
Efficient 2D Sound Propagation in Video Games

Nima Davari, Clark Verbrugge
McGill University, Montréal, Canada

nima.davari@mail.mcgill.ca, clump@cs.mcgill.ca

Abstract

Sound is well known for improving immersion in video
games. In many games sound also serves as an important
game mechanism; in stealth games, for example, sounds trig-
gered by player actions may attract enemy agents, and sounds
created by enemy agents give useful information on where to
target or avoid combat. Modelling sound, however, is com-
putationally complex, and thus sound propagation is often re-
stricted to highly localized contexts, or based on trivial prop-
agation models such as a fixed radius that ignores the impact
of obstacles. In this work, we describe an efficient approach
to propagating sound in a real-time 2D game level. We use a
heuristic ray-based approach, adapted to include diffraction,
reflection, and transmission. Our design allows for dynamic
geometries, avoids sound discontinuities, and can be tuned in
various ways to trade-off accuracy for computation cost.

Introduction
Sound is an important aspect of video games, well known
for increasing the sense of immersion in virtual environ-
ments (Brown and Cairns 2004). Sounds made by enemies
allow players to localize unseen opponents, but sound can
also be a major factor in game-play decision-making and
strategization: sounds made by a player agent can be used to
alert or otherwise guide enemy NPCs toward the player, and
are thus useful in AI systems.

Computing realistic sound propagation, however, is dif-
ficult. Sound is typically understood in terms of its wave-
based properties, which allow it to bend around corners
(diffraction), reflect off of a wide variety of surfaces, echo,
reverberate, con/de-structively interfere, and even transmit
through obstacles, resulting in a complex soundscape that
strongly depends on the local geometry and materials. To
reduce cost, many video games either use very simple mod-
els of sound propagation, such as room or radius-based ap-
proaches that limit sound travel and ignore obstacles en-
tirely, or use pre-scripted volume settings determined manu-
ally or computed ahead of time based on a static geometry.

In this paper, we describe a heuristic, 2D geometry-based
sound propagation design that can be efficiently computed at
runtime to provide reasonable sound propagation in a real-
time, dynamic environment. Our model builds upon ideas of

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

visibility. Similar to light modelling, we use rays to prop-
agate sound through the environment. Rays encountering
obstacles diffract and/or reflect, resulting in additional vir-
tual sound sources that extend the coverage of the primary
source. Smoothly merging these sound sources eliminates
discontinuities, and consideration of which sources reach a
given point allows modelling echos or other forms of sound
combination.

Specific contributions of our work include:
• We define a base sound computation that supports diffrac-

tion, reflection, and sound transmission. Secondary, vir-
tual sound sources are generated and smoothly combined
to present a cohesive sound experience.

• We support both static and dynamic contexts. The en-
tire model can be computed at runtime, allowing for
dynamic geometries and recomputation due to moving
sound sources. In static contexts the model does not re-
quire a listener, and can thus be fully pre-computed.

• Our design is computationally efficient. We use a
Unity3D implementation to demonstrate low runtime
cost, which can be further tuned by reducing level detail
and controlling the number of secondary sound sources,
trading off quality for cost.

Related Work
(Funkhouser et al. 2004) divides sound simulation meth-
ods into two groups: numerical solutions to wave equations,
and geometrical propagation-path approximations. (Savioja
1999) uses the terms wave-based models and ray-based
models to refer to the two groups. Our work is a ray-based
method that utilizes a small portion of the CPU to provide
real-time sound modeling for dynamic environments.

Wave-based models can result in more accurate simu-
lations, but they can also be much more computationally
expensive; therefore, most wave-based solutions are not
suitable for real-time environments such as video games.
Finite-difference time-domain (FDTD) is a technique that is
used for wave-based sound simulation (Botteldooren 1995).
In this method, the derivatives in the wave equation are
replaced by finite differences (Savioja 1999; Strikwerda
2004). (Zamith et al. 2010) uses such technique to simu-
late sound wave propagation on the GPU. Finite Elements
Methods (FEM) and Boundary Element Methods (BEM) are

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

132

wave-based techniques that solve the wave-equation using a
partitioning scheme; however, they are only suitable for low
frequencies due to high computational cost (Savioja 1999;
Foale and Vamplew 2007).

