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Abstract

Story sifters attempt to automatically or semi-automatically
extract nuggets of compelling narrative content from vast
chronicles of game or simulation events. Though sifting has
successfully been used to enable novel computational nar-
rative play experiences, its utility is limited by the funda-
mentally retrospective nature of existing sifters, which can
only recognize storyful event sequences once they have fully
played out. To address this limitation, we introduce Win-
now: a domain-specific language for specifying story sifting
patterns that can be executed incrementally to detect poten-
tially storyful event sequences while they are still playing out.
We evaluate Winnow by applying it to several specific use
cases and show that it is well-suited to the implementation of
prospective as well as retrospective narrative intelligence.

Introduction
Story sifters (Ryan, Mateas, and Wardrip-Fruin 2015; Ryan
2018) are computational systems that attempt to automat-
ically or semi-automatically extract nuggets of compelling
narrative content from vast chronicles of game or simula-
tion events. Sifters enable a curationist approach to emer-
gent narrative (Louchart et al. 2015), in which the genera-
tion of narrative events is decoupled from the arrangement
and presentation of these events within a particular narra-
tive frame. Because story sifters can detect emergent mi-
crostories regardless of how they emerge, sifting-based nar-
rativization of game events can be carried out without direct
access to or modification of the underlying event-generating
process. Sifting-based approaches are thus especially well-
suited to the implementation of narrative intelligence atop
existing game or simulation engines, even those that were
not initially designed for it.

However, existing approaches to story sifting have sev-
eral key weaknesses. First and foremost, most prior work
on story sifting has assumed that sifting is retrospective: mi-
crostories can only be recognized once they have run to com-
pletion, and not while they are still in the process of playing
out. Though a purely retrospective approach to sifting en-
ables some forms of play experiences well (Samuel et al.
2016), it limits the capacity of systems based on story sifting
to reason about and intelligently foreshadow future narrative
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possibilities. Anticipation of future narrative outcomes is es-
sential to how humans engage with stories (Liveley 2017); in
narrative generally, readers who anticipate future outcomes
may come to desire or dread these outcomes, and in narra-
tive games, players may act to increase or decrease the likeli-
hood that anticipated outcomes will occur. If a sifting-based
system is only able to match events against narrative frames
retrospectively, its capacity to play into anticipation by pro-
cedurally foreshadowing possible outcomes will be limited,
as will its ability to make sense of player actions that were
performed with anticipated outcomes in mind.

Additionally, despite attempts to make story sifting pat-
terns easier to write, the existing state-of-the-art language
for specifying sifting patterns—Felt (Kreminski, Dickinson,
and Wardrip-Fruin 2019)—can still be frustratingly low-
level. Felt’s closeness to raw Datalog makes it difficult for
humans to write and maintain complex Felt sifting patterns,
because the high-level structure of these patterns can be hard
to see at a glance. Moreover, Felt’s awkward not-join
syntax for expressing complex negative constraints, which
are used to rule out stories featuring certain events, has been
raised as a significant pain point.

To address these issues, we present Winnow: a domain-
specific language for story sifting that moves beyond the
limitations of existing sifters by providing affordances
for incremental sifting. Winnow introduces clear acceptor-
based semantics around the maintenance of partial sifting
pattern matches, which can be narrativized or exposed to a
human user prior to their completion. Additionally, where
incremental sifting is not required, Winnow sifting patterns
can be compiled directly to Felt sifting patterns for Felt-
equivalent performance on retrospective sifting tasks. This
enables the use of Winnow as a more human-friendly syntax
for the specification of Felt sifting patterns.

