Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2021)

Search-Based Exploration and Diagnosis of TOAD-GAN

Maria Edwards, Ming Jiang, Julian Togelius

New York Brooklyn, New York
mariaedwards @nyu.edu, mj1279 @nyu.edu, julian@togelius.com

Abstract

Generative Adversarial Networks (GANs) have been used
with great success to generate images. They have also been
applied to the task of Procedural Content Generation (PCG)
in games, particularly for level generation, with various ap-
proaches taken to solving the problem of training data. One
of those approaches, TOAD-GAN (Token-Based One-Shot
Arbitrary Dimension Generative Adversarial Network) (Aw-
iszus, Schubert, and Rosenhahn 2020), can generate levels
based on a single training example and has been able to
closely reproduce token patterns found in the training sam-
ple. While TOAD-GAN is an impressive achievement, ques-
tions remain about what exactly it has learned. Can the gener-
ator be made to produce levels that are substantially different
from the level it has been trained on? Can it reproduce spe-
cific level segments? How different are the generated levels?
We investigate these questions and others by using the CMA-
ES algorithm for Latent Space Evolution. To make the search
space feasible, we use a random projection in latent space.
We propose the investigation undertaken here as a paradigm
for studies into what machine-learned generators have actu-
ally learned, and also as a test of a new method for projecting
from a smaller search space to a larger latent space.

Introduction

Level generation is an important part of PCG, or procedu-
ral content generation (Shaker, Togelius, and Nelson 2016).
The use of computer algorithms to produce new, playable
levels can provide inspiration to video game designers and
expand the space of content available to players. Generative
Adversarial Networks, or GANs, can be a very useful tool
within this domain. However, their output may not be able
to meet all requirements, specifically when training data is
not readily available. Further techniques can be used to filter
and fine-tune the output of such GANSs in order to expand
their applicability. Evolutionary search is one of those tech-
niques.

TOAD-GAN (Awiszus, Schubert, and Rosenhahn 2020)
is a novel application of a Generative Adversarial Network
for single-shot level generation that seeks to present a solu-
tion to the problem of scarce training data. It adapts the one-
shot approach of SinGAN (Shaham, Dekel, and Michaeli

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

140

(b) A level generated by TOAD-GAN based on Mario level 1
using a noise vector with a standard gaussian distribution.

Figure 1: Mario level 1 and a visually similar level generated
by TOAD-GAN.

2019), a generative model that can be learned from a sin-
gle image of the the natural world, to model levels based
on a single training example in token-based games. It does
this by downsampling the training levels to a few differ-
ent scales, taking care to preserve important features, and
training a discriminator and generator pair on each different
scale. This was implemented on Super Mario Bros (Fig.1)
and Mario Kart, and is meant to be widely applicable to ar-
bitrary token-based games.

However, there are a number of characteristics that
TOAD-GAN does not account for. For example, it does not
test for playability. A visual examination of some levels gen-
erated (Fig.2) reveal notable problems that might prevent a
player or Al agent from successfully completing the level.
This presents a hurdle to the usefulness of TOAD-GAN be-
cause while it produces visually similar new levels, further
effort is required to evaluate generated levels for playability.

When examining levels for playability, it can also be
noted that there are a wide range of levels that might be gen-
erated after training on a single Mario level, and that while
many of these levels might be very similar to the training
sample, some might also be very different.

A quick visual inspection of levels generated by TOAD-
GAN reveals that large areas of missing ground or platform,
pipes starting in midair, enemies buried in the ground, and
other characteristics that might limit usability are common
in the resulting output. Further examination is necessary to
illuminate the full range of levels that might be generated by
TOAD-GAN given a training sample.

Figure 2: Unplayable levels generated by TOAD-GAN after
training on Mario level 1. Both levels were generated using
a noise vector with a standard gaussian distribution.

This work seeks to examine that range, and in doing so
to explore the opportunity for using evolutionary search to
find levels satisfying specified requirements within the la-
tent space of a GAN. This approach can expand the appli-
cability of GANSs, especially in domains where the limited
availability of training data means that a trained GAN will
still generate a significant number of samples that are not
usable.

