive at the execution of the cooperation action that should
be executed by the cooperative character, the character will
wait and analyze the game state to see if the conditions the
other character has to validate are validated. This analysis
can be done in two ways: using its perception component,
the character can see the game state changing by the influ-
ence of the other character executing its part of the plan. Or,
if the two characters cannot see each other, or the conditions
cannot be checked by the perception component, the char-
acter will wait a CooperationResult message before
continuing its own plan until its completion.

Experiments/Results

Thanks to these two systems working together, we are able
to achieve multi-agent cooperation without commander-like
entity, where each agent has its own abilities, memory, and
decision making systems. To illustrate this multi-agent co-
operation, we will take an example of our WONDER pro-
totype project where quests can be solved through cooper-
ation. One of the quest of this game consists of getting out
of a prison by the help of other characters. A very simple

Figure 7: WONDER prototype project example: Successful
cooperation leading to the escape of the main character.

setup can be seen on figure 1. The main character is cur-
rently locked on the left side of the figure behind the prison
bars. Another character can be seen on the right side with a
pressure plate that can open the prison. The goal of the main
character is to escape from the prison, while the other char-
acter is just idle for the demonstration. The figure 6 shows
the plan found by the main character after discussion with
the other character. We can see the node game state with
their list of conditions. The name of the condition displayed
is formatted so that the first later indicates if it is [T] RUE or
[F]ALSE, then the name of the condition is appended. If a
condition is grayed out, it means that it has been validated by
the previous action (Reminder: as it is a backward planner,
we go from goal to initial state). If a red conditions has a val-
idation mark, it means that this condition is already valid in
the initial state. The remaining red conditions are conditions
that still need to be validated by other actions later in the
plan. Between two nodes, we can see a box with two icons
representing one variable (objects in this case) with the ac-
tion chosen by the GOAP planner. For instance, if we follow
the red line from the Goal node state, the action between
the Goal node and the following node game state indicates
that this action is the action MOVE. Also, if the action is of
color blue, it means it is executed by the main character. If
the action is dark yellow, it means that the other character
is executing this action. The plan of both agent has been
merged on the display UI, however, they are actually two
separate plans, planned by each character. If we follow the
red line, we can see that the last node on the right has all
its conditions validated, which means that this node is fully
compatible with the initial state. As such, the red line rep-
resents a valid plan. By looking in details at the plan found,
we can see that (from right to left) the other character moves
to the pressure plate. The pressure plate activates the prison
bars and it opens them. Then the main character moves out
of the prison. When executed by both characters, the main
character is able to escape successfully from the prison, as
shown in figure 7.

Conclusion

Thanks to our GOAP cooperation system with our messag-
ing system, our characters are able to cooperate together to

207

achieve complex goals. Despite not having much knowledge
about what can do the other characters, they are able to plan
for a potential cooperation plan. Then they are able to ex-
plore the world and communicate with the different char-
acters to find a character that can do and accept the coop-
eration request. Together, they know when to wait for the
other character to finish its tasks, and how to find out if
it was successful and can continue its plan to completion.
We demonstrated our systems in our WONDER prototype
project through multiple figures (1, 6, 7). However, such
multi-agent technologies are more costly than traditional Al
Director due to the lack of knowledge about the other agents.
Many failures during planning and communication can hap-
pen before finding a satisfiable plan to achieve their goals,
or even finding a character that accepts the request. Never-
theless, we believe it is the cost to pay to achieve further au-
tonomous and believable character-interactions to the player.

Acknowledgments

We would like to thank our colleagues from the Advanced
Technology Division of Square Enix Co., Ltd. who provided
insight and expertise, but also helped on the creation of many
assets for this WONDER prototype project.

References

Boeda, G. 2018. An architecture for immersive interactions
with an emotional character Al in VR. https://dl.acm.org/
doi/10.1145/3289160.3289165. Accessed: 2021-07-21.

Boeda, G. 2019a. Enhanced Immersivity: Using
Speech Recognition for More Natural Player Al Interac-
tions. https://www.gdcvault.com/play/1026476/Enhanced-
Immersivity-Using-Speech-Recognition. Accessed: 2021-
07-21.

Boeda, G. 2019b. NPCs Have Feelings Too: Verbal Interac-
tions with Emotional Character Al. https://www.gdcvault.
com/play/1026254/NPCs-Have-Feelings-Too- Verbal. Ac-
cessed: 2021-07-21.

Booth, M. 2005. From COUNTER-STRIKE to LEFT
4 DEAD: Creating Replayable Cooperative Experiences.
https://www.gdcvault.com/play/1422/From-COUNTER-
STRIKE-to-LEFT. Accessed: 2021-07-21.

Brenner, M. 2003. A Multiagent Planning Language. In
Proceedings of ICAPS’03 Workshop on PDDL.

Cao, W.; Bian, C.-G.; and Hartvigsen, G. 1997. Achieving
efficient cooperation in a multi-agent system: the twin-base
modeling. In Kandzia, P.; and Klusch, M., eds., Cooperative
Information Agents, 210-221. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-540-68321-6.

Gehlin, R. 2014. Action Planning and Cooperation (APAC)
between multiple Al-agents. Institute of Technology 55.
Orkin, J. 2005. Agent Architecture Considerations for Real-
Time Planning in Games. In Proceedings of the First AAAI

Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE’05, 105-110. AAAI Press.