Related Work
Story sifting as an approach was first described by Ryan,
Mateas, and Wardrip-Fruin (2015) under the label “story
recognition”. Ryan’s dissertation (Ryan 2018) introduced
the “story sifting” term, provided an expanded characteriza-
tion of sifting as an approach, and presented a story sifting
system—Sheldon—that made use of sifting patterns speci-
fied as chunks of procedural Python code to identify micros-
tory structures within the output of a simulation of a small
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American town.
Ideally, a story sifter should be able to recognize a di-

verse array of emergent microstory structures. To achieve
this goal, sifters employ large numbers of human-authored
story sifting patterns, each of which specifies a particular
kind of microstory that the sifter can recognize. To ease the
authoring of large numbers of sifting patterns, recent work in
story sifting has introduced Felt (Kreminski, Dickinson, and
Wardrip-Fruin 2019)—a declarative domain-specific query
languages in which sets of interrelated events can be con-
cisely described—and Synthesifter (Kreminski, Wardrip-
Fruin, and Mateas 2020), an authoring support tool that
leverages inductive logic programming to synthesize sifting
patterns from user-provided example event sequences.

Several existing systems not originally billed as story
sifters bear some resemblance to sifters, and some have
even been used in a prospective way. Playspecs (Osborn
et al. 2015) are regular expressions that are used to match
sequences of game states, though they are less expressive
than Sheldon or Felt sifting patterns in that they cannot be
parametrized by variables. Plan recognition techniques have
been used in an interactive narrative context to anticipate fu-
ture events (especially player actions) on the basis of past
ones (Cardona-Rivera and Young 2015); though plan recog-
nition tends to focus specifically on determining the goals
of a particular storyworld agent, while story sifting has a
much wider range of associated aims, this approach never-
theless resembles a prospective application of story sifting.
The Sims 2 matches past game events against a library of
“story trees” and adjusts the probabilities of future game
events to increase the likelihood of events that would ad-
vance partially matched story trees (Brown 2006; Nelson
2006); this may be the closest existing approach to ours, but
details on this system are hard to come by.

Among purely retrospective systems that resemble sifters,
Caves of Qud generates biographies for its historical figures
by allowing them to perform actions randomly, then run-
ning sifting patterns over these action sequences to iden-
tify plausible motivations (Grinblat and Bucklew 2017).
Several simulation-driven narrative games, including Prom
Week (McCoy et al. 2013) and those based on the Versu
engine (Evans and Short 2013), allow character actions
to be predicated on whether a parametrized sequence of
past events has unfolded in the game world. And the same
is broadly true of systems that attempt to generate sto-
ries via planning; these systems have been surveyed else-
where (Young et al. 2013; Porteous 2016) but are beyond
the scope of this paper.

Motivation
Broadly speaking, prior attempts at story sifting share a ma-
jor weakness when applied to the challenge of prospective
sifting in the context of a still-running simulation. Because
sifting patterns are conventionally written as descriptions of
complete microstories, existing sifters have no way to antic-
ipate (given a complete sifting pattern) whether that pattern
is likely to be fulfilled in the future or not.

Given a library of complete sifting patterns, we could per-
haps enable prospective sifting by creating several partial

variants of every complete pattern, each of which matches
a subset of events leading up to the complete pattern’s real-
ization. However, if these partial variants are hand-authored,
then substantially more authoring effort (both to create and
maintain partial variants) is required per pattern. The tempo-
rally unstructured nature of Sheldon and Felt sifting patterns
makes it difficult to generate partial pattern variants auto-
matically, because the precise details of when certain con-
straints must hold are not necessarily clear from a complete
retrospective pattern: for instance, if a sifting pattern states
that the perpetrator of a particular event must have the “self-
ish” trait, does that character need to retain the “selfish” trait
throughout the entire event sequence, or is the character’s
personality allowed to change before or after certain pivotal
events occur? And regardless of how partial pattern variants
are created, all of these variants must be re-run repeatedly to
detect new partial matches every time a new event occurs—
necessitating the computationally expensive repeat evalua-
tion of numerous pattern constraints.