Further, this work seeks to extend the applicability of
evolutionary search by proposing a technique for projec-
tion from a small search space to a larger latent space. In
this technique, a randomly initialized neural network takes a
smaller input vector and outputs a much larger noise vector.
This reduction of a higher-dimensional space to a smaller
one allows for an efficient exploration of that space us-
ing methods that might otherwise be computationally pro-
hibitive. Here, this method allows evolutionary search to be
used to explore the latent space of TOAD-GAN.

Related Work
PCG for Level Generation

Procedural content generation for token-based game levels
and specifically for Super Mario Brothers has a been under-
taken using a wide range of methods. Some researchers have
used Monte Carlo Tree Search to guide Markov chain gen-
eration for Super Mario Brothers (Snodgrass and Ontafién
2014). Others have used Markov chains to learn statisti-
cal patterns from human-authored maps, and used those
trained Markov chains to generate Super Mario Brothers lev-
els (Summerville, Philip, and Mateas 2021). Still others have
generated levels for the same game by stitching together pre-
viously defined mini-level scenes showcasing various game
mechanics (Green et al. 2020). This is just a small sampling
of the methods that have been used to generate Super Mario
Brothers levels.

Machine Learning and Neural Networks have also been
applied to the task of level generation in the field of PCG
via Machine Learning (PCGML), training neural networks
on human authored levels in order to generate new con-
tent (Summerville et al. 2018; Liu et al. 2020). Reinforce-
ment Learning (RL) has been applied in this field as well,
treating the task of level design as a game played by the RL
agent (Khalifa et al. 2020).

Research into using GANs for PCG has often acknowl-
edged the problem posed by lack of adequate training
data (Volz et al. 2018; Torrado et al. 2019; Awiszus, Schu-

141

bert, and Rosenhahn 2020). GANs consist of a generator
tasked with mapping random noise vectors to output of
a specified format such as an image, and a discriminator
tasked with determining whether a sample is real, part of the
training data, or false, part of the generated data. In training,
the generator seeks to produce more and more realistic sam-
ples and the discriminator seeks to become better and better
at detecting fake samples, creating an adversarial relation-
ship where one network is successful only when the other
is not. However, without adequate training data, a discrim-
inator may simply memorize the patterns of a few specific
examples and reject all other patterns, rendering the model
ineffective.

A variety of approaches, including that of TOAD-GAN,
have attempted to mitigate this risk, with a few described
below.

The architecture used by TOAD-GAN was first imple-
mented for use with images of nature in SinGAN (Shaham,
Dekel, and Michaeli 2019). This architecture takes a single
training image and examines it at different scales, training a
lightweight convolutional GAN at each scale to model the
distribution of patches within the image. Training a GAN
to genenerate images by progressively working at different
scales has also been done in the past as applied to the CelebA
dataset (Karras et al. 2017).

Other researchers (Torrado et al. 2019) have proposed a
GAN with an architecture utilizing conditional embeddings
to reduce memory usage and speed up training, and self-
attention to model long-range dependencies. This model
aimed to produce levels to meet functional requirements
such as playability, rather than simply pattern-based similar-
ity. This approach applied bootstrapping techniques as well,
so that successfully generated levels were added to the train-
ing corpus, increasing the variety within that corpus and re-
ducing the likelihood of problems arising from insufficient
training data.

Latent Space Examination

Rather than altering the architecture of the GAN itself, some
have applied search-based methods to further examine the
latent space of a convolutional GAN. As mentioned above,
Volz et al. applied this to the problem of using a GAN
to generate Mario levels (Volz et al. 2018). This work ap-
plies the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) (Hansen and Ostermeier 2001; Hansen 2016).
First, Mario levels are generated using a Deep Convolutional
GAN (DCGAN) based on a single training sample, and then
CMA-ES is used to search through the space of those levels
for samples satisfying various fitness requirements

This approach builds on latent variable evolution
(LVE) (Bontrager, Togelius, and Memon 2017), which trains
a neural network to generate images and searches over the
latent variables of the network, or the space of input vectors,
for input that will produce the right output. LVE was origi-
nally applied to fingerprints, and then used to generate lev-
els for Super Mario Bros (Volz et al. 2018). In this approach
CMA-ES samples the population of that latent space, made
up of random noise vectors, and creates a covariance matrix
to calculate how each variable in those vectors affects the

fitness of the final output. In this way CMA-ES is used to
learn the distribution of more fit output samples. LVE has
also been extended to Latent Variable Illumination by using
CMA-ME, a quality-diversity version of CMA-ES (Fontaine
et al. 2020).