Project Acoustics is a wave acoustics engine for 3D in-
teractive experiences (Microsoft 2019). It precomputes the
details of the sound model on the cloud, similar to how
static lighting is often modelled. During the baking stage,
a large number of impulse responses (terabytes of data in
some cases) are processed, which lifts a lot of the compu-
tation away from the CPU at runtime, but comes with the
disadvantage of not supporting dynamic geometries.

While wave-based models try to solve the wave equa-
tion, geometry-based (ray-based) methods model sound us-
ing rays and the geometry. They fire rays from the sound
source, which will reflect off of surfaces in the environment
and some will eventually reach the listener. Sound is then
modelled using the propagation paths. There are a num-
ber of approaches that have been used for geometry-based
sound modelling. Image-Source method is one of the first
techniques that was used to simulate acoustics (Allen and
Berkley 1979). This technique models specular reflection by
recursively creating new virtual sound sources that are re-
flections of the sound source with respect to an edge in the
geometry. The method has exponential complexity and is not
practical for complex geometries.

Path tracing and ray tracing methods are very well-known
in the field of Computer Graphics. The scalable nature of
ray-based techniques and their simple computation make
them good options for acoustics modeling as well (Mahjoob
and Malakooti 2008; Krokstad, Strom, and Sørsdal 1968;
Kulowski 1985). There are extensions to ray tracing, such
as beam tracing, which uses volumetric elements instead of
rays. Our model is also based on ray tracing; however, it pri-
oritizes performance and user experience over accuracy, and
therefore, it tries to simulate sound propagation using only a
small number of rays.

(Tsingos et al. 2001) and (Funkhouser et al. 1998) use
a similar approach to model the diffraction, reflection, and
transmission properties of sound. They use beam tracing
for efficiency; however, this technique is only practical for
coarsely-detailed models, as beams would constantly get
fragmented while travelling through a complex environment
(Tsingos et al. 2001). In contrast, our model’s complexity is
primarily bound to the number of vertices in the geometry,
and the shapes and sizes of obstacles do not impose strict
limitations.

(Taylor et al. 2012) is another work that uses beam trac-
ing. Similar to our method, it considers simplifications such
as computing only the first few specular reflections, or con-
sidering diffraction only in shadow regions. The primary dif-
ference between this method and our technique is that for
sound propagation, we do not aimlessly fire a large num-
ber of rays or beams, hoping to reach the listener through
reflections. This means that our model does not need to be
computed on the GPU, whereas the aforementioned model
requires utilizing the GPU to be able to perform in real-time.
(Cowan and Kapralos 2015) also use the GPU to provide an
interactive experience. Their approach runs a shortest-path

search on a grid representation of the geometry. Its com-
plexity grows with the resolution of the grid, which limits
the geometry’s shape and size for a proper real-time experi-
ence.

In the context of video games, interactive sound propa-
gation can benefit from being faster and simpler at the cost
of some accuracy. (Boev 2015) describes the audio budget
for Hitman (2016 stealth video game) to be 1ms per frame
and up to 50 percent of a CPU core. They use a Rooms-and-
Portals representation for the geometry and consider sim-
plifications such as partially ignoring sound source position
inside rooms, applying a muffling filter for listeners that are
behind obstacles, having a single material for all walls of a
room, and mostly relying on the level geometry to be static.
While all these approximations are reasonable for the game,
we believe that our techniques can provide more accurate
results, while keeping the computation time low and sup-
porting complex, dynamic geometries.

Tom Clancy’s Rainbow Six Siege (2015 shooter video
game) is more focused on dynamic geometry support, as
walls can be shot to create holes in them in the middle of
combat (Dion 2017). Their approach to sound propagation is
to use strategically placed nodes in the map to calculate the
shortest path. This method restricts the dynamic aspect of
the geometry to some extent, and it requires the level layout
to be determined offline. They also handle transmission and
reflection through simulation tricks, which we try to more
accurately model using rays.