Winnow represents our solution to these difficulties. By
imposing a temporally divisible structure on sifting pat-
terns, Winnow requires its users to clarify when exactly in
a pattern’s evaluation each constraint must hold. As a re-
sult, whenever a new event occurs, Winnow only needs to
check whether the event initiates any new partial pattern
matches (by matching the first temporal stage of a complete
sifting pattern), advances any already-tracked partial pattern
matches (by matching the next temporal stage of the rele-
vant pattern), or invalidates any of these partial matches (by
matching a negative constraint in the relevant pattern). This
dramatically reduces the amount of computational work that
needs to be performed per event, since only a small subset
of each pattern’s constraints must be evaluated when a new
event occurs. Additionally, it fully relieves users from the
authoring burden of creating and maintaining partial vari-
ants of complete sifting patterns by hand.

Winnow: An Incremental Sifting DSL
Winnow is an open source1 domain-specific declarative
query language for incremental story sifting. It is used to
write sifting patterns. Each Winnow sifting pattern describes
a sequence of interrelated events that constitute a potentially
interesting microstory and enables the computer to detect in-
stances of this microstory as they emerge.

Here is an example Winnow sifting pattern, modeled after
the “violation of hospitality” Felt sifting pattern presented
by Kreminski, Wardrip-Fruin, and Mateas (2020):

(pattern breakHospitality
(event ?e1 where

eventType: enterTown,
actor: ?guest)

(event ?e2 where
eventType: showHospitality,
actor: ?host,
target: ?guest,
?host.value: communalism)

(event ?e3 where

1https://github.com/mkremins/winnow

157



tag: harm,
actor: ?host,
target: ?guest)

(unless-event between ?e1 ?e3 where
eventType: leaveTown,
actor: ?guest))

This pattern attempts to match a sequence of events in
which a ?guest character enters a town; is shown hos-
pitality by a ?host character, who values communalism;
but then is harmed in some way by the ?host before the
?guest has a chance to leave town.

As in Felt, identifiers prefixed by the ? character rep-
resent logic variables that will be bound as the pattern
is matched, and whose values must be consistent across
the match as a whole. A single complete match for the
breakHospitality pattern would include bindings for
three event variables (?e1, ?e2 and ?e3) and for the char-
acters ?guest and ?host.

The sequence of event clauses present in a sifting
pattern’s body constitutes the pattern’s kernel. A pattern
seeks to match an ordered sequence of events correspond-
ing to its kernel, disregarding events that take place be-
tween kernel events unless they match one of the pattern’s
unless-event clauses (which can be used to invalidate
pattern matches if an event with certain characteristics inter-
venes between a specified pair of kernel events).

Like Felt, Winnow is implemented in JavaScript and uses
the DataScript library2 as its backend for data storage and
Datalog query execution. In the DataScript dialect of Dat-
alog, facts are represented as RDF-like triples of the form
[entity attribute value]; each triple can be read
as an assertion that the entity on the left (usually a nu-
meric ID) has an attribute whose name is given in the
middle and whose value is given on the right. All Win-
now sifting patterns ultimately operate over facts of this
form. Many simulation engines store events and other data
as graphs of related entities, with each entity structured as
a JSON-like set of key/value pairs; these JSON-like data
formats can often be straightforwardly translated into sets
of DataScript facts, so we use these representations inter-
changeably in this paper.

Incremental Execution
Winnow’s incremental execution mode revolves around the
maintenance of a pool of partial matches. Each Winnow sift-
ing pattern is compiled to an acceptor that, given a partial
match (i.e., a set of logic variable bindings for the first N
events of this sifting pattern) and a new event to consider,
performs one of several possible actions:
• Dies if this event matches an active unless-event

constraint on this event sequence.
• Forks and accepts if this event matches the specification

of kernel event N + 1 in the sifting pattern. The “par-
ent” partial match is left unchanged (in case an alternative
means of advancing this partial match is later discovered),
while the “child” match has the new event (and associated
logic variable bindings) pushed onto it.
2https://github.com/tonsky/datascript

• Passes (i.e., remains unchanged) otherwise.