Representations of High-Dimensional Spaces

A number of different techniques have been used in the past
to represent high dimensional information in a compressed
manner. Often these methods are applied in order to use evo-
lutionary methods on otherwise too-large spaces.

Some have used autoencoders to represent a high-
dimensional environment observation as a smaller vector in
order to train neural network controllers for playing Doom
using CMA-ES. In this application, a neural network is used
to learn how to efficiently compress the high-dimensional
observation vector. CMA-ES is then used to search the
space of the weights of the behavior-generating network
for combinations that can successfully perform in the Viz-
Doom ”health gathering” environment (Alvernaz and To-
gelius 2017).

Others have represented network weights as a set of coef-
ficients to be transformed into weight values using an inverse
Fourier-type transform (Koutnik et al. 2013). This approach
assumes a correlation between nearby weight coefficients.
The researchers then evolve the weights of large recurrent
neural network using this compression method for applica-
tion to the TORCS racing simulator.

Further research has been done to propose novel methods
for generating state representations in the context of sepa-
rating representation learning from policy learning while us-
ing reinforcement learning to play Atari games. (Cuccu, To-
gelius, and Cudré-Mauroux 2018). These methods maintain
a dictionary of centroids in the observation space which are
then used for encoding, adding to that dictionary as training
proceeds for online learning. In this case, the technique al-
lows for playing of Atari games with small networks of only
6 to 18 neurons.

Methods

This project undertakes to explore the latent space of the
TOAD-GAN level generator. Exploration is done using
CMA-ES, which builds a covariance matrix and calculates
how each variable in a noise vector affects the fitness of
the final output in order to learn the distribution of output
samples with higher fitness scores (Hansen and Ostermeier
2001; Hansen 2016). For the purposes of this exploration we
define a number of fitness functions in order to find levels
meeting specific criteria, and apply CMA-ES to find levels
according to each of those criteria.

Random Network Projection

As described above, TOAD-GAN takes a single training
sample, scales it down to a specified number of sizes, and
trains a separate generator/discriminator pair at each size.
In generating a sample, each of these generators requires
a noise vector. Furthermore, TOAD-GAN uses a one-hot-
encoded version of a tokenized level. Since Mario level 1

142

< - X4
_ %
X1
X, Randomly
Emitter . L Initialized L . || TOAD-GAN Mario Level Fltnes_s
X Neural . (12 x 16 x 203)| |Evaluation
) Network
X1DU
Feature
Vector N Xg9060
Noise
Vector

Figure 3: CMA-ES is used to explore the space of input to a
randomly initialized neural network, which then allows for
the exploration of the latent space of TOAD-GAN.

uses 12 tokens, each scaled Mario level is encoded with 12
channels. In the experiments publicized in (Awiszus, Schu-
bert, and Rosenhahn 2020) based on Mario level 1, three
down-scaled sizes were used, for a total of 4 trained gen-
erators and a final full-scale level size of 16 x 203 tokens
encoded into 12 channels. The final size of the noise vector
required given these parameters is 99,960. This large size
makes calculating a covariance matrix infeasible due to re-
sources available.

In order to explore this very large latent space with
the computational resources available, an additional step is
needed to translate a manageable number of features into a
large enough noise vector to supply generators at 4 scales.
For this purpose, a neural network is created with a single
dense layer to take a smaller number of input features and
output a vector of size (1, 99960). The number of input fea-
tures used here is 100, since this is small enough that the
amount of memory required by the covariance matrix is rea-
sonable. This neural network is randomly initialized and not
trained, so its output remains random.

To use this network, a generation of 100-element fea-
ture vectors is passed from an optimizing emitter to a fit-
ness function. The fitness function then passes each of these
vectors to the randomly initialized neural network, where
a larger vector is generated from each. Each larger vector
is passed to a trained set of TOAD-GAN generators. Each
generator then takes a portion of the larger noise vector, and
together the generators create a Mario level. Finally, the re-
sulting level is then evaluated for fitness as defined below,
as well as for various behavioral characteristics. The results
of this evaluation for each level created in a generation are
then passed back to the emitter, which updates the covari-
ance matrix and optimizes the next generation of levels to
attempt a higher fitness score as shown in figure 3.