Sound Propagation
Emitting from the sound source, sound signals travel in all
directions and can reach their destination from many differ-
ent paths. The signal caught by the listener can be computed
using the following equation (Takala and Hahn 1992).

received(t) =
∫ ∞
0

w(t, τ) · emitted(t− τ)dτ (1)

Where w(t, τ) is the amount of signal received through all
paths with delay τ .

The above model is not suitable for a real-time environ-
ment. We need a simplified version that is easier to compute,
but also preserves reasonable sound propagation through the
geometry. With that goal in mind, we assume the following
properties for our sound propagation model:
• Sound amplitude decays in proportion to the distance

travelled.
• Sticking to the visibility idea, sound can only move in a

straight line; therefore, a listener will not receive any sig-
nal from a source that is not directly in its sight.

• Sound travels with no delay. We assume sound travels fast
enough to be heard instantaneously in different locations
of the environment. We later introduce an exception for
this rule to model echos.

• Since we do not consider any delays, sound propagation
can be formulated exclusively with attention to amplitude.
We can therefore have a simple sound propagation equa-
tion such as the following.

Ad = max{As − pdf× d, 0} (2)

133

Where Ad is the amplitude created at a destination point,
As is the amplitude at the source point, d is the distance
between the source and the destination, and pdf is the
sound propagation decay factor.

While we use a linear amplitude fall-off for simplicity, the
equation can be trivially modified to represent other decay
functions as well.

Proposed Model
We introduce an efficient ray-based sound model that at-
tempts to simulate the following sound behaviors: diffrac-
tion, reflection, and transmission. Diffraction is the ability
of sound to bend around corners, reflection allows sound to
reflect off of surfaces, and transmission allows sound to pen-
etrate through obstacles, losing a portion of its energy as a
result.

Our geometry is comprised of game obstacles, which are
represented as non-intersecting polygons. The geometry can
be simplified if required, to reduce the computations of the
sound system. We define sound source as an entity that pro-
duces a sound signal at a certain point in our 2D environ-
ment. There are no limitations on where a sound source can
be positioned, as our model does not require game obsta-
cles to be solid. For the sake of clarity, we call these sound
sources “primary sound sources,” as we later introduce other
types of sources as well. In the figures of this paper, the
green lines represent the obstacles, the red dot represents
the sound source, and its maximum range of coverage is dis-
played as a circle.

In our model, sound primarily moves around the level ge-
ometry using diffraction. We do not use reflection to explore
the environment, rather, reflection is used to simulate echos
and delays in sound propagation. We use transmission as a
complement to diffraction, to cover areas that are not prop-
erly accessible for the diffraction model. In this section, we
explain our techniques of modelling each of these behaviors
of sound.

Diffraction
Our idea to let sound reach around corners is that since the
primary source cannot directly reach the area occluded by an
obstacle, we can create a virtual sound source at a vertex (an
intermediate point), that has vision over both the primary
source and the occluded area. This method can be consid-
ered an approximation of the Huygens–Fresnel’s diffraction
model (Wikipedia contributors 2021). Figure 1 shows two
diffraction sources and their regions of coverage.

Model Computation. To model diffraction, the first step
is to shoot rays from the location of the primary sound
source to the vertices of the geometry. Each of these ver-
tices is a possible location for a diffraction source, which
plays the same sound as the primary source, but with a lower
amplitude. More specifically, we can compute the amplitude
using the sound propagation equation (2). Another distinct
feature of a diffraction source is that it does not have full
radial coverage.

A diffraction source will be created at a vertex as long as
all the following conditions are met.

Figure 1: Diffraction sources are created by shooting rays
from the source toward the vertices of the obstacles. The
purple dots are diffraction sources.

Figure 2: The coverage of a sound model with the diffraction
property. Purple dots represent diffraction sources.