When a new event occurs, it is added to the database and
checked against all the active partial matches. Where appli-
cable, these partial matches are then updated based on the
new event, and dead and completed partial matches are re-
moved from the pool.

Figure 1 shows an example of incremental sifting pattern
execution featuring the breakHospitality pattern de-
fined previously. This example demonstrates all the core fea-
tures of Winnow’s incremental execution mode:
• Events that advance partial matches (1, 3, 4, and 5) are

accepted onto forks of the matches they advance.
• Irrelevant events (2) do not change the pool of partial

matches in any way.
• Events that match active unless-event constraints

on partial matches (6) cause those partial matches to be
marked as dead and removed.

• When all of a partial match’s logic variables are bound
(breakHospitality 134), the match is marked as
complete and removed from the pool.

• Partial matches (e.g., breakHospitality 1) remain
in the pool after they are advanced once (3) so that they
can later be advanced again (5) in a different way.

• Events that might have advanced a partial match (7) are
ignored if the partial match that they might have advanced
was previously removed from the pool.
To determine whether an event matches an event or

unless-event clause in the context of a particular partial
match, Winnow translates the clause to a Datalog query and
runs the query against the database. For instance, in Figure 1,
to determine whether event 3 matches the ?e2 event clause
in the context of partial match breakHospitality 1,
Winnow executes the following query:
[3 "eventType" "showHospitality"]
[3 "actor" ?host] [3 "target" "Yann"]
[?host "value" "communalism"]

The results of this query are then used to establish bind-
ings for the ?e2 and ?host logic variables in the new par-
tial match breakHospitality 13.

When maintaining a large pool of partial matches, Win-
now runs many of these small queries per event—at least one
per partial match, and more than one for each partial match
against a sifting pattern with active unless-event con-
straints. However, the results of these queries are often very
fast to compute, because the values of most involved logic
variables (including the ID of the event being tested and the
values of any previously-bound logic variables stored in the
partial match) are already known. Therefore, only a small
number of facts need to be checked to establish possible
bindings for the variables that remain unbound.

Use Cases
Autonomous Incremental Sifting
Marie-Laure Ryan’s characterization of how baseball com-
mentators narrativize gameplay in real time (Ryan 1993)
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Figure 1: A visualization of Winnow incrementally executing the breakHospitality sifting pattern over a sequence of
events in which a character Yann enters town and is first shown hospitality by, then harmed by, two other characters: Eve and
Jake. As the structured events on the left are added to the database of storyworld state one by one, the pool of active partial
pattern matches evolves as shown in the middle and explained on the right.

provides a strong motivating example for incremental sift-
ing. In Ryan’s analysis, commenting on a live baseball game
involves a combination of looking back at what has already
happened and looking forward at what might happen in the
future, then weaving a narrative that seems coherent at the
present moment while speculating about likely future out-
comes to create suspense. A system that seeks to fully repro-
duce this kind of live gameplay commentary must therefore
have some capability to speculate about the future, in addi-
tion to the capability to retrospectively interpret the past.

Consider Ryan’s analysis of the FATAL ERROR theme in
the baseball commentary she has selected for study. In a key
moment, an outfielder forgets to flip down his sunglasses;
as a result, he fails to track and catch a fly ball, allowing a
runner from the opposing team to score. The broadcasters
immediately narrativize this blunder as a FATAL ERROR
by projecting their narration forward to a possible future in
which the game is lost as a result. In Ryan’s words:

The emplotment of the game combines a retrospective
interpretation with the prospective evocation of a pos-
sible outcome. A whole game is projected on the basis
of the play just completed—a game in which the score
stands as it is, and the future adds nothing to the story.

A system that uses purely retrospective story sifting to
make sense of game events would not be able to gener-
ate this commentary live. A sifting pattern that identifies
game losses resulting from blunders could be used to nar-
rativize the blunder as a FATAL ERROR once the game has
been completed; and a sifting pattern that identifies blunders
would be able to recognize this event as a blunder immedi-
ately; but to link the blunder to the possibility of game loss
before the game has actually concluded requires prospective
in addition to retrospective narrative intelligence.