TOAD-GAN is trained using noise vectors from a stan-
dard Gaussian distribution. Examination of the output of the
randomly initialized neural network used here shows that it
has a mean of 0 and a standard deviation between .5 and .6.
One might expect that this noise, being different from the
noise TOAD-GAN is trained on, might be less likely to re-
sult in generated levels that are similar to their training sam-
ple. In order to examine a wider sampling of the possible

output of TOAD-GAN, experiments are run using the out-
put of the random network as it is generated, with a standard
deviation between .5 and .6, and also using the output of the
random network after standardizing that output. In experi-
ments run using standardized noise vectors, the output of the
random neural network is passed through scikit-learn’s Stan-
dardScaler, giving it a standard deviation of 1 and a mean of
0, before being passed to TOAD-GAN.

Fitness Evaluation

In these experiments, generated levels are examined first for
playability. Previous researchers (Volz et al. 2018) have used
the Mario Al competition framework! and its stable of suc-
cessful trained playing agents to test for playability. Voltz
et al. specifically referenced the A* agent by Robin Baum-
garten that won the 2009 version of this competition. Here,
the same agent is used. Experiments are run with percentage
of level completed by the agent as a fitness measure, as well
as with percentage of level left incomplete by the agent as a
fitness measure.

It must be acknowledged that while this agent’s comple-
tion of a level can be taken as proof of playability, there are
also a number of levels that this agent is not able to com-
plete, which a human player or another agent could finish.
Many different agents exist, including some that are specif-
ically made to be human-like (Shaker et al. 2013), but they
are not integrated into the current version of the Mario Al
Framework.

Generated levels are also evaluated for similarity to the
training level. The different metrics listed below are used,
and experiments are done seeking to both maximize and to
minimize each metric, looking for levels that are either more
similar to or more different from the training sample.

The first similarity metric used here is Tile-Pattern KL
Divergence, which has been used in the past to measure
the similarity of patterns in generated and original token-
based levels (Lucas and Volz 2019), (Awiszus, Schubert,
and Rosenhahn 2020). This metric adapts Kullback-Leibler
Divergence to the domain of Mario levels (Lucas and Volz
2019). In the original TOAD-GAN experiments as published
in (Awiszus, Schubert, and Rosenhahn 2020), results across
a number of Mario levels and generated samples are found
to have an average .33 Tile-Pattern KL divergence. In order
to further explore the meaning of these results, Tile-Pattern
KL Divergence is used here as a fitness measure.

Another metric used here is Hamming Distance, which is
a measure of the number of tokens which differ between two
levels (Torrado et al. 2019).

Normalized Compression Distance (NCD) is the third
metric used here to compare two tokenized levels. NCD
measures the similarity between two levels after both are
compressed (Dahlskog et al. 2014). Here, the training level
and output level are compressed using GZIP, and the result-
ing difference between the two levels is calculated accord-
ing to the below, where Z(x) is the size of a given tokenized
level, x, represented as a string and then compressed.

"https://github.com/amidos2006/Mario-Al-Framework

143

Fitness Std. Noise | Level | % Completed
Playability no 1 100
Playability yes 1 100
Playability yes 3 99.57
Unplayability | no 1 5.80
Unplayability | yes 1 7.58
Unplayability | yes 3 6.04

Table 1: Average percentage of level completed by A* agent
over 10000 Generations.

Z(x +y) —min(Z(x), Z(y))

NCD(z,y) = maz(Z(z), Z(y))

Experiments are run for 10,000 generations, each opti-
mizing for a different fitness measure and also recording a
number of different behavioral characteristics. All experi-
ments are run using Mario Level 1 as available in the Mario
Al Framework as the training sample, and a 3-layer TOAD-
GAN model that was trained for 4,000 iterations. Further
experiments are then run using Mario Level 3 and a stan-
dardized noise vector as the training level so that results may
be compared.