• The amplitude of the potential diffraction source would
be nonzero.

• The ray would not intersect any obstacles on its way to
the target vertex.

• The ray would not penetrate through the obstacle if ex-
tended by a small length.
Once we have the first-order diffraction sources, we use

them to create higher-order sources to cover all reachable
regions in the environment. Figure 2 shows the coverage of
a sound source with diffraction enabled.

Sound Computation. Now that we have a diffraction
model, we can use it to compute sound for a particular lis-
tener. We break down the process into two steps: computing
the sound created by each individual diffraction source, and
combining the results. The first step is done by applying (2)
for each diffraction source. To combine the computed am-
plitudes, we use the maximum operator, as not only does it
create a smooth sound heatmap, but it also results in a final
amplitude that is at least as high as the amplitude of all in-
dividual diffraction paths to the listener. The output of the
diffraction model is hence computed as follows:

Al = max{max{Ad − pdf× dd, 0} : d ∈ dlist} (3)

Where dlist is the list of all computed diffraction sources,
Ad is the amplitude of a diffraction source, dd is the distance
between source d and the listener, and pdf is the sound prop-
agation decay factor.

134

Figure 3: Left: normal diffraction model. Right: decaying
diffraction model.

Optimization Techniques. Computing the second-order
diffraction sources can be time consuming, but there are
ways to speed-up the process. We will mention two such
methods below.

Depending on the geometry of the game level, our diffrac-
tion sources can cause sound to loop in circles. Since we
eventually end up taking the maximum amplitude as our
diffraction output, circling around is a completely unneces-
sary computation. We can prove that only a maximum of one
diffraction source is required at each vertex of the geometry,
and that source is the one with the highest amplitude regard-
less of its orientation; therefore, by simply remembering the
amplitude of a diffraction source on a vertex, we can decide
whether a new source should be created on that point or can
we just discard it and prevent any other recursive calls that
would otherwise follow. To maximize the pruning, at each
vertex, we need to place the highest amplitude source be-
fore any other source. This motivates the use of a greedy
heuristic when we are creating the second-order diffraction
sources. Specifically, at any point, we prioritize generating
the children of the diffraction source that has the highest am-
plitude.

Another optimization method is to cache a table that
speeds-up the process of deciding whether a higher-order
diffraction source can be created at a certain target vertex,
from a certain source vertex. Since both the source and the
target are fixed vertices of the geometry, we can easily pre-
compute information such as the angle between the two
points, or whether the interconnecting ray would intersect
an obstacle.

Variations. To control the shape and the feel of the diffrac-
tion model, we can modify parts of the model computation.
Figure 3 displays a diffraction variation in which sound loses
more energy the more it bends. Later on, in figure 10, we
have examples of changing (2) to achieve a more realistic
sound field.

Reflection
In our model, reflection is used to simulate echos. We use a
slightly different sound propagation model to support sound
delay.

Ad = max{(As − pdf× d)×R, 0}

τd = τs +
d

c

(4)

Figure 4: Reflection rays bouncing around the environment
and creating the yellow reflection sources.

We basically use the same equation for the amplitude, but
we have also added an equation for the delay, in which τd
is the delay at the destination, τs is the delay at the source,
d is the distance between the the two positions, and c is the
speed of sound in our environment. The constant R controls
the portion of sound to be reflected once it hits an obstacle.
A smaller R may result in earlier algorithm termination.

Motivation. There are two types of reflection: specular
and diffuse. Specular reflection is when a ray hits a mirror-
like surface and ideally reflects with a definite angle. On
the other hand, diffuse reflection happens when a ray hits a
rough surface and is scattered in a random direction. In prac-
tice, most sound reflections become diffuse after the first few
bounces (Savioja and Svensson 2015). Therefore, we do not
rely on reflection to produce the main output of our model;
instead, our sparse reflection model produces echoes of the
primary sound, which are created by using a small number of
rays with a sequence of specular bounces, followed by a dif-
fuse reflection. Properly modelling the sound field using re-
flection is not cost-efficient, considering its minimal contri-
bution to the player experience in video games, as we noted
in our initial experiments. The advantage of our method is
its simplicity to compute, as it normally does not need many
rays or many bounces. It also does not require a specific lis-
tener for model computation, which is useful for real-time
environments combining immobile sound sources with dy-
namic listeners.