The following Winnow sifting pattern expresses a vari-
ant of Ryan’s FATAL ERROR theme—modified slightly to
work with event data adapted from the Blaseball API3 via

3Blaseball is a surrealist baseball simulation idlegame that
mixes normal baseball game events with strange occurrences (e.g.,
players being incinerated by rogue umpires); we use it here as a
convenient source of JSON-formatted simulated baseball gameplay
data. Due to details of how Blaseball simulates baseball gameplay,
we have switched the focus of this pattern to be on a batter rather
than an outfielder who commits a blunder: Blaseball includes a hu-
morous “strike out thinking” blunder that batters can perform, but
doesn’t simulate outfielders at sufficiently high fidelity to attribute
a blunder to one outfielder in particular.
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the fan-created chronicler tool Datablase4, which allows for
the easy retrieval of historical Blaseball simulation output.

(pattern fatalError
(event ?gainLead where

(leadChange ?gainLead),
(teamHasLead ?gainLead ?team))

(event ?blunder where
event_text: ?text,
(includes? ?text "strikes out thinking"),
batter_id: ?blunderer,
batter_team_id: ?team)

(event ?loseLead where
(leadChange ?loseLead),
(not (teamHasLead ?loseLead ?team)))

(event ?loseGame where
event_type: GAME_OVER)

(unless-event ?e between ?gainLead ?blunder
where (leadChange ?e))

(unless-event ?e between ?loseLead ?loseGame
where (leadChange ?e)))

This pattern matches a sequence of events in which a
team gains the lead over their opponents; commits a seri-
ous blunder; subsequently loses the lead; and then loses the
game without ever regaining the lead. It employs several
advanced Winnow features: two custom Datalog inference
rules, (leadChange ?event) and (teamHasLead
?event ?team), are used to identify events in which a
particular team gained the lead over their opponents; the
DataScript built-in function includes? is used to deter-
mine whether a string value contains a specific substring;
and the not keyword is used to negate a constraint.

When this pattern is executed incrementally while the
game is still going on, a partial match that has advanced
as far as the ?loseLead event can safely be narrated as
a likely fatal error. Instead of waiting for the entire event se-
quence to be completed before we can comment on the FA-
TAL ERROR theme, we can comment speculatively on the
likelihood that the ?blunderer’s mistake has cost their
team the win.

Additionally, if we note in the event database that we
have chosen to speculatively comment on this event as a fa-
tal error, we can make use of this in later commentary to
refer back to our own past commentary as mistaken. Sup-
pose the team that committed the blunder ends up winning
the game despite our prospective evocation of the FATAL
ERROR theme. In this case, the final story of the game
as produced by our incremental sifting-based commentary
generator can dramatize the mistaken commentary as part
of a larger ERROR AND REDEMPTION theme by retro-
spectively invoking the moment at which it appeared that
the game would be lost due to the blunder. By computa-
tionalizing the “anticipation of retrospection” that charac-
terizes prospective narrative intelligence (Brooks 1984), we
can produce more human-like commentary that more effec-
tively draws out a convincing story from gameplay.

4https://sibr.dev/apis

Interactive Incremental Sifting
Several play experiences that center on narrative coauthor-
ship between the player and an AI system have made use
of story sifting to help the player comprehend the con-
tents of a rich simulated storyworld. These include Writ-
ing Buddy (Samuel, Mateas, and Wardrip-Fruin 2016), Cozy
Mystery Construction Kit (Kreminski et al. 2019), and Why
Are We Like This? (Kreminski et al. 2020a,b). In these
games, the ability to expose partial sifting pattern matches
to the player introduces new potential affordances for play.