Results

In these experiments, CMA-ES is used to search the latent
space of TOAD-GAN first for playable and unplayable lev-
els, then for levels that are more or less similar to the training
sample, and finally for levels that exhibit visual characteris-
tics not yet observed in generated samples. Each of these
experiments are done using standardized noise vectors, and
also using noise vectors that have not been standardized, so
that the range of the GAN may be more fully explored.

Optimizing for Playability

In experiments examining generated levels for playability,
the percentage of a level completed by the A* agent is used
as a fitness measure, and the performance of the most fit
member of each generation is recorded. Similarly, in exper-
iments with percentage of level left incomplete by the A*
agent as a fitness measure, the performance of the most fit
member of each generation is recorded. Results can be seen
in figure 1.

Results here indicate that CMA-ES is more successful
when optimizing for playable Mario levels than unplayable
Mario levels, implying that this level generator may be more
likely to produce playable levels than not. This is consis-
tently true whether the noise vector generated by the ran-
dom network and input to TOAD-GAN is standardized or
not, indicating that evolutionary search is successfully able
to explore the latent space of the GAN using both methods.
A visual inspection of the results tells us that there are a
wide range of levels generated when optimizing for playa-
bility (Fig. 4), as well as a wide range of levels generated
when optimizing for unplayability (Fig. 5), Given that range,
further specifications may be needed to find usable levels.

(a) A level generated after training on Mario Level 1 and using
the standardized output of the random neural network

(a) A level generated after training on Mario Level 1 and using
the standardized output of the random neural network

(b) A level generated after training on Mario Level 1 and using
the unstandardized output of the random neural network

(b) A level generated after training on Mario Level 1 and using
the unstandardized output of the random neural network

(c) A level generated after training on Mario Level 3 and using
the standardized output of the random neural network

Figure 4: Levels generated by TOAD-GAN while optimiz-
ing for playability.

Metric Std. Noise | Level | Min | Max
Hamming Dist. | No 1 0.02 | 0.65
Hamming Dist. | Yes 1 0.02 | 0.35
Hamming Dist. | Yes 3 0.04 | 0.61
NCD No 1 0.59 | 0.92
NCD Yes 1 0.53 | 0.86
NCD Yes 3 0.59 | 0.93
TPKL Div. No 1 0.49 | 597
TPKL Div. Yes 1 0.29 | 3.70
TPKL Div. Yes 3 035 | 4.11

Table 2: Minimum and Maximum values found for each
measure of similarity.

Optimizing for Similarity and Dissimilarity

The next set of experiments examines the similarity of gen-
erated levels to the training level using Tile-Pattern KL Di-
vergence, Hamming Distance, and Normalized Compres-
sion distance as measures of similarity. A higher score for
each of these measures indicates a less similar level, so ex-
periments are run seeking to both minimize and maximize
these scores. As for each of the fitness measures used here,
one set of experiments is run using output directly from the
random neural network to pass to TOAD-GAN, and another
set is run first standardizing that output and then passing it
to TOAD-GAN.

The maximum and minimum values found for each com-
parison metric are given in Table 2. These values demon-
strate that standardizing the noise vector before passing it
to TOAD-GAN results in levels that are more similar to the
training sample according to every metric.

Heatmaps generated while maximizing each of these sim-
ilarity metrics and recording the other two metrics as behav-
ioral characteristics are shown in Figures 6a, 6b, 6¢. These
heatmaps are generated without standardizing the noise vec-
tor input to TOAD-GAN. In them, higher scores as indicated

144

(c) A level generated after training on Mario Level 3 and using
the standardized output of the random neural network

Figure 5: Levels generated while optimizing for unplayabil-
ity.

by brighter squares tend to be concentrated towards the up-
per right corner of each map, indicating that a higher score
for one similarity metric often coincides with higher scores
for the other two.

On examination, the most visually dissimilar levels gen-
erated based on level 1 while optimizing for each of these
measures of similarity often appear to have a similar preva-
lence of pyramid blocks and may also be missing the identi-
fiable ground or platform areas that would make them usable
(Fig. 7). This is true of levels generated with and without
standardizing the noise vector input to TOAD-GAN. Levels
generated while maximizing dissimilarity for level 3 (Fig. 8)
may appear similarly strange but do not necessarily include
the same token types, as level 3 is made up largely of tree
platforms, which are not present in level 1.