Model Computation. To model reflection, we fire a num-
ber of rays from the primary sound source, in different direc-
tions. The rays will specularly bounce around the environ-
ment, and each time they hit an obstacle, a reflection source
is created at the hit point. A reflection source has a certain
amplitude, delay, and a specular reflection direction associ-
ated with it. The first two are calculated using (4), and the
last one is the direction of the ray after it would specularly
reflect at the hit point. Figure 4 shows how the rays travel
through the geometry and create reflection sources.

Sound Computation. Similar to what we did for diffrac-
tion, we have a two-step method to compute sound for a lis-
tener. In the first step, we compute the effect of each indi-
vidual reflection source using the following equations.

135

Figure 5: A transmission source is created on the edge of
an obstacle. The blue dot is a transmission source and the
yellow circle represents its coverage.

A = max{As − pdf× d, 0} × (~dirs · ~dir)α

τ = (τs +
d

c
)× rdf

(5)

Where As, τs, and ~dirs are the amplitude, delay, and the
specular reflection direction of the reflection source, ~dir is
the direction from the source to the listener, rdf is the reflec-
tion delay factor, and α is a constant that adjusts how much
emphasis is put on the last ray being specular or diffuse.

Using these equations on all reflection sources results in
a list of (amplitude, delay) pairs. In other words, the listener
receives the same sound as the primary source, but as a num-
ber of delayed signals with lower amplitudes. Once we have
the pairs, we can decide on a combination technique to pro-
duce the final output of the reflection model. This could be
a function of all pairs, or it could be as simple as grabbing
only the first few pairs and discarding the rest.

Transmission
Transmission enables sound to go through obstacles. Our
transmission model works similarly to the diffraction model;
that is, it tries to create intermediate sources to extend sound
coverage. Figure 5 shows a simple example of a transmis-
sion source, created on the edge of an obstacle.

Model Computation. Similarly to the reflection model,
we fire rays in all directions around the sound source. As
each ray hits an obstacle, it creates a transmission source at
the hit location. The amplitude of this source is computed
using the following equation.

Ad = max{(As − pdf× d)× T, 0} (6)
The constant T controls what portion of the sound should

transmit through the obstacle. A smaller value may result in
earlier algorithm termination.

The ray will then continue moving in the same direction to
create other transmission sources. The amplitude of the new
ones can be computed using the same equation, but this time,
the source would be the most recent transmission source cre-
ated along the ray. Figure 6 shows the coverage of the trans-
mission model.

Figure 6: The Output of the Transmission Model

Sound Computation. Sound computation is identical for
both diffraction and transmission, which results in a single
equation combining both models.

Al = max{max{Ad−pdf×dd, 0} : d ∈ dlist ∪ tlist} (7)

Where dlist and tlist are the list of diffraction sources
and transmission sources, respectively.

Experiments and Model Evaluation
In this section, we evaluate our model from two aspects: per-
formance and quality.

Performance Evaluation
We define four criteria to evaluate the performance of our
sound model: number of rays fired, number of secondary
sources created, model computation time, and sound com-
putation time. Performance data is collected for two en-
vironments with different geometry complexities from the
movingai.com maps, as shown in figures 7 and 8 (Sturte-
vant 2012). Tables 1 and 2 show the measurements for each
of the diffraction, reflection, and transmission behaviors,
separately. The computation times are averages of 50 at-
tempts, with a maximum variation of 23 percent.

Concluding from the tables, the complexity of our model
is directly related to the geometry. Both the processing time
and the required memory are tied to the shape of the envi-
ronment. Continuing, we will attribute the time complexity
to the number of rays fired, and the memory complexity to
the number of secondary sources created.