Consider a sifting pattern like the following, adapted from
the arson-revenge Sheldon sifting pattern presented by
Ryan (2018):
(pattern arsonRevenge

(event ?harm where
tag: harm,
actor: ?victim, target: ?arsonist)

(event ?scheme where
eventType: hatch-revenge-scheme,
actor: ?arsonist, target: ?victim,
(ancestor ?harm ?scheme)),

(event ?arson where
eventType: set-fire,
actor: ?arsonist, target: ?victim,
(ancestor ?scheme ?arson)))

In an interactive sifting context, when a pattern like this
is available and a partial match with bindings for the first
two events is present, the system can make use of this par-
tial information (that a revenge scheme has been undertaken
but not yet completed) in many ways. Beyond simply in-
forming the player that this microstory is possible, it can
accept suggestions from the player on whether the scheme
should actually be carried out or not; suggest character ac-
tions that advance the scheme in various ways (e.g., having
the ?arsonist character purchase a can of gasoline); or
even suggest alternative ways that the revenge scheme could
be carried out, for instance if multiple revenge-oriented pat-
terns that all begin with a similar set of events are simulta-
neously present.

Additionally, a game of this nature could allow the player
to choose for themselves a sifting pattern that they would
like to see take place. Once chosen, the player could track
the progress of this sifting pattern as new events occur; de-
cide whether or not to accept a particular event as advancing
the sifting pattern; and receive early warning from the com-
puter when an event has a chance of disrupting the story that
the player is trying to create. Such an interface could enable
the computer and player to explicitly collaborate on partially
realized stories in exciting new ways.

Retrospective Sifting
It is also possible to use Winnow as an alternative, more ver-
bose but more human-friendly syntax for the specification
of retrospective sifting patterns. For instance, Winnow can
compile the previously defined breakHospitality sift-
ing pattern to a roughly equivalent Felt pattern:
(eventSequence ?e1 ?e2 ?e3)
[?e1 eventType enterTown] [?e1 actor ?guest]
[?e2 eventType showHospitality]
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[?e2 actor ?host] [?e2 target ?guest]
[?host value communalism]
[?e3 tag harm]
[?e3 actor ?host] [?e3 target ?guest]
(not-join [?e1 ?guest ?e3]

(eventSequence ?e1 ?eMid ?e3)
[?eMid eventType leaveTown]
[?eMid actor ?guest])

One minor semantic difference between this compiled
Felt pattern and the incrementally executed Winnow
pattern lies in how the constraint [?host value
communalism] (the Felt equivalent of Winnow’s
?host.value: communalism) is applied. Under ret-
rospective execution of a Felt sifting pattern, this constraint
is checked at the end of the event sequence, so the validity
of the match hinges on whether the host character still
holds communalism as a value after the whole sequence
has played out. Under incremental execution, however, this
constraint is associated specifically with the ?e2 execution
stage, so we only check whether the host values communal-
ism at the time of event ?e2. This allows for incrementally
executed patterns to make some subtle distinctions about
when constraints hold that are not possible when executing
sifting patterns in a purely retrospective mode.

Compilation allows for Winnow sifting patterns to be used
as preconditions in Felt action definitions. It also ensures
that Winnow’s performance in a purely retrospective sift-
ing context is never worse than Felt’s. And even “timeless”
Felt or Sheldon sifting patterns that are not formulated in
terms of event sequences (e.g., a sifting pattern that finds
instances of unrequited love between characters) can be ex-
pressed in Winnow as single-event patterns. Consequently,
Winnow can often be used as a drop-in replacement for the
sifting component of Felt.

Performance
Winnow is written in browser JavaScript, in a coding style
that optimizes for clarity over performance. Nevertheless,
it is fast enough to be useful for at least some real-world
simulation-driven games.