Optimizing Based on Visual Observations

Once playability, Tile-Pattern KL Divergence, Hamming
Distance, and Normalized Compression Distance have been
explored, a visual inspection of generated levels is done, and
a number of other characteristics are examined. Further ex-
periments are then done to see if levels can be generated that
exhibit characteristics not yet seen.

The first fitness measure considered here is the presence
of token types not found in the training sample. It is expected
that TOAD-GAN would generate levels using exclusively
token types present in the training sample. This is demon-
strated when in 10,000 generations of experiments, not a
single level is generated that includes a token not found in
the original level, confirming that this is one boundary of a
TOAD-GAN generator trained on a given sample. This is
consistent in experiments run using noise vectors that are
standardized and noise vectors that are not, as well as in ex-
periments run using level 1 as a training sample and those
using level 3 as a training sample.

Another characteristic considered is the presence of par-

Optimizing for TPKL Div. Optimizing for NCD

4 =
" 0.75
3
0.70

8.00 0.25 0.50 0.75 1.00
Hamming Dist.

1.0

TPKL Div.

N

0'(9.00 025 050 075 1.00
Hamming Dist.

(a) Using high TPKL Diver- (b) Using high NCD as fitness.
gence as fitness.

1 oOptim. for Homming Dist.

0.8 # s 0.5

506 0.4

Q

Z0.4 0.3
02 0.2

%% 25 50 75 100
TPKL Div.

(c) Using high Hamming Dis-
tance as fitness.

Figure 6: Similarity measures as fitness

(a) A level generated with an unstandardized noise vector that
has a normalized compression distance of 0.92 from its training
sample.

(b) A level generated with a standardized noise vector that has
a hamming distance of 0.35 from its training sample.

Figure 7: Levels generated based on Mario world 1 level 1
that have some of the highest scores in differing from the
training sample.

(a) A level generated with a standardized noise vector that has a
normalized compression distance of 0.93 from its training sam-
ple.

(b) A level generated with a standardized noise vector that has
a Tile-Pattern KL Divergence of 4.19 from its training sample.

Figure 8: Levels generated based on Mario world 1 level 3
that have some of the highest scores in differing from the
training sample.

(a) A level generated based on Mario level 1 from standardized
noise vectors.

(b) A level generated based on Mario level 1 from an unstan-
dardized noise vectors.

(c) A level generated based on Mario level 3 from a standardized
noise vectors.

Figure 9: Using evolutionary search to optimize for number
of Koopas.

ticular types of tokens, such as enemy tokens. The origi-
nal Mario level 1 has 15 enemies present. Of these, 14 are
Goombas and 1 is a green Koopa Troopa. CMA-ES is used
here to explore the range of enemies that might be generated
with this training sample.

Experiments are done using total number of enemies as
a fitness function, as well as a using total number of green
Koopas as a fitness function. Results are shown in figure 9.
When the noise vector fed to the GAN is not standardized,
evolutionary search achieves a maximum of 9 green Koopas
or 88 enemies. When the noise vector is standardized, lev-
els with a maximum of 8 green Koopas or 65 enemies are
found when using level 1 as the training sample, and no
green Koopas but a maximum of 69 enemies are found when
using level 3 as the training sample.

One can also observe that in the original Mario level 1,
enemies are placed on ground tokens, platform tokens, and
in midair. In order to see if TOAD-GAN can produce lev-
els with new enemy placements, this characteristic is used
as a fitness metric. Fitness here is defined as the number of
enemies placed on pyramid tokens. Some of the resulting
levels are shown in figure 10. There are a visible number of
enemies placed on pyramid blocks in many of the resulting
levels. This is true in levels generated based on level 1, but
also in those generated based on level 3, showing that levels
can be found that meet this criteria even when the training
samples have differing numbers of pyramid blocks and types
of enemies present.

Finally, one of the most immediately apparent differ-
ences between levels generated by TOAD-GAN and original
Mario levels is the presence of malformed elements, such as
areas of the ground that have holes in them or pipes that
start in midair. Both of these characteristics are then used as
fitness functions for individual experiments. When holes in
the ground are used as a fitness function, we define fitness
as a value starting from O and negatively progressing with
each ground token that is present in one of the two ground

(a) A level generated using a standardized noise vector based on
Mario level 1

(b) A level generated using an unstandardized noise vector
based on Mario level 1

(c) A level generated using a standardized noise vector based on
Mario level 3

Figure 10: Levels generated to optimize for number of ene-
mies placed on pyramid blocks.