For diffraction, the number of sources required is at most
equal to the number of vertices in the environment, since
we only require a maximum of one diffraction source at a
vertex. The time complexity of diffraction depends on how
many vertices around the primary sound source should be
processed. The number of rays fired may increase exponen-
tial to the number of vertices in the geometry; however, in
practice, we can simplify our geometry and have quick com-
putations.

For reflection and transmission, both the computation and
the memory complexities depend on the number of rays we
decide to shoot, and their hits and bounces in the environ-
ment; therefore, we can achieve different levels of complex-
ity by adjusting the ray count.

136

Figure 7: Performance test geometries. On the left, we have
a complex map with 264 vertices inside the range circle. On
the middle, we have simplified the geometry and the circle
now contains 133 vertices. On the right, we have further sim-
plified the environment and the vertex count is reduced to
67.

Property Rays Sources MCT (ms) SCT (ms)

Diff
S0 574 76 7.84 0.32
S1 204 43 2.25 0.16
S2 56 19 0.54 0.12

Ref
S0 40 22 0.10 0.03
S1 37 19 0.10 0.03
S2 34 16 0.09 0.02

Trans
S0 36 61 0.19 0.18
S1 36 61 0.19 0.18
S2 36 46 0.15 0.10

Table 1: Performance evaluation of different sound proper-
ties in the test environments from Figure 7, which are de-
noted by S0, S1, and S2, determining their simplification
level. The last two columns stand for Model Computation
Time and Sound Computation Time, respectively.

It should be mentioned that our model computation does
not consider a specific listener position. If we aimed to com-
pute sound for a certain listener, computation times would
be much lower, especially for modeling diffraction. In that
case, our problem would become similar to a search prob-
lem in which we only try to find a single answer rather than
all of them.

Quality Evaluation
In this section, we begin by inspecting our model in terms of
sound continuity and coverage, followed by a comparison to
a more precise model for an accuracy evaluation.

We require our model to not have noticeable sound dis-
continuity. To evaluate the smoothness of the model, we

Figure 8: Performance test geometries. Similar to figure 7,
different geometry simplification levels were applied, result-
ing in 235, 133, and 66 vertices in the range circle, respec-
tively.

Property Rays Sources MCT (ms) SCT (ms)

Diff
S0 354 65 3.68 0.08
S1 204 54 1.52 0.06
S2 76 32 0.53 0.03

Ref
S0 25 15 0.08 0.02
S1 24 14 0.07 0.02
S2 23 13 0.07 0.02

Trans
S0 36 81 0.21 0.03
S1 36 78 0.21 0.03
S2 36 73 0.20 0.02

Table 2: Performance Data for Figure 8

Figure 9: Sound continuity. Left: a heatmap of the output of
our sound model. Right: the discontinuities in the heatmap.

compute the sound heatmap and pass it to an edge detec-
tor. The threshold for the detector is proportional to the dis-
tance between two points, based on (2). For example, a pair
of points that are two units away from each other should
have amplitudes that are at most 2× pdf different from one
another, where pdf is the propagation decay factor of the en-
vironment. Figure 9 shows the output of the edge detector,
which has only detected sound discontinuity at the edges of
the obstacle.

Continuing with the idea of heatmaps, we can determine
the area that a sound model covers. Table 3 shows the per-
centage of the range circle that is covered by each sound
model, in the same scenario as figure 9. There is a large
gap between a model with diffraction and a simple visi-
bility polygon, which infers the necessity of diffraction in
sound simulation. Transmission plays an important role as
well. An interesting property of transmission is that we do
not need that many transmission rays to get the most out of
the model. In this case, 100 rays is almost as good as 10000,
which results in cheap computation for effective coverage.