To establish a performance baseline, we created an incre-
mental sifting benchmark task involving a small simulated
storyworld with 30 event types and 5 characters. We con-
ducted several distinct runs of the benchmark; on each run,
the partial match pool was initialized with a variable num-
ber of partial matches against the breakHospitality
pattern, ranging from 10 up to 1000. One hundred random
events (with an event type and tags randomly taken from
the 30 available event types, and an actor and target charac-
ter chosen randomly from the five available characters) were
created and added to the database one by one, and the time it
took Winnow to update the partial match pool on each event
addition was recorded.

The benchmark was run in Firefox 87.0, on a 2019 Mac-
Book Pro with a 2.6 GHz 6-Core Intel Core i7 processor and
16GB of RAM. Full benchmark results are available in Ta-
ble 1. Notably, on the most difficult version of the bench-
mark task (in which 1000 partial pattern matches had to
be checked per event), Winnow took on average 912ms per

Pool size Min time Max time Avg time
10 9ms 40ms 13ms
50 41ms 110ms 50ms

100 78ms 227ms 93ms
500 398ms 577ms 460ms
1000 443ms 1097ms 912ms

Table 1: Benchmark results for various partial match pool
sizes. Minimum, maximum, and average time taken to up-
date the partial match pool per event is given for each itera-
tion of the task.

event to update the partial match pool. This is within the
one-second response window suggested by usability experts
as sufficient for maintaining the user’s flow of thought in
an interactive context (Nielsen 1993, Chapter 5); therefore,
Winnow’s performance is likely sufficient for the provision
of near-immediate feedback on player-initiated game events.
Additionally, in many games, events of potential narrative
significance occur much less frequently than once per sec-
ond, so it is likely that Winnow will be able to keep up with a
wide variety of gameplay types. (Especially frequent events,
such as movement events in action games, are often of lit-
tle narrative significance and unlikely to even be logged as
events in a narrative-focused chronicle of gameplay.)

Low-hanging fruit for further optimization is abundant.
In particular, Winnow’s use of the DataScript library for
Datalog query execution imposes a string parsing overhead
on every query that is run; this overhead could be reduced
through tighter integration with a Datalog backend. Addi-
tionally, since Winnow may frequently find itself evaluating
the same Datalog expression many times when checking an
event against a large pool of partial matches, some form of
expression-oriented evaluation cache may help to avoid re-
dundant computation.

Discussion
Pool Management Strategies
Winnow makes no attempt to remove partial pattern matches
from the pool, except when they are either completed
or killed by unless-event constraint violations. As
a result, additional application-specific pool management
strategies may be useful in mitigating unbounded growth
of the pool over time. Collectively, these strategies bear
some resemblance to the “sifting heuristics” proposed
by Ryan (2018): higher-level counterparts to sifting patterns
that encode more generic facets of narrative tellabilty.

One easy-to-implement and fairly generic approach to
pool management involves the automatic pruning of any par-
tial match that has not accepted any of the last K events for
some reasonably large K. The exact threshold to use here is
likely dependent on the texture of the simulation with which
you are working, and different thresholds may even be ap-
propriate for different sifting patterns within the same ap-
plication. For instance, a partial match against a “whirlwind
romance” pattern can likely be safely pruned after a rela-
tively short period of inactivity, whereas a match against a
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pattern that encompasses the whole of a character’s lifespan
might usefully lie dormant for a much longer period.

Another strategy for mitigating pool growth involves re-
placing a partial match’s default “fork and advance” behav-
ior with a simpler “advance directly” behavior (i.e., a be-
havior that avoids growing the partial match pool) once the
match is advanced past a certain point. For instance, a par-
tial match that already has bindings for all of its non-event
variables could be advanced directly without forking off du-
plicates. Since the non-event variables in some patterns (e.g.,
the identities of the ?host and ?guest characters in the
breakHospitality pattern) seem much more strongly
determinant of the microstory’s player-perceived identity
than the events themselves, a group of partial matches that
are technically unique but vary only in event specifics might
be perceived by the player as duplicates—a perception that
would be mitigated if this strategy was employed.