(b) A level produced using Mario level 3 as the trainging sample

Figure 11: Levels generated while optimizing to avoid holes
in the ground and pipes starting in midair, using standardized
noise vectors.

levels but not the other. When pipes in midair are used as a
fitness function, fitness is a value starting from 0 and nega-
tively progressing with each pipe token that has a ’sky” to-
ken present immediately beneath it. Additional attempts are
made to find levels that exhibit neither holes in the ground
nor pipes starting in midair by combining both of these met-
rics and using that sum as the fitness measure.

A visual inspection of these results (Fig. 11) indicates that
many of them are reasonably functional, and do not exhibit
as many obvious visual malformations as seen in other ex-
periments.

This of course does not cover the full range of behavior
demonstrated by a trained TOAD-GAN level generator, but
can provide some insight into what that behavior might be,
where it might result in generated levels that are very differ-
ent from the training level or for some reason unusable, and
whether evolutionary search can be used to impose desired
constraints on the space of the levels generated by a given
GAN.

146

Discussion

In this work, CMA-ES is used to search the latent space
of a trained TOAD-GAN model for more or less playable
levels, as well as levels exhibiting higher or lower scores
for Hamming Distance, Normalized Compression Distance,
and Tile-Pattern KL Divergence as compared to the training
level.

Results indicate that when noise vectors are standardized
before being passed into TOAD-GAN, the generated levels
are more similar to the training samples than when those
noise vectors are not standardized. This is to be expected, as
TOAD-GAN is trained on standardized noise vectors. How-
ever, allowing the search space to include noise vectors that
are not standardized means that we are able to further ex-
plore the further reaches of a GAN’s capabilities, and see
some levels that are more dissimilar than expected to the
training samples.

On observing the levels generated in these experiments,
it is apparent that levels generated by TOAD-GAN always
use the same token types as the training sample, and also
produce enemy counts, types and placements similar to the
training sample. However, they also exhibit many visual
malformations such as pipes starting in midair or holes in
the ground that would not be found in a human-designed
Mario level. When CMA-ES is used to search for levels that
contradict these observations, levels can be found that ex-
hibit higher numbers of enemies in general, higher number
of specific enemy types, and new enemy placements. Lev-
els are also found that exhibit lower numbers of holes in
the ground and pipes starting in midair. This indicates that
evolutionary search can be used alongside GANs to confirm
whether those GANs can generate levels that meet a speci-
fied criteria and to and to find those levels.

It is important to note that some bias towards the tokens
and patterns of the training level was expected to be found
in the trained TOAD-GAN model. Any successfully trained
model will by necessity be biased. The question is what ex-
actly the bias consists in, and the methods presented here
can reveal this.

Conclusion

In this paper, we employ evolutionary search to illuminate
the latent space of a trained level generator. In doing so we
offer a useful method for understanding and characterizing
what a generator has learned. The methods proposed here
could be applied to understand and contrast other generators
of functional content, as well as to search for levels meeting
specific criteria in the latent space of a generator.

To make the search space feasible here, a random pro-
jection in latent space is used. This is a technique that al-
lowed us to combine two otherwise incompatible previous
methods to gain deeper insight into one of them. It is also a
technique that may have wider applications in fields such as
evolutionary search, where some methods may not be suit-
able for searching a larger space. This project can suggest a
new way to address those problems, thus opening the door
for future work.

References

Alvernaz, S.; and Togelius, J. 2017. Autoencoder-
augmented Neuroevolution for Visual Doom Playing. CoRR
abs/1707.03902. URL http://arxiv.org/abs/1707.03902.

Awiszus, M.; Schubert, F.; and Rosenhahn, B. 2020. TOAD-
GAN: Coherent Style Level Generation from a Single Ex-
ample. CoRR abs/2008.01531. URL https://arxiv.org/abs/
2008.01531.

Bontrager, P.; Togelius, J.; and Memon, N. D. 2017. Deep-
MasterPrint: Generating Fingerprints for Presentation At-
tacks. CoRR abs/1705.07386. URL http://arxiv.org/abs/
1705.07386.