Initial informal testing indicates our approach produces
a realistic and natural soundscape. For additional validation

Sound Model Transmission Rays Coverage
Visibility Polygon - 17.70

Diffraction - 49.38
Diffraction + Transmission 5 60.90
Diffraction + Transmission 10 62.06
Diffraction + Transmission 100 65.08
Diffraction + Transmission 1000 65.23
Diffraction + Transmission 10000 65.62

Table 3: Coverage Percentage of Different Sound Models

137

Figure 10: Comparison of our model with Project Acous-
tics’. On the left we have the output heatmaps of our model,
and on the right we have the corresponding heatmaps pro-
duced by Project Acoustics.

we measure the accuracy of our sound propagation model by
comparing its output to the output of Project Acoustics (Mi-
crosoft 2019). After hours of precomputation on the cloud,
this acoustics engine creates a fairly accurate wave-based
sound model that supports interactive experiences. To per-
form the comparison, we try to first visualize the models.
Since Project Acoustics simulates sound for a 3D environ-
ment, we only visualize it for a single height level in the
geometry, which corresponds to the height of a normal hu-
man character inside the environment. The visualization is a
heatmap representing the volume of the output sound at each
sampled point.

Figure 10 shows two cases for the comparison. We have
modified our model propagation equation to resemble the
custom audio curve that Project Acoustics uses for its out-
put. Note that there are some inaccuracies in Project Acous-
tics’ heatmap as a result of noisy sampling and not hav-
ing a straightforward method to extract the volume levels
for the 3D environment. Our model is able to maintain the
general shape of the sound output compared to the accurate
wave-based model, although we do lose some fine-grain de-
tail, likely due to the lack of con/destructive interference.
We believe the inaccuracies are justified by the very low re-
sources required for the design, and by the perception that
most video games do not require a great level of detail for
sound simulation, even if they can still benefit from a model
that addresses basic sound behaviors such as diffraction.

Conclusion and Future Work
We presented a geometry-based sound model for 2D inter-
active real-time video games. Our model is able to simulate
diffraction, reflection, and transmission, using a small num-
ber of ray casts, which keeps the computation times low and

supports dynamic geometries. We evaluated the model based
on its performance and quality, and came to the conclusion
that it can provide a cheap method to achieve relatively rea-
sonable accuracy, which provides extra information to the
player and increases the player experience.

To further evaluate the model, we are planning to perform
a human study to collect data on the usefulness of the model
to players. Our goal is to test whether the model provides
information about the geometry solely based on sound prop-
agation. This information could be about the shape of the
geometry, or the surface material of the walls and obstacles.
We are also aiming to find the sound accuracy levels that in-
dicate whether a sound model is perceived as beneficial to a
video game, or is it overkill and is using resources that other
components of the game could better utilize. If interested
in our work, you can download an early version of the user
study software in the following link:
https://github.com/TinSlam/SoundPropagationDemo

Acknowledgements
This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC) grant RGPIN-
2019-05213.

References
Allen, J. B.; and Berkley, D. A. 1979. Image method for
efficiently simulating small-room acoustics. The Journal of
the Acoustical Society of America 65(4): 943–950. doi:10.
1121/1.382599.

Boev, S. 2015. Sound Propagation in Hitman. https://www.
gdcvault.com/play/1022774/Sound-Propagation-in. [On-
line; accessed 2-August-2021].

Botteldooren, D. 1995. Finite-difference time-domain simu-
lation of low-frequency room acoustic problems. The Jour-
nal of the Acoustical Society of America 98(6): 3302–3308.
doi:10.1121/1.413817.

Brown, E.; and Cairns, P. 2004. A Grounded Investigation of
Game Immersion. In CHI ’04 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’04, 1297–1300.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 1581137036. doi:10.1145/985921.986048.

Cowan, B.; and Kapralos, B. 2015. Interactive rate acous-
tical occlusion/diffraction modeling for 2D virtual environ-
ments amp; games. In 2015 6th International Conference on
Information, Intelligence, Systems and Applications (IISA),
1–6. doi:10.1109/IISA.2015.7388078.

Dion, L.-P. 2017. Game Design Deep Dive: Dy-
namic audio in destructible levels in Rainbow Six:
Siege. https://www.gamasutra.com/view/news/288565/
Game Design Deep Dive Dynamic audio in destructible
levels in Rainbow Six Siege.php.