Finally, narrower application-specific heuristics could be
used to clean up partial matches when certain game events
take place without requiring these events to be specified as
unless-event clauses in every relevant sifting pattern.
For instance, depending on the simulation domain, many
emerging microstories might be invalidated by the prema-
ture death of an involved character. Therefore, instead of
writing unless-event clauses into almost every pattern
to hedge against character death, it might be easier from an
authoring standpoint (and more performant from a work-
minimizing standpoint) to automatically prune any partial
matches involving a character that has just died—perhaps
excluding matches against a smaller set of patterns that have
been specifically marked as tolerant of character death.

Modeling Causality
As Ryan has argued (Ryan 2018), causal bookkeeping—the
explicit modeling of causality relationships between simula-
tion events—greatly aids the implementation of a curationist
approach to emergent narrative. However, many of the sim-
ulation engines that are used in notable emergent narrative
games today—for instance, Ryan’s own Talk of the Town
simulation engine (Ryan and Mateas 2019)—do not perform
explicit causal bookkeeping, instead relying on human in-
teractors to infer or invent causality relationships between
events. In order to ensure that Winnow is able to reason over
the output of a wide range of simulation-driven emergent
narrative games, we wanted to avoid imposing a technical re-
quirement that Winnow sifting patterns match only causally
connected sequences of events. As a result, Winnow sifting
patterns are by default written in a causality-agnostic way.

When working with the output of a simulation engine that
performs explicit causal bookkeeping, we expect that causal
relationships between events will be available as data within
the event entities themselves: for instance, every event en-
tity might contain an explicit pointer to the previous event
or events that caused it. Therefore, Winnow sifting patterns
can be written to explicitly reason about this causality in-
formation when it is present—for instance, to constrain pat-
tern matches so that all of a pattern’s kernel events must be
causally related—or to ignore causality information when it
is either absent or irrelevant to the context in which a partic-

ular sifting pattern will be used. We believe that this added
flexibility is worth the slight additional authoring burden
of having to manually assert causality constraints between
events when these constraints are desired.

Conjunction and Disjunction

At the language level, Winnow does not provide any specific
support for writing sifting patterns that match the conjunc-
tion of two or more other patterns. However, conjunction
of patterns can straightforwardly be implemented through
modification of the event chronicle. When a match (com-
plete or partial) against a particular sifting pattern is first de-
tected, the fact that this match has occurred can be added to
the chronicle as a new event. Higher-level sifting patterns
can then be written to look for instances of these match
events and advance when the appropriate conjunction of
lower-level pattern matches has occurred.

Within sifting patterns, disjunction (the ability for a sin-
gle event clause to match either an event A or an event B,
where A and B have different characteristics) can be imple-
mented via Datalog inference rules. An inference rule with
multiple disjoint bodies will hold if any one set of body con-
ditions holds true; therefore, an event clause can match dis-
joint events by checking whether the event satisfies an infer-
ence rule that contains a disjunction.

Conclusion
We have introduced Winnow, a domain-specific language
for incremental story sifting that improves on previous sift-
ing technologies (particularly Felt) by enabling the imple-
mentation of prospective as well as retrospective narrative
intelligence via sifting. Winnow is capable of expressing and
incrementally executing a wide variety of realistic sifting
patterns, including equivalents to existing Felt and Sheldon
patterns and patterns that operate over the Blaseball simula-
tion. Additionally, it is performant enough to run in an in-
teractive context and can be used as a more human-friendly
language for purely retrospective sifting as well.

At a high level, Winnow can be viewed as a narrative cog-
nition engine that attempts to help the computer understand
partial stories that might have arisen in the mind of a hu-
man spectator or user. It is from this perspective that story
sifting appears to us as an especially exciting approach to
narrative intelligence: if we can computationally model the
way that humans make sense of emergent stories, we can
build systems that are capable of understanding gameplay
narratively, just as players do. We believe that future work
on sifting should attempt to further explore the implications
of this view.
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