Cuccu, G.; Togelius, J.; and Cudré-Mauroux, P. 2018. Play-
ing Atari with Six Neurons. CoRR abs/1806.01363. URL
http://arxiv.org/abs/1806.01363.

Dahlskog, S.; Horn, B.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A Comparative Evaluation of Procedural Level
Generators in the Mario Al Framework. In Proceedings of
Foundations of Digital Games.

Fontaine, M. C.; Liu, R.; Togelius, J.; Hoover, A. K.; and
Nikolaidis, S. 2020. Illuminating mario scenes in the latent
space of a generative adversarial network. In Proceedings of
AAAL

Green, M. C.; Mugrai, L.; Khalifa, A.; and Togelius, J.
2020. Mario Level Generation From Mechanics Using
Scene Stitching. CoRR abs/2002.02992. URL https://arxiv.
org/abs/2002.02992.

Hansen, N. 2016. The CMA Evolution Strategy: A Tuto-
rial. CoRR abs/1604.00772. URL http://arxiv.org/abs/1604.
00772.

Hansen, N.; and Ostermeier, A. 2001. Completely deran-
domized self-adaptation in evolution strategies. Evolution-
ary computation 9(2): 159-195.

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive Growing of GANs for Improved Quality, Stability,
and Variation. CoRR abs/1710.10196. URL http://arxiv.org/
abs/1710.10196.

Khalifa, A.; Bontrager, P.; Earle, S.; and Togelius, J. 2020.
PCGRL: Procedural Content Generation via Reinforcement
Learning. CoRR abs/2001.09212. URL https://arxiv.org/abs/
2001.09212.

Koutnik, J.; Cuccu, G.; Schmidhuber, J.; and Gomez, F.
2013. Evolving Large-Scale Neural Networks for Vision-
Based Reinforcement Learning. In Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO 13, 1061-1068. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450319638.
doi:10.1145/2463372.2463509. URL https://doi.org/10.
1145/2463372.2463509.

Liu, J.; Snodgrass, S.; Khalifa, A.; Risi, S.; Yannakakis,
G. N.; and Togelius, J. 2020. Deep learning for procedu-
ral content generation. Neural Computing and Applications
1-19.

147

Lucas, S. M.; and Volz, V. 2019. Tile Pattern KL-
Divergence for Analysing and Evolving Game Levels.
CoRR abs/1905.05077. URL http://arxiv.org/abs/1905.
05077.

Shaham, T. R.; Dekel, T.; and Michaeli, T. 2019. SinGAN:
Learning a Generative Model from a Single Natural Im-
age. CoRR abs/1905.01164. URL http://arxiv.org/abs/1905.
01164.

Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.

Shaker, N.; Togelius, J.; Yannakakis, G. N.; Poovanna, L.;
Ethiraj, V. S.; Johansson, S. J.; Reynolds, R. G.; Heether,
L. K.; Schumann, T.; and Gallagher, M. 2013. The turing
test track of the 2012 Mario AI Championship: Entries and
evaluation. In 2013 IEEE Conference on Computational
Inteligence in Games (CIG), 1-8. doi:10.1109/CIG.2013.
6633634.

Snodgrass, S.; and Ontafién, S. 2014. Experiments in Map
Generation using Markov Chains. In Proceedings of Foun-
dations of Digital Games.

Summerville, A.; Philip, S.; and Mateas, M. 2021. MCM-
CTS PCG 4 SMB: Monte Carlo Tree Search to Guide Plat-
former Level Generation. Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment 11(3): 68—74. URL https://ojs.aaai.org/index.php/
AlIDFE/article/view/12816.

Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgéard, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGMVL). IEEE Transactions on Games 10(3): 257-270.

Torrado, R. R.; Khalifa, A.; Green, M. C.; Justesen, N.; Risi,
S.; and Togelius, J. 2019. Bootstrapping Conditional GANs
for Video Game Level Generation. CoRR abs/1910.01603.
URL http://arxiv.org/abs/1910.01603.

Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space of a
deep convolutional generative adversarial network. In Pro-

ceedings of the Genetic and Evolutionary Computation Con-
ference, 221-228.