Foale, C.; and Vamplew, P. 2007. Portal-Based Sound Prop-
agation for First-Person Computer Games. In Proceedings
of the 4th Australasian Conference on Interactive Entertain-
ment, IE ’07. Melbourne, AUS: RMIT University. ISBN
9781921166877.

138

Funkhouser, T.; Carlbom, I.; Elko, G.; Pingali, G.; Sondhi,
M.; and West, J. 1998. A Beam Tracing Approach to
Acoustic Modeling for Interactive Virtual Environments.
In Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’98, 21–32. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 0897919998. doi:10.1145/280814.
280818.
Funkhouser, T.; Tsingos, N.; Carlbom, I.; Elko, G.; Sondhi,
M.; West, J. E.; Pingali, G.; Min, P.; and Ngan, A. 2004. A
beam tracing method for interactive architectural acoustics.
The Journal of the Acoustical Society of America 115(2):
739–756. doi:10.1121/1.1641020.
Krokstad, A.; Strom, S.; and Sørsdal, S. 1968. Calculating
the acoustical room response by the use of a ray tracing tech-
nique. Journal of Sound and Vibration 8(1): 118–125. ISSN
0022-460X. doi:10.1016/0022-460X(68)90198-3.
Kulowski, A. 1985. Algorithmic Representation of the Ray
Tracing Technique. Applied Acoustics - APPL ACOUST 18:
449–469. doi:10.1016/0003-682X(85)90024-6.
Mahjoob, M.; and Malakooti, S. 2008. Acoustic simulation
of building spaces by ray-tracing method: Prediction vs. ex-
perimental results. 23rd International Conference on Noise
and Vibration Engineering 2008, ISMA 2008 4: 2303–2312.
Microsoft. 2019. Project Acoustics. https://docs.microsoft.
com/en-us/gaming/acoustics/what-is-acoustics.
Savioja, L. 1999. Modeling Techniques for Virtual Acous-
tics. Ph.D. thesis, Helsinki University of Technology.
Savioja, L.; and Svensson, U. P. 2015. Overview of geo-
metrical room acoustic modeling techniques. The Journal
of the Acoustical Society of America 138(2): 708–730. doi:
10.1121/1.4926438.
Strikwerda, J. C. 2004. Finite Difference Schemes and
Partial Differential Equations, Second Edition. Society
for Industrial and Applied Mathematics. doi:10.1137/1.
9780898717938.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI
in Games 4(2): 144 – 148. URL http://web.cs.du.edu/
∼sturtevant/papers/benchmarks.pdf.
Takala, T.; and Hahn, J. 1992. Sound Rendering. In Proceed-
ings of the 19th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’92, 211–220.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 0897914791. doi:10.1145/133994.134063.
Taylor, M.; Chandak, A.; Mo, Q.; Lauterbach, C.; Schissler,
C.; and Manocha, D. 2012. Guided Multiview Ray Tracing
for Fast Auralization. IEEE Transactions on Visualization
and Computer Graphics 18(11): 1797–1810. doi:10.1109/
TVCG.2012.27.
Tsingos, N.; Funkhouser, T.; Ngan, A.; and Carlbom, I.
2001. Modeling Acoustics in Virtual Environments Using
the Uniform Theory of Diffraction. In Proceedings of the
28th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’01, 545–552. New York,

NY, USA: Association for Computing Machinery. ISBN
158113374X. doi:10.1145/383259.383323.
Wikipedia contributors. 2021. Huygens–Fresnel
principle — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Huygens%
E2%80%93Fresnel principle&oldid=1035947717. [Online;
accessed 2-August-2021].
Zamith, M.; Passos, E.; Brandão, D.; Montenegro, A.; Clua,
E.; Kischinhevsky, M.; and Leal-Toledo, R. C. 2010. Sound
Wave Propagation Applied in Games. In 2010 Brazilian
Symposium on Games and Digital Entertainment, 211–219.
doi:10.1109/SBGAMES.2010.29.

139

